CONTROLLED CONVERGENCE THEOREM FOR NUCLEAR HILBERTIAN (UCs-N) SPACES VALUED HENSTOCK-KURZWEIL INTEGRALS

KUNINORI SAKURADA

Received October 20, 2004; revised September 24, 2005

ABSTRACT. In [9], S. Nakanishi generalized the definition of Henstock-Kurzweil integral to functions with values in (UCs-N) spaces, and pointed out that the Saks-Henstock lemma holds for the case when the (UCs-N) spaces are nuclear Hilbertian (UCs-N) spaces, which include the spaces $\mathcal{S}, \mathcal{S}', \mathcal{D}$ and \mathcal{D}' occurring in distribution theory of L. Schwartz as typical spaces. In [12], L. I. Paredes and T. S. Chew studied a controlled convergence theorem for Banach space valued HL integrals. The purpose of this paper is to study a controlled convergence theorem for Henstock-Kurzweil integrals of functions taking values in nuclear Hilbertian (UCs-N) spaces.

In [1], S. S. Cao studied the Henstock-Kurzweil integral for Banach space valued functions, and pointed out that the Saks-Henstock lemma holds for finite dimensional Banach space valued functions, but it does not always hold for the case of infinite dimension, and introduced a definition of HL integrability. In [9], S. Nakanishi generalized the definition of Henstock-Kurzweil integral to functions taking values in (UCs-N) spaces, and pointed out that the Saks-Henstock lemma holds for the case when the (UCs-N) spaces are nuclear Hilbertian (UCs-N) spaces, which include the spaces $\mathcal{S}, \mathcal{S}', \mathcal{D}$ and \mathcal{D}' occurring in distribution theory of L. Schwartz as typical spaces(see [5-11]). In [12], L. I. Paredes and T. S. Chew studied a controlled convergence theorem for Banach space valued *HL* integrals. The purpose of this paper is to study a controlled convergence theorem for Henstock-Kurzweil integrals of functions taking values in nuclear Hilbertian (UCs-N) spaces.

1. Preliminaries.

Throughout this paper, "vector space" means a vector space over the field of real numbers, and we denote the set of all non-negative integers by $N = \{0, 1, 2, \dots\}$.

First, according to Nakanishi, we recall the definitions of (UCs-N) spaces ([11, pp.1-3]) and H-K integrals ([9, p.320 and p.327]):

(1.1) (UCs-N) spaces. Let X be a vector space, and let $(X_{\alpha}, \{p_n^{\alpha}\}_{n=0}^{\infty})$ $(\alpha \in \Xi)$ be a family of vector subspaces X_{α} of X such that a sequence of semi-norms $\{p_n^{\alpha}\}_{n=0}^{\infty}$ is defined on X_{α} for each $\alpha \in \Xi$. Suppose that they satisfy the following conditions (I)-(V): (I) $\underset{\alpha \in \Xi}{\cup} X_{\alpha} = X$.

(II) Ξ is an upward directed set with the ordering \leq .

- (III) $\alpha \leq \beta$ if and only if $X_{\alpha} \subset X_{\beta}$.
- (IV) For each $\alpha \in \Xi$, $p_0^{\alpha}(x) \leq p_1^{\alpha}(x) \leq \cdots$ for every $x \in X_{\alpha}$.

²⁰⁰⁰ Mathematics Subject Classification. 28B05, 26A39, 46G10.

Key words and phrases. controlled convergence, vector valued integral, Henstock-Kurzweil integral, nuclear Hilbertian (UCs-N) space.

K. SAKURADA

(V) If $\alpha \leq \beta$, then $p_n^{\alpha}(x) \geq p_n^{\beta}(x)$ for every $x \in X_{\alpha}$ and every $n \in N$.

In the space X mentioned in the above, the notion concerned with "convergence" is defined only for the countable sequence of points as follows.

(C₁) A sequence $\{x_i\}$ is said to be *convergent to* x in X if and only if there exists an $\alpha \in \Xi$ such that $x_i (i = 1, 2, \dots)$ and x are contained in X_α and the sequence is convergent to x in the space X_α topologized by $\{p_\alpha^\alpha\}_{n=0}^\infty$.

(C₂) A sequence $\{x_i\}$ is said to be a *Cauchy sequence* in X if and only if there exists an $\alpha \in \Xi$ such that $x_i (i = 1, 2, \dots)$ are contained in X_{α} and the sequence is a Cauchy sequence in the space X_{α} topologized by $\{p_{\alpha}^{\alpha}\}_{n=0}^{\infty}$.

(C₃) The space X is said to be *separated* if x = y whenever $\lim x_i = x$ and $\lim x_i = y$.

