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EMPIRICAL LIKELIHOOD APPROACH FOR NON GAUSSIAN
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Abstract. For a class of non Gaussian stationary processes, we develop the empirical
likelihood approach. For this it is known that Whittle likelihood is the most fundamen-
tal tool to get a good estimator of unknown parameter, and that the score functions
are asymptotically chi-square distributed. Motivated by the Whittle likelihood, we ap-
ply the empirical likelihood approach to its derivative. This paper provides a rigorous
proof on convergence of our empirical likelihood to a chi-square distribution. Also,
some numerical studies on confidence region will be given.

1. Introduction. Empirical likelihood method is used when the distribution of an ap-
propriate pivotal quantity is unknown. It is shown that empirical likelihood ratio is asymp-
totically chi-square distributed (e.g. Owen (2001)). However, most of studies on this topic
are aimed to independent data.

For dependent sample, Monti (1997) applied the empirical likelihood approach to the
derivative of the Whittle likelihood, and showed that the empirical likelihood ratio is asymp-
totically χ2-distributed. The results were applied to the problem of testing and construction
of a confidence region.

Although Monti’s results are innovative in time series analysis, the theoretical proofs
of the asymptotic results essentially rely on the circular Gaussian assumption for the con-
cerned process like as Anderson (1977). Therefore this paper provides a rigorous proof for
asymptotics of the empirical Whittle likelihood ratio using the non Gaussian and dependent
structure essentially. Also, some numerical studies on confidence region will be given.

This paper is organized as follows. Section 2 describes our setting and preliminary
results for the periodogram. In Section 3, we explain the empirical likelihood approach
for the Wittle likelihood. The asymptotic distribution of the empirical likelihood ratio
is derived. Section 4 provides some numerical studies on confidence region based on our
results. The proof of theorem is relegated to Section 5.

As for notations used in this paper, we denote the convergence in probability by
p→, the

convergence in distribution by d→, the set of all integers by Z, and Kronecker’s delta by
δ(m,n).

2. Setting and Preliminaries. We consider a scalar-valued linear process {X(t); t ∈ Z},
generated as

X(t) =
∞∑

j=0

G(j) e(t− j), t ∈ Z,(2.1)

where {e(t)} is a sequence of random variables satisfying E{e(t)} = 0 and E{e(t)e(s)} =
δ(t, s)σ2, with σ2 > 0, G(j)’s are constants, and the X, e and G are all real. If

∑∞
j=0G(j)2 <
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∞ (this condition is assumed throughout), the process {X(t)} is a second-order stationary
process, and has the spectral density function

fXX(ω) =
σ2

2π

∣∣∣ ∞∑
j=0

G(j)e−iωj
∣∣∣2, −π ≤ ω ≤ π.(2.2)

For the stretch X(t), t = 1, . . . , T , we denote by IXX(ω), the periodogram; namely

IXX(ω) =
1

2πT
|dX(ω)|2, where dX(ω) =

T∑
t=1

X(t) exp{−iωt} − π < ω < π.

We set down the following assumptions.

Assumption 2.1.

(i) {X(t)} is kth-order stationary with all of whose moments exist.

(ii) The joint kth-order cumulant cXk(u1, . . . , uk−1) of X(t),X(t+ u1), . . . , X(t+ uk−1)
satisfies

∞∑
u1,... ,uk−1=−∞

[1 + |uj |] |cXk(u1, . . . , uk−1)| <∞

for j = 1, . . . , k − 1 and any k, k = 2, 3, . . . .

Assumption 2.2. For the sequence {Ck} defined by

Ck =
∞∑

u1,... ,uk=−∞
|cXk(u1, . . . , uk−1)|,

it holds that
∞∑

k=1

Ckz
k/k! <∞

for z in a neighborhood of 0.

Denote by fXk(ω1, . . . , ωk−1), the kth-order spectral density of the process {X(t)};
namely

fXk(ω1, . . . , ωk−1) = (2π)−k+1
∞∑

u1,... ,uk=−∞
cXk(u1, . . . , uk−1) exp

{
−i

k−1∑
j=1

ujωj

}
.

In what follows, we state the fundamental results on periodogram, which will be used
in the next section.

