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STATISTICAL ESTIMATION OF OPTIMAL PORTFOLIOS FOR
GAUSSIAN DEPENDENT RETURNS OF ASSETS
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Abstract. This paper discusses the asymptotic efficiency of estimators for optimal
portfolios when the returns are vector-valued Gaussian stationary processes. Then
it is shown that the usual portfolio estimators are not asymptotically efficient if the
returns are dependent. Numerical studies for the difference between the asymptotic
variance of the portfolio estimators and the Cramer-Rao bound are given. The results
clearly illuminate the inefficiency of the usual estimators for vector-valued ARMA(1,2)
processes. From this point of view we construct portfolio estimators which are asymp-
totically efficient.

1 Introduction
In the theory of portfolio analysis, optimal portfolios are determined by the mean µ and
variance Σ of the portfolio return. Several authors proposed estimators of the optimal port-
folios as the functions of the sample mean µ̂ and the sample variance Σ̂ for independent
returns of assets (e.g. Jobson and Korkie, 1980 and 1989; Lauprete, Samarov and Welsch,
2002). However, empirical studies show that financial return processes are often dependent.
From this point of view, Basak, Jagannathan and Sun (2002) showed the consistency of
optimal portfolio estimators when the portfolio returns are stationary processes.
In the literature there has been no study on the asymptotic efficiency of estimators for
optimal portfolios. Therefore, in this paper, denoting the optimal portfolios by a function
g = g(µ, Σ) of µ and Σ, we discuss the asymptotic efficiency of estimators ĝ = g(µ̂, Σ̂) when
the returns are vector-valued Gaussian stationary processes.
Section 3 gives the asymptotic distribution of ĝ. Section 4 addresses the problem of asymp-
totic efficiency for the class of estimators ĝ. It is seen that ĝ is not asymptotically efficient
generally if the returns are dependent. Such examples are provided. For asymptotically
inefficient cases, we give some numerical results, which illuminate some interesting feasture
of them. Our estimators ĝ includes many famous portfolio estimators as special cases, and
the asymptotic results give a strong warning for use of the usual portfolio estimators when
we observe dependent return processes.
Throughout this paper, ‖A‖E denotes the Euclidean norm of a matrix A. If {Xn} is a
sequence of random vectors which converges in distribution to a random vector X , then
we write Xn

L→ X . The ’vec’ operator transforms a matrix into a vector by stacking the
columns, and the ’vech’ operator transforms a symmetric matrix into a vector by stacking
the elements on and below the main diagonal. For matrices A and B, A ⊗ B denotes the
Kronecker product of A and B, whose (j1, j2)-th block is aj1,j2B.
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2 Optimal portfolios
Suppose the existence of a finite number of assets indexed by i, (i = 1, . . . , m). Let
X(t) = (X1(t), . . . , Xm(t))′ denote the random returns on m assets at time t. Write
µ = E {X(t)} and Σ = Cov(X(t)). Let α = (α1, . . . , αm)′ be the vector of portfolio
weights. Then the return of portfolio is X(t)′α, and the expectation and variance are,
respectively, given by µ(α) = µ′α, η2(α) = α′Σα. Optimal portfolio weights have been
proposed by various criteria. The followings are the typical ones.

I.

{
max

α

{
µ(α) − aη2(α)

}
,

subject to e′α = 1,

where e = (1, . . . , 1)′ (m × 1-vector), and a is a given positive number. The solution is
given by

αI =
1
2a

{
Σ−1µ − e′Σ−1µ

e′Σ−1e
Σ−1e

}
+

Σ−1e
e′Σ−1e

.(1)

If we take η2(α) as the utility function, the criterion is

II.

{
min

α
η2(α),

subject to e′α = 1.

The solution is given by

αII =
Σ−1e

e′Σ−1e
.(2)

Let us now suppose that there exists a risk-free asset. We denote by R0 its return, and
denote by α0 the amount. The problem to be solved is given by

III.

{
max
α0,α

{
µ(α) + R0α0 − aη2(α)

}
,

subject to
∑m

j=0 αj = 1.