By (C₁) and (C₂), we see that the space X is separated if and only if for every $\alpha \in \Xi$, the space X_{α} topologized by $\{p_{n}^{\alpha}\}_{n=0}^{\infty}$ is separated.

If X is a vector space endowed with $(X_{\alpha}, \{p_n^{\alpha}\}_{n=0}^{\infty})(\alpha \in \Xi)$ satisfying (I)-(V) and if, on X, convergence, Cauchy sequence and separation axiom are defined by (C₁), (C₂) and (C₃), respectively, then the space X is called a (UCs-N) space with component spaces $(X_{\alpha}, \{p_n^{\alpha}\})$ $(\alpha \in \Xi)$.

In particular, when Ξ is a set consisting of a single element, say α , and $p_0^{\alpha}(x) \leq p_1^{\alpha}(x) \leq \cdots$ for every $x \in X$, the space X is called a (Cs-N) space and denoted by $(X, \{p_n^{\alpha}\})$.

(1.2) H-K integrals.

Two intervals are called *non-overlapping* if there are no common inner points. Let δ be a positive function defined on [a, b], and let $\mathcal{P} = \{([c_i, d_i], \xi_i) : i = 1, 2, \dots, h\}$ be a finite collection of interval-point pairs, where $[c_1, d_1], \dots, [c_h, d_h]$ are non-overlapping intervals and ξ_1, \dots, ξ_h are real numbers. We say that \mathcal{P} is a δ -fine Perron partition (abbr. P-partition) in [a, b] if $\bigcup_{i=1}^{h} [c_i, d_i] \subset [a, b]$ and $\xi_i \in [c_i, d_i] \subset (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$ for $i = 1, 2, \dots, h$; if, in addition, $\bigcup_{i=1}^{h} [c_i, d_i] = [a, b]$, we say that \mathcal{P} is a δ -fine P-partition of [a, b].

Definition 1.1. Let (X, p) be a normed space endowed with a norm p and let f be an X-valued function defined on [a, b]. The function f is said to be *Henstock-Kurzweil* (abbr. *H-K*) *integrable* to a vector $z \in X$ on [a, b] if for given $\varepsilon > 0$ there is a positive function δ_{ε} on [a, b] such that for any δ_{ε} -fine P-partition $\mathcal{P} = \{([u_i, v_i], \xi_i) : i = 1, 2, \cdots, h\}$ of [a, b], we have

$$p\left(\sum_{i=1}^{h} f(\xi_i)(v_i - u_i) - z\right) < \varepsilon,$$

or alternatively,

$$p\left(\sum_{\mathcal{P}} f(\xi)(v-u) - z\right) < \varepsilon,$$

where $([u, v], \xi)$ denotes a typical interval-point pair in \mathcal{P} with $\xi \in [u, v] \subset (\xi - \delta_{\varepsilon}(\xi), \xi + \delta_{\varepsilon}(\xi))$.

It is easy to see that the vector z is uniquely determined. The *integral* of f on [a, b] is given by the vector z, and it is written $\int_a^b f(t)dt$. The function f is said to be *H-K integrable* on a set $A \subset [a, b]$ if A is a Lebesgue measurable subset of [a, b] and the function $\chi_A f$ is *H-K* integrable on [a, b], where χ_A is the characteristic function of A.

Let f be an X-valued H-K integrable function defined on [a, b]. Then, f is also H-K integrable on any subinterval [c, d] of [a, b]. The *primitive* of f is the function F such that $F(x) = \int_a^x f(t)dt$ for each $x \in (a, b]$ and F(a) = 0. We say that the Saks-Henstock Lemma holds for f, if, given $\varepsilon > 0$, there is a positive function δ_{ε} on [a, b] such that for any δ_{ε} -fine

P-partition $\{([c_i, d_i], \xi_i) : i = 1, 2, \dots, h\}$ in [a, b] we have

$$\sum_{i=1}^{h} p(f(\xi_i)(d_i - c_i) - (F(d_i) - F(c_i))) < \varepsilon.$$

Definition 1.2. Let $(X, \{p_n\})$ be a separated (Cs-N) space. An X-valued function f defined on [a, b] is said to be *H*-*K* integrable to a vector $z \in X$ on [a, b] if for every $n \in N$ there is a positive function $\delta_n(\xi)$ on [a, b] such that for any δ_n -fine P-partition $\mathcal{P} = \{([u, v], \xi)\}$ of [a, b], we have

$$p_n\left(\sum_{\mathcal{P}} f(\xi)(v-u) - z\right) < 1/2^n,$$

It is easy to see that the vector z is uniquely determined. The definitions of the integral $\int_a^b f(t)dt$ and the primitive of f are similar to the normed space valued case.

