
Scientiae Mathematicae Japonicae Online, e-2005, 531–536 531

APPROXIMATING COMMON FIXED POINTS OF NONEXPANSIVE
SEMIGROUPS IN BANACH SPACES

Gang Eun Kim and Wataru Takahashi

Received August 16, 2005

Abstract. In this paper, we prove the following theorem: Let C be a nonempty
closed convex subset of a uniformly convex Banach space E whose norm is uniformly
Gâteaux differentiable, let � = {T (t) : t ≥ 0} be a strongly continuous semigroup of
nonexpansive mappings on C such that F (�) =

�
t≥0 F (T (t)) �= ∅ and let P be the

sunny nonexpansive retraction from C onto F (�). For some u ∈ C, define a sequence
{xn} in C by xn = (1 − αn)T (tn)xn + αnu, where 0 < αn < 1, tn > 0 for all n ≥ 1

and lim
n→∞

tn = lim
n→∞

αn

tn
= 0. Then {xn} converges strongly to Pu.

1 Introduction Let E be a real Banach space and let C be a nonempty closed convex
subset of E. Then a mapping T of C into itself is called nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖
for all x, y ∈ C. For a given u ∈ C and each r ∈ (0, 1), we define a contraction Tr : C → C
by

Trx = (1 − r)Tx + ru for all x ∈ C,

where T : C → C is a nonexpansive mapping. Then, there exists a unique fixed point xr of
Tr in C, that is, we have a unique point xr such that

xr = (1 − r)Txr + ru.

A question naturally arises to whether {xr} converges strongly as r → 0 to a fixed point of T .
This question has been investigated for nonexpansive self-mappings(or nonself-mappings)
by several authors; see, for example, Browder [2], Halpern [5], Singh and Watson [9], Xu-Yin
[14], Kim-Takahashi [6], Takahashi-Kim [12] and others.

Recently, Suzuki [10] proved the following theorem: Let C be a nonempty closed convex
subset of a Hilbert space H and let � = {T (t) : t ≥ 0} be a strongly continuous semigroup
of nonexpansive mappings on C such that F (�) �= ∅. For a fixed u ∈ C, define a sequence
{xn} in C by

xn = (1 − αn)T (tn)xn + αnu for all n ≥ 1,

where {αn} ⊂ (0, 1) and {tn} ⊂ (0,∞) satisfy 0 < αn < 1, tn > 0 and lim
n→∞ tn = lim

n→∞
αn

tn
=

0. Then {xn} converges strongly to the element of F (�) nearest to u.
In this paper, using Banach limits, we prove a strong convergence theorem for a strongly

continuous semigroup of nonexpansive mappings in a uniformly convex Banach space with a
uniformly Gâteaux differentiable norm. This extends Suzuki’s result [10] in a Hilbert space
to a Banach space.
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2 Preliminaries Throughout this paper we denote by E and E∗ a Banach space and
the dual space of E, respectively. The value of x∗ ∈ E∗ at x ∈ E will be denoted by 〈x, x∗〉.
Let C be a nonempty closed convex subset of E and let T be a mapping from C into itself.
Then we denote by F (T ) the set of all fixed points of T , i.e., F (T ) = {x ∈ C : Tx = x}.
We also denote by N and R

+ the sets of positive integers and nonnegative real numbers,
respectively. When {xn} is a sequence in E, then xn → x will denote strong convergence of
the sequence {xn} to x. A Banach space E is called uniformly convex if for each ε > 0 there
is a δ > 0 such that for x, y ∈ E with ‖x‖, ‖y‖ ≤ 1 and ‖x−y‖ ≥ ε, ‖x+y‖ ≤ 2(1−δ) holds.
Let S(E) = {x ∈ E : ‖x‖ = 1}. Then the norm of E is said to be Gâteaux differentiable
(and E is said to be smooth) if

(1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x and y in S(E). It is also said to be uniformly Gâteaux differentiable if
for each y ∈ S(E), the limit (1) is attained uniformly for x in S(E). With each x ∈ E, we
associate the set

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}.
Then J : E → E∗ is said to be the duality mapping. It is well known if E is smooth,
then the duality mapping J is single-valued and strong-weak∗ continuous. It is also known
if E has a uniformly Gâteaux differentiable norm, J is uniformly continuous on bounded
sets when E has its strong topology while E∗ has its weak star topology; for more details,
see Diestel [4] and Takahashi [11]. Let µ be a continuous, linear functional on l∞ and let
(a1, a2, · · · ) ∈ l∞. We write µn(an) instead of µ((a1, a2, · · · )). We call µ a Banach limit [1]
when µ satisfies ‖µ‖ = µn(1) = 1 and µn(an+1) = µn(an) for each (a1, a2, · · · ) ∈ l∞. For a
Banach limit µ, we know that

lim inf
n→∞ an ≤ µn(an) ≤ lim sup

n→∞
an for all (a1, a2, · · · ) ∈ l∞.