Then the solution for α and α0 are

αIII =
1
2a

Σ−1(µ − R0e),(3)

α0III = 1 − 1
2a

e′Σ−1(µ − R0e).(4)
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Therefore the optimal portfolios can be considered as smooth functions of µ and Σ, i.e.
we may put

g1(µ, Σ) =
1
2a

{
Σ−1µ − e′Σ−1µ

e′Σ−1e
Σ−1e

}
+

Σ−1e
e′Σ−1e

,(1’)

g2(µ, Σ) =
Σ−1e

e′Σ−1e
,(2’)

g3(µ, Σ) =
1
2a

Σ−1(µ − R0e),(3’)

g4(µ, Σ) = 1 − 1
2a

e′Σ−1(µ − R0e).(4’)

Unifying the above we consider to estimate a general function g(µ, Σ) of µ and Σ. Here
it should be noted that the coefficient α satisfies the restriction e′α = 1. Then we have
only to estimate the subvector (α1, . . . , αm−1)′. Hence we assume that the function g(·) is
(m − 1)-dimensional, i.e.,

g : (µ, Σ) → Rm−1.(5)

This paper addresses the problem of statistical estimation for g(µ, Σ), which describes
various optimal portfolios.

3 Asymptotic Theory for Fundamental Quantities
Empirical studies show that financial return processes are often not independent. So it
is natural to suppose that the return process concerned is dependent. In this paper we
assume that the return process {X(t) = (X1(t), . . . , Xm(t))′; t ∈ Z} is a Gaussisn m-
vector stationary process with mean µ = (µ1, . . . , µm)′ and autocovariance matrix R(k) =
E{(X(t) − µ)(X(t + k) − µ)′}, satisfying

Assumption 1
∞∑

l=−∞
‖R(l)‖E < ∞.

The spectral density matrix of the process {X(t)} exists and is

f(λ) =
1
2π

∞∑
l=−∞

R(l) exp(−ilλ).(6)

Note that the autocovariance matrix at lag k is expressed as

R(k) =
∫ π

−π

f(λ) exp(ikλ)dλ.(7)

In what follows, k is assumed to be nonnegative, since R(k) = R(−k)′.
Let X(1), . . . ,X(T ) be an observed stretch from {X(t)}. Then we write R(0) = Σ =
{σij}, θ = (µ′, vech(Σ)′)′, and

µ̂ =
1
T

T∑
t=1

X(t)(8)

Σ̂ =
1
T

T∑
t=1

(X(t) − µ̂)(X(t) − µ̂)′(9)

θ̂ = (µ̂′, vech(Σ̂)′)′.(10)
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Also we introduce the matrices;

Ω1 = 2πf(0), (m × m) − matrix

Ω2 =
{
2π

∫ π

−π

{fα1α3(λ)fα2α4(λ) + fα1α4(λ)fα2α3(λ)}dλ

; α1, α2, α3, α4 = 1, . . . , m, α1 ≥ α2 and α3 ≥ α4

}
, (r × r) − matrix,

where r = m(m+1)/2. We write the parameter space of θ by Θ ⊂ Rm+r. Then, introduce
a function g : Θ → Rm−1, which describes various portfolios.
For g, we set down the following.

Assumption 2 The function g(θ) is continuously differentiable.

Then we have the following fundamental result.

Theorem 1 Under Assumptions 1 and 2,

√
T (g(θ̂) − g(θ)) L→ N

(
0,

(
∂g

∂θ

)′( Ω1 0
0 Ω2

)(
∂g

∂θ

))
, as T → ∞,(11)

where (
∂g

∂θ′

)
=
(

∂g

∂µ′ ,
∂g

∂vech(Σ)′

)
=
(

∂g

∂µ1
, . . . ,

∂g

∂µm
,

∂g

∂σ11
, . . . ,

∂g

∂σmm

)
.