Lemma 2.1. Let {X(t)} satisfy Assumption 2.1. Let A(ω),−π ≤ ω < π be a q-
dimensional vector valued continuous function, satisfying A(ω) = A(−ω). Then

T−1
2

T∑
t=1

A(λt){IXX(λt) − EIXX(λt)} d→ N
(
0,Σ(1)

)
(T → ∞),
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where λt = 2πt/T (throughout this paper) and

Σ(1) =
1
2π

∫ π

−π

∫ π

−π

A(α)A(β)′fX4(α,−α, β) dαdβ

+
1
π

∫ π

−π

A(α)A(α)′fXX(α)2 dα.

Lemma 2.2. Under the same assumption as in Lemma 2.1, it holds that

T−1
T∑

t=1

{A(λt)IXX(λt)}{A(λt)IXX(λt)}′ p→ Σ(2) (T → ∞),

where

Σ(2) =
1
π

∫ π

−π

A(α)A(α)′fXX(α)2 dα.

The proofs of Lemmas 2.1 and 2.2 are essentially given by Brillinger (1981, Theorem
5.10.1) or Hosoya and Taniguchi (1982).

3. Empirical likelihood approach for time series. Empirical likelihood is a non-
parametric method of statistical inference. It allows us to use likelihood methods, without
assuming that the data come from a known family of distribution. Empirical likelihood
method is based on the nonparametric likelihood ratio R(F ) =

∏n
i=1 nwi where F is an

arbitrary distribution which has probability wi on the data Xi. We use this ratio R(F ) as
a basis for hypothesis testing and confidence intervals.

When we are interested in parameter θ ∈ Rq which satisfies E[m(X,θ)] = 0, where
m(X ,θ) ∈ Rq is the vector-valued function, called estimating function, we consider the
empirical likelihood ratio function R(θ) (defined in (3.3) below). As a test statistic, it
is shown that −2 logR(θ) tends to chi-square with degree of freedom q, when X ′

is have
identically independent distribution, (e.g. Owen (2001)).

Here, we consider the case of dependent sample. When {X(t)} is a Gaussian circular
ARMA process, Anderson (1977) showed that the log likelihood for X = (X(1), . . . , X(T ))′

becomes, disregarding a constant term,

LLc(θ) = −
T∑

t=1

{
log fXX(λt; θ) +

IXX(λt)
fXX(λt; θ)

}
,

and that 2IXX(λt)/fXX(λt; θ), t = 1, . . . , (T/2) − 1 or (T − 1)/2, are independently dis-
tributed, each with a χ2

2-distribution, where IXX(λ) is the periodogram of X and fXX(λ;θ)
is the spectral density. Without the assumption of circular Gaussian ARMA process,
it is known that Anderson’s results hold asymptotically (e.g. Taniguchi and Kakizawa
(2000)). That is, if {X(t)} is an appropriate stationary process, 2IXX(λt)/fXX(λt; θ), t =
1, . . . , (T/2)−1 or (T−1)/2 are asymptotically independent and asymptotically χ2

2-distributed.
Even if Gaussianity is assumed, without circular assumption, 2IXX(λt)/fXX(λt; θ)’s are

not i.i.d. χ2
2, exactly. Therefore when {X(t)} is a non-Gaussian process, it is valueable to

consider the empirical likelihood. Monti (1997) applied the spectral approach of this type
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to the empirical likelihood, and considerd an integral version of LLc(θ), which is called the
Whittele likelihood, that is,

W (θ) ≡
∫ π

−π

{
log fXX(ω; θ) +

IXX(ω)
fXX(ω; θ)

}
dω,(3.1)

and used ψt(θ) = (∂/∂θ) {log fXX(λt; θ) + IXX(λt)/fXX(λt; θ)} as a counterpart of Owen’s
m(X,θ). Then, Monti (1997) showed that −2 logR(θ) tends to chi-square with degree of
freedom q. However, the proof of the above result essensially relies on Anderson’s results.

In this paper, assuming that {X(t)} is a non-Gaussian stationary process, we give the
rigorous proof of it. First, we impose the following assumptions.

Assumption 3.1. fXX(ω; θ) is continuously twice differentiable with respect to θ.

Assumption 3.2.