Let X be a (Cs-N) space $(X, \{p_n\})$. Put $N(n) = \{x \in X : p_n(x) = 0\}$. Then, the quotient space X/N(n) is a normed space. We denote the element of the quotient space with $x \in X$ as a representative by $[x]_n$. We denote the completion of the normed space X/N(n) by (\hat{X}_n, \hat{p}_n) , where \hat{p}_n denotes the norm on \hat{X}_n . In particular, we denote the element of \hat{X}_n with a Cauchy sequence $\{[x]_n, [x]_n, \cdots\}$ $(x \in X)$ as a representative by $\{[x]_n\}^{\wedge}$. For an X-valued function f, we define \hat{X}_n -valued function \hat{f}_n by $\hat{f}_n(t) = \{[f(t)]_n\}^{\wedge}$. (see [11, p.8]).

Then, the following proposition holds from [11, Proposition 3].

Proposition 1.3. Let $(X, \{p_n\})$ be a separated complete (Cs-N) space, and f an X-valued function. Then, the function f is H-K integrable on [a,b] as an $(X, \{p_n\})$ -valued function if and only if for every $n \in N$, the function \hat{f}_n is H-K integrable on [a,b] as an (\hat{X}_n, \hat{p}_n) -valued function. In this case, $\int_a^b \hat{f}_n(t)dt = \{[\int_a^b f(t)dt]_n\}^{\wedge}$ for every $n \in N$.

Definition 1.4. Let X be a separated (UCs-N) space with component spaces $(X_{\alpha}, \{p_n^{\alpha}\})$ $(\alpha \in \Xi)$. An X-valued function f defined on [a, b] is said to be H-K integrable to a vector $z \in X$ on [a, b] if there is a component space X_{α} such that:

(1) The image of [a, b] by f is contained in X_{α} and $z \in X_{\alpha}$;

(2) f is H-K integrable to z on [a, b] as an $(X_{\alpha}, \{p_n^{\alpha}\})$ -valued function.

If it is necessary to indicate such an X_{α} explicitly, for convenience we will say that f is H-K integrable (X_{α}) to z on [a, b]. By [10, (0.13)] the vector z is determined uniquely independently of the choice of X_{α} . The definitions of the integral and the primitive are similar to the normed space valued case.

Next, according to Paredes and Chew([12]), we recall the controlled convergence theorem.

(1.3) HL integrals and the controlled convergence theorem.

An interval function in [a, b] means a function defined on the family of all subintervals of [a, b]. An interval function F in [a, b] is called *finitely additive* if $F(I_1 \cup I_2) = F(I_1) + F(I_2)$ for any pair of non-overlapping intervals I_1 and I_2 in [a, b] whose union is an interval(see [14, p.61]). Let F be a function defined on [a, b]. Then F can be treated as a function of intervals by defining F([u, v]) = F(v) - F(u).

K. SAKURADA

Definition 1.5. (cf. [1]) Let (X, p) be a Banach space with a norm p. An X-valued function f defined on [a, b] is said to be *HL integrable* on [a, b] if there is an X-valued interval function F in [a, b] which is finitely additive and having the following property : for given $\varepsilon > 0$ there is a positive function δ_{ε} on [a, b] such that for any δ_{ε} -fine P-partition $\mathcal{P} = \{([u, v], \xi)\}$ of [a, b] we have

$$\sum_{\mathcal{P}} p\left(f(\xi)(v-u) - F([u,v])\right) < \varepsilon$$

It is easy to see that the vector F([a, b]) is uniquely determined. The *HL integral* of f on [a, b] is given by the vector F([a, b]), and it is denoted by $(HL) \int_a^b f(t) dt$. Setting F(t) = F([a, t]) when $t \in (a, b]$, and F(a) = 0, the function F is called the *HL-primitive* of f on [a, b], or simply the *primitive*.

Definition 1.6. (cf. [4]) Let (X, p) be a normed space and let F be an X-valued function defined on [a, b]. Let E be a subset of [a, b].