The proof of Theorem 1 will be given in Section 6. In Section 2 some concrete examples
for g(θ) were given in (1′), (2′), (3′) and (4′). For these gk(θ), k = 1, . . . , 4, their derivatives
become

∂g1

∂µi
=

1
2a

{
Σ−1ei − e′Σ−1ei

e′Σ−1e
Σ−1e

}
,

∂g1

∂σij
= − 1

2a

{
Σ−1EijΣ−1µ − e′Σ−1EijΣ−1µ

e′Σ−1e
Σ−1e

}

+
e′Σ−1µ

2a − 1
e′Σ−1e

{
Σ−1EijΣ−1e− e′Σ−1EijΣ−1e

e′Σ−1e
Σ−1e

}
,

∂g2

∂µi
= 0,

∂g2

∂σij
= −Σ−1EijΣ−1e

e′Σ−1e
+

e′Σ−1EijΣ−1e
(e′Σ−1e)2

Σ−1e,

∂g3

∂µi
=

1
2a

Σ−1ei,
∂g3

∂σij
= − 1

2a
Σ−1EijΣ−1(µ − R0e),

∂g4

∂µi
= − 1

2a
e′Σ−1ei,

∂g4

∂σij
=

1
2a

e′Σ−1EijΣ−1(µ − R0e),

(i, j = 1, . . . , m)

where ea = (0, . . . , 0, 1, 0, . . . , 0)′ is an m× 1 vector with 1 at the a-th position and Eab =
eae′b.
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4 Asymptotic Efficiency of the Estimators of the Optimal Portfolios
Fundamental results concerning the asymptotic efficiency of sample autocovariance matrices
of vector Gaussian processes were obtained by Kakizawa(1999). He compared the asymp-
totic variance (AV) of the sample autocovariance matrices with the corresponding Fisher
information matrix F .
Now we return to the setting for {X(t)} in Section 3. That is, {X(t)} is a zero-mean Gaus-
sian m-vector stationary process with spectral density matrix f(λ), and satisfies Assumption
1.

Assumption 3
(i) f(λ) is parameterized by η = (η1, . . . , ηq)′ ∈ H ⊂ Rq i.e., fη = fη(λ).
(ii) For A(j)(l) ≡ ∫ π

−π ∂fη(λ)/∂ηjdλ, j = 1, . . . , q, l ∈ Z, it holds that∑∞
l=−∞ ‖A(j)(l)‖E < ∞.

(iii) q ≥ m(m + 1)/2.

Assumption 4 There exists a positive constant c (independent of λ) such that fη(λ)−cIm

is positive semi-definite, where Im is the m × m identity matrix.

Kakizawa(1999) showed that the limit of averaged Fisher information matrix is given by

F(η) =
1
4π

∫ π

−π

∆(λ)∗[{fη(λ)−1}′ ⊗ fη(λ)−1]∆(λ)dλ(12)

where

∆(λ) = (vec{∂fη(λ)/∂η1}, . . . , vec{∂fη(λ)/∂ηq}) (m2 × q) − matrix.

Assumption 5 The matrix F(η) is positive definite.

In view of the general asymptotic theory,

INE ≡ det
[{

Asymptotic variance of g(θ̂)
}
−F(η)−1

]
≥ 0.

In what follows we, numerically, investigate INE for various spectral structures.

Model I (VMA(1) model). Let the return process be generated by

X(t) =
(

1 − η1B 0
0 1 − η1B

)
ε(t) , ε(t) i.i.d.∼ N

(
0,

(
0.7 0.3
0.3 0.7

))
,(13)

where B is the lag operator. For this we plotted the graph of INE = INE(V MA(1)) for
η1 = −0.8(0.2)0.8 in Figure 1. We can see that, as |η1| tends to 1, INE increases.
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Figure 1: Model I: η1 = −0.8(0.2)0.8

Model II (VARMA(1,2) model). Let the return process be generated by

(
1 − η1B 0

0 1 − η1B

)
X(t)(14)

=
(

(1 − η2B)(1 − η3B) 0
0 (1 − η2B)(1 − η3B)

)
ε(t), ε(t) i.i.d.∼ N

(
0,

(
0.7 0.3
0.3 0.7

))
.