So, we have that if an → 0, then µn(an) → 0; see [11] for more details. Let C be a convex
subset of E, let K be a nonempty subset of C and let P be a retraction from C onto K,
i.e., Px = x for each x ∈ K. P is said to be sunny if P (Px + t(x − Px)) = Px for each
x ∈ C and t ≥ 0 with Px+ t(x−Px) ∈ C. If there is a sunny nonexpansive retraction from
C onto K, K is said to be a sunny nonexpansive retract of C. Let � = {T (t) : t ∈ R

+} be
a strongly continuous semigroup of nonexpansive mappings on a closed convex subset C of
a Banach space E, i.e.,

(1) for each t ∈ R
+, T (t) is a nonexpansive mapping on C;

(2) T (0)x = x for all x ∈ C;

(3) T (s + t) = T (s)T (t) for all s, t ∈ R
+;

(4) for each x ∈ C, the mapping T (·)x from R
+ into C is continuous.

We also set F (�) =
⋂

t∈R+ F (T (t)).

3 Strong convergence theorem For proving our main theorem, we need the following
lemmas.
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Lemma 1 ([8]). Let C be a nonempty closed convex subset of a uniformly convex Banach
space E. Let {xn} be a bounded sequence of E and let µ be a Banach limit. Let g be a real
valued function on C defined by

g(y) = µn‖xn − y‖2 for every y ∈ C.

Then g is continuous and convex, and g satisfies lim
‖y‖→∞

g(y) = ∞. Moreover, for each

R > 0 and ε > 0, there exists δ > 0 such that

g
(y + z

2

)
≤ g(y) + g(z)

2
− δ

for all y, z ∈ C ∩BR with ‖y − z‖ ≥ ε, where BR is the closed ball with center 0 and radius
R.

Lemma 2 ([13]). Let C be a nonempty convex subset of a Banach space E whose norm is
uniformly Gâteaux differentiable. Let {xn} be a bounded subset of E, let z be an element of
C and let µ be a Banach limit. Then

µn‖xn − z‖2 = min
y∈C

µn‖xn − y‖2

if and only if
µn〈y − z, J(xn − z)〉 ≤ 0 for all y ∈ C,

where J is the duality mapping on E.

Lemma 3 ([3], [7]). Let C be a convex subset of a smooth Banach space, let K be a
nonempty subset of C and let P be a retraction from C onto K. Then P is sunny and
nonexpansive if and only if

〈x − Px, J(y − Px)〉 ≤ 0 for all x ∈ C and y ∈ K.

We extend Theorem 3 of Suzuki [10] to a uniformly convex Banach space with a uni-
formly Gâteaux differentiable norm.

Theorem. Let E be a uniformly convex Banach space with a uniformly Gâteaux differen-
tiable norm and let C be a nonempty closed convex subset of E. Let � = {T (t) : t ≥ 0} be
a strongly continuous semigroup of nonexpansive mappings on C such that F (�) �= ∅ and
let P be the sunny nonexpansive retraction from C onto F (�). For some u ∈ C, define a
sequence {xn} in C by

xn = (1 − αn)T (tn)xn + αnu for all n ≥ 1,

where {αn} ⊂ (0, 1) and {tn} ⊂ (0,∞) satisfy 0 < αn < 1, tn > 0 and lim
n→∞ tn = lim

n→∞
αn

tn
=

0. Then {xn} converges strongly to Pu.

Proof. Let x be an element of F (�). Then we have

‖xn − x‖ = ‖(1 − αn)T (tn)xn + αnu − x‖
≤ (1 − αn)‖T (tn)xn − x‖ + αn‖u − x‖
≤ (1 − αn)‖xn − x‖ + αn‖u − x‖
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and hence
αn‖xn − x‖ ≤ αn‖u − x‖.