(i) θ0 is the true parameter of θ.

(ii) θ0 is innovation free, that is,

∫ π

−π

∂

∂θ
{fXX(ω; θ)}−1fXX(ω; θ) dω

∣∣∣∣
θ=θ0

= 0.(3.2)

If θ is innovation-free, (∂/∂θ)W (θ) = 0 becomes
∫ π

−π
(∂/∂θ){IXX(ω)/fXX(ω; θ)} dω |θ=θ0 =

0 and its discriterized version becomes
∑T

t=1(∂/∂θ){IXX(λt)/fXX(λt; θ)} |θ=θ0 = 0. Be-
cause it is known that E[IXX(λt)] converges to fXX(λt; θ), we can see that
E[(∂/∂θ) {IXX(λt)/fXX(λt; θ)} |θ=θ0 ] → 0, which motivates our empirical likelihood ratio
function R(θ) defined by

R(θ) = max

{
T∏

t=1

Twt |
T∑

t=1

wtm(λt; θ) = 0, wt ≥ 0,
T∑

t=1

wt = 1

}
.(3.3)

We set down the following further assumption.

Assumption 3.3. The process {e(t)} satisfies

cum{e(t1), e(t2), e(t3), e(t4)} =
{
κ4 (t1 = t2 = t3 = t4)
0 (otherwise) .

Then we get the following theorem. The proof is given in Section 5.

Theorem 3.1. Let {X(t)} be a scalar-valued linear process defined in (2.1), and satisfy
Assumptions 2.1 ∼ 2.2 and 3.1 ∼ 3.3. Then −2 logR(θ0)

d→ χ2
(q) as T → ∞, where

m(λt; θ) =
∂

∂θ

{
IXX(λt)
fXX(λt; θ)

}
.

Using this theorem, we can construct a confidence regions on θ. First, we choose a
proper threshold value zα, which is α percentail of χ2

2. Then we caluculate −2 logR(θ) at
numerous points over the range and consutruct the region

Cα,T = {θ | − 2 logR(θ) > zα}.
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4 Examples. Let us consider the following ARMA(1,1) model

X(t) + βX(t− 1) = e(t) + αe(t− 1),

where e(t)’s are i.i.d. N(0, σ2). We set α0 = 0.2, β0 = 0.35, σ2 = 1 and the length
of observations T = 300. Let (α̂ML, β̂ML) be the quasi-maximum likelihood estimator of
(α0, β0) which minimizes W (θ) in (3.1). Then it is known that

√
T

(
α̂ML − α0

β̂ML − β0

)
d→ N

⎛
⎝0,

(
1

1−α02 − 1
1−α0β0

− 1
1−α0β0

1
1−β0

2

)−1
⎞
⎠ ,(4.1)

(e.g. Hosoya and Taniguchi (1982)). Then we can construct a confidence region by (4.1).
Figure 1 shows the 90% empirical likelihood confidence rigion (solid line) and the usual
confidence region based on the maximum likelihood estimator (dashed line) for (α, β). Em-
pirical confidence gives the larger region than usual confidence. However, the usual method
must specify the parametric family to use though we might not know it. Such misspeci-
fication can cause the confidence region to be failed completely. Therehore, the empirical
likelihood method is worth consideration.
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Figure 1:

5. Proofs. In this section we give the proof of Theorem 3.1. For this we need the following
lemma which is due to Brillinger (2001, Theorem 4.5.1).

Lamma A5.1. Let {X(t), t ∈ Z} satisfy Assumption 2.2 and have mean 0. Then

lim
T→∞

sup
ω

|dX(ω)|
(T log T )1/2

≤ 2{2π sup
ω
fXX(ω)}1/2

with probability 1.
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Using the above Lemma, we prove Theorem 3.1.

Proof of Theorem 3.1 .
To find the maximizing weights w′

ts of (3.3), we proceed by the Lagrange multiplier method.
Write

G =
T∑

t=1

log(Twt) − Tφ′
T∑

t=1

wtm(λt; θ0) + γ

(
T∑

t=1

wt − 1

)
,

where φ ∈ Rq and γ ∈ R are Lagrange multipliers. Setting ∂G/∂wt = 0 gives

∂G

∂wt
=

1
wt

− Tφ′m(λt; θ0) + γ = 0.