For this model we plotted the graph of INE = INE(V ARMA(1, 2)) for η1 = −0.8(0.2)0.8, η2 =
0.01, η3 = 0.5 in Figure 2. We can see that if η1 ↘ −1, INE becomes quite large.
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Figure 2: Model II: η1 = −0.8(0.2)0.8, η2 = 0.01, η3 = 0.5
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Model III (VARMA(1,2) model). Let the model be generated by (4.2) with η1 = 0.01
and η2 = 0.5. For this we plotted the graph of INE = INE(V ARMA(1, 2)) for η3 =
−0.8(0.2)0.8 in Figure 3. We can see that as η3 ↗ 1, INE increases.

-0.6 -0.1 0.4 0.9
eta 3

0

100

200

300

400

INE

Figure 3: Model III: η1 = 0.01, η2 = 0.5, η3 = −0.8(0.2)0.8

Summarizing the above we observe that

(i) If X(t) is VMA(1) model, INE increases as the absolute value of the MA coefficient
η1 tends to 1.

(ii) If X(t) is VARMA(1,2) model with the MA coefficient η2 ≈ 0, INE increases as
the AR coefficient η1 tends to −1.

(iii) If X(t) is VARMA(1,2) model with the AR coefficient η1 ≈ 0, INE increases as
the MA coefficient η3 tends to 1.

Although we just examined a few examples of dependent returns, the above studies
illuminate inefficiency of the usual portfolio estimators. Therefore it should be noted that
the degree of inefficiency becomes quite large if some parameters tend to a boundary value.
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5 Construction of efficient estimators

5.1 A quasi-Gaussian maximum likelihood estimator
Let {X(t)} be the linear process defined by Sections 3 and 4 with spectral density matrix
fη(λ),η ∈ H. We assume η = vech{R(0)}. Denote by Ix(λ), the periodogram matrix
constructed from a partial realization {X(1), . . . ,X(T )};

Ix(λ) = FxF ∗
x , with Fx(λ) =

1√
2πT

T∑
t=1

X(t)eitλ, −π ≤ λ ≤ π.(15)

In view of Hosoya and Taniguchi(1982) we introduce

D(fη, Ix) =
∫ π

−π

[log det fη(λ) + tr{f−1
η (λ)Ix(λ)}]dλ.(16)

A quasi-Gaussian maximum likelihood estimator η̂ of η is given by

η̂ = arg min
η∈H

D(fη, Ix).(17)

Hosoya and Taniguchi (1982) showed that

(i) p − limT→∞ η̂ = η,
(ii)

√
T (η̂ − η) L→ N(0,F(η)−1).

Therefore, η̂ is Gaussian asymptotically efficient, hence g(θ̃), with θ̃ = (µ̂′, η̂′)′, is asymp-
totically efficient.
Since the solution of ∂D(fη, Ix)/∂η = 0 is generally nonlinear with respect to η, we use the
Newton-Raphson iteration procedure. A feasible procedure is

η̂(1) = vech(Σ̂)(18)

η̂(k) = η̂(k−1) −
[
∂2D(fη, Ix)

∂η∂η′

]−1
∂D(fη, Ix)

∂η

∣∣∣∣
η=η̂(k−1)

(k ≥ 2)(19)

From Hosoya and Taniguchi (1982) and Taniguchi and Kakizawa (2000) it is seen that η̂(2) is
asymptotically efficient. Therefore, g(θ̄), θ̄ = (µ̂′, η̂(2)′)′, becomes asymptotically efficient.
In calculating (19), it follows that

∂D(fη, Ix)
∂ηij

=
1
2π

∫ π

−π

tr
[
fη(λ)−1Eij(Im − fη(λ)−1Ix(λ))

]
dλ,(20)

∂2D(fη, Ix)
∂ηij∂ηkl

=
(

1
2π

)2 ∫ π

−π

tr[−fη(λ)−1Eklfη(λ)−1Eij

(
Im − fη(λ)−1Ix(λ)

)
(21)

+fη(λ)−1Eijfη(λ)−1Eklfη(λ)−1Ix(λ)]dλ,

where ηij is the (i, j) − th element of R(0). To make the step (19) feasible, we replace fη
in (20) and (21) by a nonparametric spctral estimator

f̂η(λ) =
∫ π

−π

WT (λ − µ)Ix(µ)dµ.(22)
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Here WT (θ) is a class of functions of the form