(1) *F* is said to be *absolutely continuous* (abbr. *AC*) on *E* if for every $\varepsilon > 0$ there exists an $\eta > 0$ such that for every finite collection of non-overlapping intervals $\{[u_i, v_i] : i = 1, 2, \dots, h\}$ with the endpoints belonging to *E* and with $\sum_{i=1}^{h} (v_i - u_i) < \eta$, we have

$$\sum_{i=1}^{h} p\left(F([u_i, v_i])\right) < \varepsilon.$$

(2) *F* is said to be absolutely continuous in the restricted sense (abbr. AC_*) on *E* if for every $\varepsilon > 0$ there exists an $\eta > 0$ such that for every finite collection of non-overlapping intervals $\{[u_i, v_i] : i = 1, 2, \dots, h\}$ with one of the endpoints belonging to *E* and with $\sum_{i=1}^{h} (v_i - u_i) < \eta$, we have

$$\sum_{i=1}^{h} p\left(F([u_i, v_i])\right) < \varepsilon.$$

(3) F is said to be generalized absolutely continuous (abbr. ACG) on E if E can be written as a countable union of sets on each of which F is AC. F is said to be generalized absolutely continuous in the restricted sense (abbr. ACG_*) on E if E can be written as a countable union of sets on each of which F is AC_* .

The following statement holds from the Theorem 3.1 in [12].

Theorem 1.7 (Controlled convergence theorem). Let (X, p) be a Banach space, let $\{f_j\}$ be a sequence of X-valued functions which are HL integrable on [a, b], and let F_j be the primitive of f_j for every j. Suppose that:

- (1) $\lim_{j\to\infty} f_j(t) = f(t)$ almost everywhere on [a, b].
- (2) $\{F_j\}$ is ACG_* on [a, b] uniformly in j, i.e., [a, b] is the union of a sequence $\{E_s\}$ of closed sets such that $\{F_j\}$ is AC_* on each E_s uniformly in j.
- (3) $\{F_j\}$ converges uniformly on [a, b].

Then, f is also HL integrable on [a, b] and

$$\lim_{j \to \infty} (HL) \int_a^b f_j(t) dt = (HL) \int_a^b f(t) dt.$$

2. Controlled convergence theorem for H-K integrals of functions with values in Hilbert spaces.

Throught this section, H_1 and H_2 are Hilbert spaces and T is a nuclear operator of H_1 into H_2 .

The following lemma holds from [10, (0.7), and Lemmas 1, 2 and 9].

Lemma 2.1. Let f be an H_1 -valued function defined on [a, b]. If f is H-K integrable on [a, b] and F is the primitive of f, then Tf has the following properties as an H_2 -valued function.

- (1) Tf is measurable on [a, b].
- (2) Tf is H-K integrable on [a, b], and $\int_a^b Tf dt = T \int_a^b f dt$.
- (3) TF is the primitive of Tf.
- (4) Saks-Henstock Lemma holds for Tf.
- (5) TF is continuous on [a, b].

Let $\{f_j\}$ be a sequence of H_1 -valued functions which are H-K integrable on [a, b], and F_j the primitive of f_j for every j. By Lemma 2.1, for every j, Tf_j is H-K integrable on [a, b], TF_j is the primitive of Tf_j , and Saks-Henstock Lemma holds for Tf_j . Hence $\{Tf_j\}$ is a sequence of H_2 -valued functions which are HL integrable on [a, b]. Therefore, the following statement holds from Theorem 1.7.

Theorem 2.2 (Controlled convergence theorem). Let $\{f_j\}$ be a sequence of H_1 -valued functions which are H-K integrable on [a, b]

- (1) $\lim_{j\to\infty} Tf_j(t) = f(t)$ in H_2 almost everywhere on [a, b].
- (2) $\{TF_j\}$ is ACG_* on [a, b] uniformly in j.
- (3) $\{TF_j\}$ converges uniformly on [a, b].

Then, f is also H-K integrable on [a, b] and

$$\lim_{j \to \infty} \int_a^b Tf_j(t)dt = \int_a^b f(t)dt \quad in \ H_2.$$

3. Generalized AC_* functions with values in (UCs-N) spaces.

Definition 3.1. Let $(X, \{p_n\})$ be a (Cs-N) space and let F be an X-valued function defined on [a, b] and let E be a subset of [a, b].

(1) F is said to be AC on E if for every $n \in N$ there exists an $\eta_n > 0$ such that for every finite collection of non-overlapping intervals $\{[u_i, v_i] : i = 1, 2, \dots, h\}$ with the endpoints belonging to E and with $\sum_{i=1}^{h} (v_i - u_i) < \eta_n$, we have

$$\sum_{i=1}^{h} p_n \left(F([u_i, v_i]) \right) < 1/2^n.$$

(2) F is said to be AC_* on E if for every $n \in N$ there exists an $\eta_n > 0$ such that for every finite collection of non-overlapping intervals $\{[u_i, v_i] : i = 1, 2, \dots, h\}$ with one of the endpoints belonging to E and with $\sum_{i=1}^{h} (v_i - u_i) < \eta_n$, we have

$$\sum_{i=1}^{h} p_n \left(F([u_i, v_i]) \right) < 1/2^n.$$

(3) F is said to be $ACG(\text{resp. } ACG_*)$ on E if E can be written as a countable union of sets on each of which F is $AC(\text{resp. } AC_*)$.