So, the equation
∑T

t=1 wt(∂G/∂wt) = 0 gives γ = −T . Then, we may write

wt =
1
T

1
1 + φ′ m(λt; θ0)

.

where the vector φ = φ(θ0) satisfies q equations given by

g(φ) :=
1
T

T∑
t=1

m(λt; θ0)
1 + φ′ m(λt; θ0)

= 0.(5.1)

Let φ = ‖φ‖u where u ∈ U , a set of unit vector. Introduce

Yt := φ′m(λt; θ0), and Z∗
T := max

1≤t≤T
‖m(λt; θ0)‖.

Substituting 1/(1 + Yt) = 1 − Yt/(1 + Yt) into u′g(φ) = 0 and simplifying, we find that

u′
{

1
T

T∑
t=1

(
1 − Yt

1 + Yt

)
m(λt; θ0)

}
= 0

u′
(

1
T

T∑
t=1

φ′m(λt; θ0)
1 + Yt

m(λt; θ0)

)
= u′

(
1
T

T∑
t=1

m(λt; θ0)

)

‖φ‖u′
(

1
T

T∑
t=1

m(λt; θ0)m(λt; θ0)′

1 + Yt

)
u = u′

(
1
T

T∑
t=1

m(λt; θ0)

)
(5.2)

Let

S :=
1
T

T∑
t=1

m(λt; θ0)m(λt; θ0)′.

Every wt > 0, so 1 + Yt > 0 and therefore by (5.2), we get

‖φ‖u′Su ≤ ‖φ‖u′
(

1
T

T∑
t=1

m(λt; θ0)m(λt; θ0)′

1 + Yt

)
u · (1 + max

t
Yt)

≤ ‖φ‖u′
(

1
T

T∑
t=1

m(λt; θ0)m(λt; θ0)′

1 + Yt

)
u · (1 + ‖φ‖Z∗

t )

= u′
(

1
T

T∑
t=1

m(λt; θ0)

)
(1 + ‖φ‖Z∗

t ).(5.3)
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Then by (5.3), we get

‖φ‖
[
u′Su − Z∗

T u′
{

1
T

T∑
t=1

m(λt; θ0)

}]
≤ u′

{
1
T

T∑
t=1

m(λt; θ0)

}
.(5.4)

Now, we evaluate the order of (1/T )
∑T

t=1 m(λt; θ0), S and Z∗
T . When θ0 is innovation-free,

1√
T

T∑
t=1

∂

∂θ
{fXX(λt; θ)}−1

∣∣∣∣
θ=θ0

EIXX(λt)

=
√
T

2π
2π
T

T∑
t=1

∂

∂θ
{fXX(λt; θ)}−1

∣∣∣∣
θ=θ0

EIXX(λt)

=
√
T

2π

{∫ π

−π

∂

∂θ
{fXX(ω; θ)}−1

∣∣∣∣
θ=θ0

fXX(ω; θ) dω +O(T−1)

}

= O(T− 1
2 ).(5.5)

In Lemma 2.1, let A(ω) = (∂/∂θ)fXX(ω; θ)−1|θ=θ0. Then by (5.5)

T− 1
2

T∑
t=1

∂

∂θ
{fXX(ω; θ)}−1

∣∣∣∣
θ=θ0

IXX(λt)
d→ N(0,Σ(1)),

which implies

1
T

T∑
t=1

m(λt; θ0) = Op(T− 1
2 ).(5.6)

Similarly, letting (∂/∂θ)fXX(ω; θ)−1|θ=θ0 = A(ω) in Lemma 2.2, we get

T−1
T∑

t=1

{
∂

∂θ
{fXX(ω; θ)}−1

∣∣∣∣
θ=θ0

IXX(λt)

}{
∂

∂θ
{fXX(ω; θ)}−1

∣∣∣∣
θ=θ0

IXX(λt)

}′
p→ Σ(2),

which implies

1
T

T∑
t=1

m(λt; θ0)m(λt; θ0)′ = S = Op(1).(5.7)

It follows from Lemma A5.1 that

Z∗
T = max

1≤t≤T
‖A(λt)‖ |IXX(λt)|

≤ sup
α

‖A(α)‖ · (2πT )−1

(
sup

α
|dX(α)|

)2

= O(log T ).(5.8)

From (5.4)-(5.8), it is seen that

‖φ‖
[
Op(1) −O(log T )Op(T−1/2)

]
≤ Op(T−1/2).
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Therefore,

‖φ‖ = Op(T−1/2).