WT (θ) = M

∞∑
k=−∞

W (M(θ + 2πk)),(23)

where W (·) and M satisfy the following:

(W1) W (θ) is a real, bounded, nonnegative, even function with∫ ∞

−∞
W (θ)dθ = 1,

∫ ∞

−∞
θ2W (θ)dθ = κ2 (0 < κ2 < ∞).(24)

(W2) w(x) =
∫∞
−∞ W (θ)eiθxdθ satisfies |w(x)| ≤ w̄(x), where w̄(x) is even, integrable, and

monotonically decreasing on [0,∞).

(M) M > 0 depends on T in such a way that M/T 1/2 + T ν/M → 0 as T → ∞, where ν is
a nonnegative number.

Then, from Taniguchi and Kakizawa(2000) it follows that

max
λ∈[−π,π]

‖f̂(λ) − f(λ)‖E
p→ 0,(25)

and that

f̂(λ) = f(λ) + OP

(
1√

T
√

BT

)
,

where BT > 1 and BT ↗ ∞, which implies that the convergence rate (consistency order)
of f̂(λ) is smaller than O(

√
T ). But if we integrate f̂(λ), the

√
T -consistency is recovered,

i.e. ∫
Ψ(̂f(λ))dλ =

∫
Ψ(f(λ))dλ + OP

(
1√
T

)
,(26)

where Ψ(·) is a continuous function. Hence,

∂D(fη, Ix)
∂η

∣∣∣∣
fη=f̂

=
∂D(fη, Ix)

∂η
+ OP

(
1√
T

)
,(27)

∂2D(fη, Ix)
∂η∂η′

∣∣∣∣
fη=f̂

=
∂2D(fη, Ix)

∂η∂η′ + OP

(
1√
T

)
.(28)

It is possible to drop the Gaussian assumption of {X(t)}. In fact, in view of Lemma A2.3
of Hosoya and Taniguchi(1982), the statement (34) becomes

√
T (θ̂ − θ) L→ N

(
0, Ω̄

)
,(29)

where Ω̄ =
(

Ω1 0
0 Ω2 + ΩNG

2

)
. Here the explicit form of ΩNG

2 is given by (6.11) of Hosoya

and Taniguchi (1982), and depends on the non-Gaussianity of {X(t)}. Hence Theorem 1
becomes

√
T
{
g(θ̂) − g(θ)

} L→ N(0, (∂g/∂θ′) Ω̄ (∂g/∂θ′)′).(30)
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However, if we discuss the asymptotic efficiency of g(θ̂), it is required to develop the asymp-
totic efficient estimation theory based on the local asymptotic normality (LAN) for non-
Gaussian processes. The discussion is much involved, so we make it in a future work.

6 Proof
This section provides the proof of Theorem 1.

Proof of Theorem 1
From Hannan (1970,Theorem 11,p.221) it follows that

√
T {µ̂ − µ} L→ N(0, Ω1), as T → ∞.(31)

The result
√

T
{
vech(Σ̂) − vech(Σ)

} L→ N(0, Ω2), as T → ∞,(32)

follows form Theorem 2.2 of Hosoya and Taniguchi (1982). Since we assume the Gaussianity
of {X(t)}, it is easily seen that

lim
T→∞

Cov[
√

T (µ̂ − µ),
√

T{vech(Σ̂) − vech(Σ)}] = 0, (zero − matrix)(33)

Combining the results by Hannan(1970) and Hosoya and Taniguchi(1982), we can check the
joint asymptotic normality of

√
T {µ̂ − µ} and

√
T
{
vech(Σ̂) − vech(Σ)

}
. Hence,

√
T (θ̂ − θ) L→ N (0, Ω) (as T → ∞),(34)

where Ω =
(

Ω1 0
0 Ω2

)
.

By use of the δ-method (e.g., Brockwell and Davis (1991, Proposition 6.4.3)) for (6.4), we
observe that

√
T
{
g(θ̂) − g(θ)

} L→ N(0, (∂g/∂θ′) Ω (∂g/∂θ′)′), as T → ∞.(35)
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