K. SAKURADA

The proofs of the next two propositions are essentially similar to the real-valued case(see [4] or [3]).

Proposition 3.2. Let X be a separated complete (Cs-N) space. Let E be a closed subset of [a, b] and let $(a, b) \setminus E$ be the union of (a_k, b_k) for $k = 1, 2, \cdots$. Suppose that an X-valued function F is continuous on [a, b]. Then the following statements are equivalent:

- (1) F is AC_* on E.
- (2) F is AC on E and $\sum_{k=1}^{\infty} \omega_n(F; [a_k, b_k]) < \infty$ for every $n \in N$.
- (3) For every $n \in N$ there exists an $\eta_n > 0$ such that for every finite collection $\{[u_i, v_i] : i = 1, 2, \dots, h\}$ of non-overlapping intervals in [a, b] with the endpoints belonging to E and with $\sum_{i=1}^{h} (v_i u_i) < \eta_n$, we have

$$\sum_{i=1}^{h} \omega_n(F; [u_i, v_i]) < 1/2^r$$

where $\omega_n(F; [u, v]) = \sup\{p_n(F(x) - F(y)); x, y \in [u, v]\}.$

Proposition 3.3. Let X be a separated complete (Cs-N) space. Let E be a subset of [a,b]. If an X-valued function F is AC_* on E and continuous on [a,b], then F is AC_* on \overline{E} , where \overline{E} is the closure of E.

Definition 3.4. Let X be a (UCs-N) space with component spaces $(X_{\alpha}, \{p_n^{\alpha}\})$ $(\alpha \in \Xi)$. Let F be an X-valued function defined on [a, b] and let E be a subset of [a, b].

F is said to be *AC* (resp. *AC*_{*}, *ACG*, *ACG*_{*}) on *E* if there is a component space $(X_{\alpha}, \{p_n^{\alpha}\})$ such that the image of [a, b] by *F* is contained in X_{α} and *F* is *AC* (resp. *AC*_{*}, *ACG*, *ACG*_{*}) on *E* as an $(X_{\alpha}, \{p_n^{\alpha}\})$ -valued function.

Proposition 3.5. Let X be a separated (UCs-N) space with complete component spaces $(X_{\alpha}, \{p_n^{\alpha}\})$ ($\alpha \in \Xi$). Let E be a closed subset of [a, b] and let $(a, b) \setminus E$ be the union of (a_k, b_k) for $k = 1, 2, \cdots$. Suppose that an X-valued function F defined on [a, b] is continuous on [a, b]. Then the following statements are equivalent:

- (1) F is AC_* on E.
- (2) F is AC on E and there exists a $\beta \in \Xi$ such that $\sum_{k=1}^{\infty} \omega_n^{\beta}(F; [a_k, b_k]) < \infty$ for every $n \in N$, where $\omega_n^{\beta}(F; [u, v]) = \sup\{p_n^{\beta}(F(x) F(y)); x, y \in [u, v]\}.$
- (3) There is a component space X_{α} such that the image of [a,b] by F is contained in X_{α} and for every $n \in N$ there exists an $\eta_n^{\alpha} > 0$ such that for every finite collection $\{[u_i, v_i] : i = 1, 2, \dots, h\}$ of non-overlapping intervals in [a,b] with the endpoints belonging to E and with $\sum_{i=1}^{h} (v_i u_i) < \eta_n^{\alpha}$, we have

$$\sum_{i=1}^{h} \omega_n^{\alpha}(F; [u_i, v_i]) < 1/2^n.$$

Proof. (1) \Rightarrow (2) : Since *F* is *AC*_{*} on *E*, there is a component space $(X_{\beta}, \{p_n^{\beta}\})$ such that the image of [a, b] by *F* is contained in X_{β} and *F* is *AC*_{*} on *E* as an $(X_{\beta}, \{p_n^{\beta}\})$ -valued function. Hence, by Proposition 3.2, *F* is *AC* on *E* as an $(X_{\beta}, \{p_n^{\beta}\})$ -valued function and $\sum_{k=1}^{\infty} \omega_n^{\beta}(F; [a_k, b_k]) < \infty$ for every $n \in N$.