While, we have from (5.8) that

max
1≤t≤T

|Yt| = Op(T− 1
2 )O(log T ) = Op(T− 1

2 log T ),(5.9)

and from (5.1) that

0 =
1
T

T∑
t=1

m(λt; θ0)
1

1 + Yt

=
1
T

T∑
t=1

m(λt; θ0)
(

1 − Yt +
Y 2

t

1 + Yt

)

=
1
T

T∑
t=1

m(λt; θ0) − Sφ +
1
T

T∑
t=1

m(λt; θ0)Y 2
t

1 + Yt
.(5.10)

Noting that

1
T

T∑
t=1

‖m(λt; θ0)‖3 ≤ 1
T

T∑
t=1

Z∗
T ‖m(λt; θ0)‖2 = O(log T ),

we can see that the final term in (5.10) has a norm bounded by

1
T

T∑
t=1

‖m(λt; θ0)‖3‖φ‖2|1 + Yt|−1 = O(log T ) Op(T−1) Op(1) = Op(T−1 log T ),

hence, we can write

φ = S−1

{
1
T

T∑
t=1

m(λt; θ0)

}
+ β,

where β = Op(T−1 log T ).
By (5.9), we may write

log(1 + Yt) = Yt − 1
2
Y 2

t + ηt

where for some finite B > 0

Pr(|ηt| ≤ B|Yt|3, 1 ≤ t ≤ T ) → 1 (T → ∞).

We may write

−2 logR(θ0) = −2
T∑

t=1

log(Twt) = 2
T∑

t=1

log(1 + Yt)

= 2
T∑

t=1

Yt −
T∑

t=1

Y 2
t + 2

T∑
t=1

ηt

=

{
1√
T

T∑
t=1

m(λt; θ0)

}′

S−1

{
1√
T

T∑
t=1

m(λt; θ0)

}
− Tβ′Sβ + 2

T∑
t=1

ηt

= (A) − (B) + (C). (say)
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Here it is seen

(B) = TOp(T−1 log T )Op(1)Op(T−1 log T ) = Op(T−1(log T )2),

(C) ≤ B‖φ‖3
T∑

t=1

‖m(λt; θ0)‖3 = Op(T− 3
2 )O(T log T ) = Op(T− 1

2 log T ).

Next, we show that Σ(1) = Σ(2) when A(ω) = (∂/∂θ)fXX(ω; θ)−1|θ=θ0 and θ0 is innovation-
free. By Assumption 3.3, it holds that

fXXXX(α,−α, β; θ0)

= (2π)−3κ4

⎛
⎝ ∞∑

j=0

G(j; θ0)e−iαj

⎞
⎠
⎛
⎝ ∞∑

j=0

G(j; θ0)e−iβj

⎞
⎠
⎛
⎝ ∞∑

j=0

G(j; θ0)eiαj

⎞
⎠
⎛
⎝ ∞∑

j=0

G(j; θ0)eiβj

⎞
⎠

= (2π)−1(σ2)−2κ4fXX(α;θ0)fXX(β; θ0).

Then ∫ π

−π

∫ π

−π

A(α)A(β)′fXXXX(α,−α, β; θ0) dαdβ

= (2π)−1(σ2)−2κ4

×
[∫ π

−π

{
∂

∂θ
fXX(α;θ)−1

∣∣∣∣
θ=θ0

}
fXX(α;θ0) dα

]

×
[∫ π

−π

{
∂

∂θ
fXX(β; θ)−1

∣∣∣∣
θ=θ0

}
fXX(β; θ0) dβ

]′

= 0.(5.11)

From Lemmas 2.1 ∼ 2.2 and (5.11), we can see that Σ(1) = Σ(2). Finally by the central
limit theorem of Lemma 2.1, we can show that (A) d→ χ2

(q). �
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