So, we have ‖T (tn)xn − x‖ ≤ ‖xn − x‖ ≤ ‖u − x‖. Hence, setting r = ‖u − x‖ and
D = C ∩ Br, we obtain, for any v ∈ D and s ∈ R

+, ‖T (s)v − x‖ ≤ ‖v − x‖ ≤ ‖u − x‖ and
hence T (s)D ⊂ D. Further, x, u and Pu are in D. So, without loss of generality, we can
assume that C is bounded. Let {xni} be a subsequence of {xn}. To prove the theorem,
it is sufficient to show that there exists a subsequence {xnij

} of {xni} such that {xnij
}

converges strongly to Pu. Put wi = xni , βi = αni and si = tni for i ∈ N. For a Banach
limit µ, we can define a real valued function g on C given by

g(y) = µi‖wi − y‖2 for every y ∈ C.

From Lemma 1, we see that there exists a unique element z of C satisfying

g(z) = min
y∈C

g(y).

We shall first prove that z ∈ F (�). To prove z ∈ F (�) it sufficies to show lim
t→∞T (t)z = z.

In fact, for any s ∈ R
+, we have T (s)z = T (s) lim

t→∞T (t)z = lim
t→∞ T (s + t)z = z. Suppose

lim
t→∞T (t)z �= z. Then there exists ε > 0 such that for each s > 0, there exists t ≥ s satisfying

‖T (t)z − z‖ ≥ ε. Take t ∈ R
+ with t > si(i ∈ N) and ‖T (t)z − z‖ ≥ ε. Then, we have

‖wi − T (t)z‖ ≤
[ t

si
]−1∑

k=0

‖T ((k + 1)si)wi − T (ksi)wi‖

+ ‖T ([
t

si
]si)wi − T ([

t

si
]si)z‖ + ‖T ([

t

si
]si)z − T (t)z‖

≤ [
t

si
]‖T (si)wi − wi‖ + ‖wi − z‖ + ‖T (t − [

t

si
]si)z − z‖

= [
t

si
]βi‖T (si)wi − u‖ + ‖wi − z‖ + ‖T (t − [

t

si
]si)z − z‖

≤ tβi

si
‖T (si)wi − u‖ + ‖wi − z‖ + ‖T (t− [

t

si
]si)z − z‖

for i ∈ N. Since tβi

si
→ 0 and t − [ t

si
]si → 0 as i → ∞, from the property of µ, we have

(2) µi‖wi − T (t)z‖2 ≤ µi‖wi − z‖2.

By Lemma 1, there exists δ > 0 such that

(3) µi

∥∥∥wi − p + q

2

∥∥∥
2

≤ 1
2
(µi‖wi − p‖2 + µi‖wi − q‖2) − δ

for all p, q ∈ C ∩ BR with ‖p − q‖ ≥ ε. By using (2) and (3), we obtain

µi

∥∥∥wi − T (t)z + z

2

∥∥∥
2

≤ 1
2
(µi‖wi − T (t)z‖2 + µi‖wi − z‖2) − δ

≤ 1
2
(µi‖wi − z‖2 + µi‖wi − z‖2) − δ

< µi‖wi − z‖2.
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This is a contradiction. Hence z ∈ F (�). Let w ∈ F (�). Then, from wi = (1−βi)T (si)wi +
βiu and T (si)w = w, we have

〈 1
1 − βi

wi − βi

1 − βi
u − w, J(wi − w)〉 = 〈T (si)wi − T (si)w, J(wi − w)〉

≤ ‖T (si)wi − T (si)w‖‖J(wi − w)‖
≤ ‖wi − w‖2

= 〈wi − w, J(wi − w)〉

and hence βi

1−βi
〈wi − u, J(wi − w)〉 ≤ 0. So, we obtain

(4) 〈wi − u, J(wi − w)〉 ≤ 0.

In particular, we obtain
‖wi − z‖2 ≤ 〈u − z, J(wi − z)〉.

Using Lemma 2, we obtain

µi‖wi − z‖2 ≤ µi〈u − z, J(wi − z)〉 ≤ 0.

Hence there exists a subsequence of {wi} converging strongly to z ∈ F (�). Let {wij} be a
subsequence of {wi} such that lim

j→∞
wij = z ∈ F (�). Then we obtain z = Pu. In fact, from

(4), we obtain
〈wij − u, J(wij − Pu)〉 ≤ 0.

So, we obtain
〈z − u, J(z − Pu)〉 ≤ 0.

Using Lemma 3, we obtain

‖z − Pu‖2 ≤ 〈u − Pu, J(z − Pu)〉 ≤ 0.

Hence we obtain z = Pu. Therefore, we obtain xn → Pu.
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