 $(2) \Rightarrow (3)$: Let F be AC on E and there exists a $\beta \in \Xi$ such that $\sum_{k=1}^{\infty} \omega_n^{\beta}(F; [a_k, b_k]) < \infty$ for every $n \in N$. Since F is AC on E, there is a component space $(X_{\gamma}, \{p_n^{\gamma}\})$ such

552

that the image of [a,b] by F is contained in X_{γ} and F is AC on E as an $(X_{\gamma}, \{p_n^{\gamma}\})$ -valued function. By (1.1) (I), choose an $\alpha \in \Xi$ such that $\beta \leq \alpha$ and $\gamma \leq \alpha$. Then, by (1.1) (III) and (V), $X_{\gamma} \subset X_{\alpha}$ and F is AC on E as an $(X_{\alpha}, \{p_n^{\alpha}\})$ -valued function, and $\sum_{k=1}^{\infty} \omega_n^{\alpha}(F; [a_k, b_k]) \leq \sum_{k=1}^{\infty} \omega_n^{\beta}(F; [a_k, b_k]) < \infty$ for every $n \in N$. Hence, (3) holds by Proposition 3.2.

 $(3) \Rightarrow (1)$: By Proposition 3.2, it is clear.

Proposition 3.6. Let X be a separated (UCs-N) space with complete component spaces $(X_{\alpha}, \{p_n^{\alpha}\})$ ($\alpha \in \Xi$) and let E be a subset of [a, b]. If an X-valued function F is AC_* on E and continuous on [a, b], then F is AC_* on \overline{E} .

Proof. Since an X-valued function F is AC_* on E, by definition, there is a component space $(X_\alpha, \{p_n^\alpha\})$ such that the image of [a, b] by F is contained in X_α and F is AC_* on E as an $(X_\alpha, \{p_n^\alpha\})$ -valued function. Hence, by Proposition 3.3, F is AC_* on \overline{E} as an $(X_\alpha, \{p_n^\alpha\})$ -valued function. Thus, F is AC_* on \overline{E} as an X-valued function.

4. Controlled convergence theorem for H-K integrals of functions with values in nuclear Hilbertian (UCs-N) spaces.

According to Nakanishi [11, pp.5-6], we recall the definition of nuclear Hilbertian (UCs-N) spaces:

Let X be a separated (UCs-N) space with complete component spaces $(X_{\alpha}, \{p_n^{\alpha}\})$ ($\alpha \in \Xi$) such that, on each component space $(X_{\alpha}, \{p_n^{\alpha}\})$, for every $n \in N$ there is defined a positive hermitian form $(,)_n^{\alpha}$ and p_n^{α} is the semi-norm associated with $(,)_n^{\alpha}$.

Put $N(\alpha, n) = \{x \in X_{\alpha} : p_n^{\alpha}(x) = 0\}$ and consider the quotient space $X_{\alpha}/N(\alpha, n)$. Then, we can regard $(,)_n^{\alpha}$ as a nondegenerate positive hermitian form on $X_{\alpha}/N(\alpha, n)$, and therefore the quotient space $X_{\alpha}/N(\alpha, n)$, denoted by X_n^{α} , can be considered to be a prehilbert space with the scalar product $(,)_n^{\alpha}$. We denote the element of X_n^{α} having $x \in X_{\alpha}$ as a representative by $[x]_n^{\alpha}$.

Let $\alpha \leq \beta$ and $m \geq n$. Since X is a (UCs-N) space, we have $X_{\alpha} \subset X_{\beta}$ and $p_m^{\alpha}(x) \geq p_n^{\beta}(x)$ for $x \in X_{\alpha}$. We denote the completion of prehilbert spaces X_m^{α} and X_n^{β} with respect to p_m^{α} and p_n^{β} by \hat{X}_m^{α} and \hat{X}_n^{β} , respectively. If $\{[x_i]_m^{\alpha}\}_{i=1}^{\infty}$ is a Cauchy sequence in X_m^{α} , then $\{[x_i]_n^{\beta}\}_{i=1}^{\infty}$ is a Cauchy sequence in X_n^{β} . Hence, the element of \hat{X}_n^{β} having the Cauchy sequence $\{[x_i]_n^{\beta}\}_{i=1}^{\infty}$ as a representative is uniquely determined by the element of \hat{X}_m^{α} having the Cauchy sequence $\{[x_i]_m^{\alpha}\}_{i=1}^{\infty}$ as a representative. We denote the correspondence by $\hat{T}_{\beta n}^{\alpha m}$. Then, $\hat{T}_{\beta n}^{\alpha m}$ is a continuous linear mapping of \hat{X}_m^{α} into \hat{X}_n^{β} such that

$$\hat{p}_m^{\alpha}(\hat{x}_m^{\alpha}) \ge \hat{p}_n^{\beta}(\hat{T}_{\beta n}^{\alpha m}(\hat{x}_m^{\alpha})) \text{ for } \hat{x}_m^{\alpha} \in \hat{X}_m^{\alpha},$$

where \hat{p}_m^{α} and \hat{p}_n^{β} are the norms associated with the scalar products on \hat{X}_m^{α} and \hat{X}_n^{β} , respectively.

Now, suppose that, for every $\alpha \in \Xi$, corresponding to α we can find

(†) a β and two increasing sequences of non-negative integers $\{m(0) < m(1) < \cdots\}$ and $\{n(0) < n(1) < \cdots\}$ such that:

(4.1) $\beta \ge \alpha$,

(4.2) $m(i) \ge n(i)$ for every $i \in N$, and

(4.3) $\hat{T}^{\alpha,m(i)}_{\beta,n(i)}$ is nuclear for every $i \in N$, where $\hat{T}^{\alpha,m(i)}_{\beta,n(i)}$ is the continuous linear mapping of $\hat{X}^{\alpha}_{m(i)}$ into $\hat{X}^{\beta}_{n(i)}$ defined in the above.

Then we call such a space X a nuclear Hilbertian (UCs-N) space with component spaces $(X_{\alpha}, \{p_n^{\alpha}\})(\alpha \in \Xi)$.

Let X be a nuclear Hilbertian (UCs-N) space with component spaces $(X_{\alpha}, \{p_n^{\alpha}\})(\alpha \in \Xi)$. We denote the element of \hat{X}_n^{α} with a Cauchy sequence $\{[x]_n^{\alpha}, [x]_n^{\alpha}, \cdots\}$ $(x \in X_{\alpha})$ as a representative by $\{[x]_n^{\alpha}\}^{\wedge}$. For an X_{α} -valued function f defined on [a, b], we define an \hat{X}_n^{α} -valued function \hat{f}_n^{α} by $\hat{f}_n^{\alpha}(t) = \{[f(t)]_n^{\alpha}\}^{\wedge}$.

Now, we obtain the following convergence theorem.

Theorem 4.1 (Controlled convergence theorem). Let X be a nuclear Hilbertian (UCs-N) space with component spaces $(X_{\alpha}, \{p_n^{\alpha}\})(\alpha \in \Xi)$. Let $\{f_j\}$ be a sequence of X-valued functions which are H-K integrable (X_{α}) on [a,b] for some α , and let F_j be the primitive of f_j for every j. Suppose that there is a β such that:

- (1) The image of [a, b] by f_j is contained in X_β for every j, and $\lim_{j\to\infty} f_j(t) = f(t)$ in $(X_\beta, \{p_n^\beta\})$ almost everywhere on [a, b].
- (2) $\{F_j\}$ is ACG_* on [a, b] uniformly in j as $(X_\beta, \{p_n^\beta\})$ -valued functions.
- (3) $\{F_j\}$ converges uniformly to F on [a, b] as $(X_\beta, \{p_n^\beta\})$ -valued functions.

Then, f is H-K integrable on [a, b] and

$$\lim_{j \to \infty} \int_{a}^{b} f_{j}(t)dt = \int_{a}^{b} f(t)dt \quad in \ X.$$

Proof. In the theorem we can suppose that β is the β associated with α by (†). In addition to β , take $\{m(i)\}$ and $\{n(i)\}$ associated with α by (†), i.e., for α , we can find a β and two increasing sequences of non-negative integers $\{m(0) < m(1) < \cdots\}$ and $\{n(0) < n(1) < \cdots\}$ so that $\beta \geq \alpha$, $m(i) \geq n(i)$ for every $i \in N$, and $\hat{T}_{\beta,n(i)}^{\alpha,m(i)}$ is nuclear for every $i \in N$.

Given $n \in N$, choose an $i \in N$ with $n \leq n(i)$. Then, since each f_j is *H*-*K* integrable on [a, b] as an $(X_{\alpha}, \{p_n^{\alpha}\})$ -valued function, by Proposition 1.3 $(\hat{f}_j)_{m(i)}^{\alpha}$ is *H*-*K* integrable on [a, b] as an $(\hat{X}_{m(i)}^{\alpha}, \hat{p}_{m(i)}^{\alpha})$ -valued function and $(\hat{F}_j)_{m(i)}^{\alpha}$ is the primitive of $(\hat{f}_j)_{m(i)}^{\alpha}$ for every j.

From the assumptions (1), (2) and (3), it is easy to see that the following three conditions hold:

1)
$$\lim_{j \to \infty} (\hat{f}_j)_{n(i)}^{\beta}(t) = \hat{f}_{n(i)}^{\beta}(t)$$
 in $(\hat{X}_{n(i)}^{\beta}, \hat{p}_{n(i)}^{\beta})$ a.e. on $[a, b]$.

2) $\{(\hat{F}_j)_{n(i)}^{\beta}\}$ is ACG_* on [a, b] uniformly in j as $(\hat{X}_{n(i)}^{\beta}, \hat{p}_{n(i)}^{\beta})$ -valued functions.

3) $\{(\hat{F}_j)_{n(i)}^{\beta}\}$ converges uniformly to $\hat{F}_{n(i)}^{\beta}$ on [a, b] as $(\hat{X}_{n(i)}^{\beta}, \hat{p}_{n(i)}^{\beta})$ -valued functions.

Hence, by Theorem 2.2 $\hat{f}_{n(i)}^{\beta}$ is *H*-*K* integrable on [a, b] as an $(\hat{X}_{n(i)}^{\beta}, \hat{p}_{n(i)}^{\beta})$ -valued function and

$$\lim_{i \to \infty} \int_{a}^{b} (\hat{f}_{j})_{n(i)}^{\beta}(t) dt = \int_{a}^{b} \hat{f}_{n(i)}^{\beta}(t) dt \quad \text{in } (\hat{X}_{n(i)}^{\beta}, \hat{p}_{n(i)}^{\beta}).$$

Then, since $\lim_{j\to\infty} \int_a^b (\hat{f}_j)_{n(i)}^\beta(t) dt = \lim_{j\to\infty} (\hat{F}_j)_{n(i)}^\beta([a,b]) = \hat{F}_{n(i)}^\beta([a,b])$, we have

$$\int_{a}^{b} \hat{f}_{n(i)}^{\beta}(t) dt = \hat{F}_{n(i)}^{\beta}([a,b]) \quad \text{in } (\hat{X}_{n(i)}^{\beta}, \hat{p}_{n(i)}^{\beta}).$$

Moreover, since $n \leq n(i)$, we have

$$\int_a^b \hat{f}_n^\beta(t) dt = \hat{F}_n^\beta([a,b]) \quad \text{in } (\hat{X}_n^\beta, \hat{p}_n^\beta).$$

Consequently, by Proposition 1.3 f is H-K integrable(X_{β}) and

$$\int_{a}^{b} f(t)dt = F([a,b]) \text{ in } (X_{\beta}, \{p_{n}^{\beta}\}).$$

Since the right side of this equality is $\lim_{j\to\infty} F_j([a,b]) = \lim_{j\to\infty} \int_a^b f_j(t)dt$, we have the conclusion immediately.

Acknowledgement. The author would like to express his hearty thanks to Dr. Masako Washihara for her valuable advices.

References

- S. S. Cao, The Henstock integral for Banach-valued functions, Southeast Asian Bull. Math. 16 (1992), 35–40.
- 2. R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Amer. Math. Soc., 1994.
- 3. P. Y. Lee, Lanzhou lectures on Henstock integration, World Scientific, Singapore, 1989.
- P. Y. Lee and R. Výborný, The integral : An easy approach after Kurzweil and Henstock, Cambridge University Press, 2000.
- S. Nakanishi, Main spaces in distribution theory treated as ranked spaces and Borel sets, Math. Japon. 26 (1981), 179–201.
- 6. S. Nakanishi, On ranked union spaces and dual spaces, Math. Japon. 28 (1983), 353-370.
- 7. S. Nakanishi, Some ranked vector spaces, Math. Japon. 34 (1989), 789-813.
- S. Nakanishi, On controlled convergence theorem for Henstock-Kurzweil integrals, Southeast Asian Bulletin of Math. 14 (1990), 135–141.
- S. Nakanishi, The Henstock integral for functions with values in nuclear spaces, Math. Japon. 39 (1994), 309–335.
- S. Nakanishi, Riemann type integrals for functions with values in nuclear spaces and their properties, Math. Japon. 47 (1998), 367–396.
- 11. S. Nakanishi, Nuclear mapping and a Riemann approach to vector valued integration, EMIS electronic edition(http://www.emis.de/proceedings/Toronto2000/) (2002), 1–22.
- L. I. Paredes and T. S. Chew, Controlled convergence theorem for Banach-valued HL integrals, Scientiae Mathematicae Japonicae 56 (2002), 347–357.
- 13. W. F. Pfeffer, *The Riemann approach to integration: Local geometric theory*, Cambridge University Press, New York, 1993.
- 14. S. Saks, Theory of the Integral, Dover Publications, New York, 1964.

Mathematics Laboratory, Sapporo Campus, Hokkaido University of Education, 5-3-1 Ainosato, Kita-ku, Sapporo 002-8502, JAPAN