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��������� In [9], S. Nakanishi generalized the definition of Henstock-Kurzweil integral to
functions with values in (UCs-N) spaces, and pointed out that the Saks-Henstock lemma holds
for the case when the (UCs-N) spaces are nuclear Hilbertian (UCs-N) spaces, which include
the spaces S,S′,D and D′ occurring in distribution theory of L. Schwartz as typical spaces. In
[12], L. I. Paredes and T. S. Chew studied a controlled convergence theorem for Banach space
valued HL integrals. The purpose of this paper is to study a controlled convergence theorem for
Henstock-Kurzweil integrals of functions taking values in nuclear Hilbertian (UCs-N) spaces.

In [1], S. S. Cao studied the Henstock-Kurzweil integral for Banach space valued func-
tions, and pointed out that the Saks-Henstock lemma holds for finite dimensional Banach
space valued functions, but it does not always hold for the case of infinite dimension, and
introduced a definition of HL integrability. In [9], S. Nakanishi generalized the definition
of Henstock-Kurzweil integral to functions taking values in (UCs-N) spaces, and pointed
out that the Saks-Henstock lemma holds for the case when the (UCs-N) spaces are nuclear
Hilbertian (UCs-N) spaces, which include the spaces S,S′,D and D′ occurring in distribu-
tion theory of L. Schwartz as typical spaces(see [5-11]). In [12], L. I. Paredes and T. S.
Chew studied a controlled convergence theorem for Banach space valued HL integrals. The
purpose of this paper is to study a controlled convergence theorem for Henstock-Kurzweil
integrals of functions taking values in nuclear Hilbertian (UCs-N) spaces.

1. Preliminaries.
Throughout this paper, “vector space” means a vector space over the field of real num-

bers, and we denote the set of all non-negative integers by N = {0, 1, 2, · · · }.
First, according to Nakanishi, we recall the definitions of (UCs-N) spaces ([11, pp.1-3])

and H-K integrals ([9, p.320 and p.327]):

(1.1) (UCs-N) spaces. Let X be a vector space, and let (Xα, {pα
n}∞n=0) (α ∈ Ξ) be a

family of vector subspaces Xα of X such that a sequence of semi-norms {pα
n}∞n=0 is defined

on Xα for each α ∈ Ξ. Suppose that they satisfy the following conditions (I)-(V):
(I) ∪

α∈Ξ
Xα = X .

(II) Ξ is an upward directed set with the ordering ≤.
(III) α ≤ β if and only if Xα ⊂ Xβ .
(IV) For each α ∈ Ξ, pα

0 (x) ≤ pα
1 (x) ≤ · · · for every x ∈ Xα.

2000 Mathematics Subject Classification. 28B05, 26A39, 46G10.

Key words and phrases. controlled convergence, vector valued integral, Henstock-Kurzweil integral,
nuclear Hilbertian (UCs-N) space.



548 K. SAKURADA

(V) If α ≤ β, then pα
n(x) ≥ pβ

n(x) for every x ∈ Xα and every n ∈ N .
In the space X mentioned in the above, the notion concerned with ”convergence” is

defined only for the countable sequence of points as follows.
(C1) A sequence {xi} is said to be convergent to x in X if and only if there exists an

α ∈ Ξ such that xi(i = 1, 2, · · · ) and x are contained in Xα and the sequence is convergent
to x in the space Xα topologized by {pα

n}∞n=0.
(C2) A sequence {xi} is said to be a Cauchy sequence in X if and only if there exists an

α ∈ Ξ such that xi(i = 1, 2, · · · ) are contained in Xα and the sequence is a Cauchy sequence
in the space Xα topologized by {pα

n}∞n=0.
(C3) The space X is said to be separated if x = y whenever lim xi = x and limxi = y.
By (C1) and (C2), we see that the space X is separated if and only if for every α ∈ Ξ,

the space Xα topologized by {pα
n}∞n=0 is separated.

If X is a vector space endowed with (Xα, {pα
n}∞n=0)(α ∈ Ξ) satisfying (I)-(V) and if, on

X , convergence, Cauchy sequence and separation axiom are defined by (C1), (C2) and (C3),
respectively, then the space X is called a (UCs-N) space with component spaces (Xα, {pα

n})
(α ∈ Ξ).

In particular, when Ξ is a set consisting of a single element, say α, and pα
0 (x) ≤ pα

1 (x) ≤
· · · for every x ∈ X , the space X is called a (Cs-N) space and denoted by (X, {pα

n}).
(1.2) H-K integrals.
Two intervals are called non-overlapping if there are no common inner points. Let δ be a

positive function defined on [a, b], and let P = {([ci, di], ξi) : i = 1, 2, · · · , h} be a finite col-
lection of interval-point pairs, where [c1, d1], · · · , [ch, dh] are non-overlapping intervals and
ξ1, · · · , ξh are real numbers. We say that P is a δ-fine Perron partition ( abbr. P-partition)
in [a, b] if ∪h

i=1[ci, di] ⊂ [a, b] and ξi ∈ [ci, di] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for i = 1, 2, · · · , h; if,
in addition, ∪h

i=1[ci, di] = [a, b], we say that P is a δ-fine P-partition of [a, b].

Definition 1.1. Let (X, p) be a normed space endowed with a norm p and let f be an
X-valued function defined on [a, b]. The function f is said to be Henstock-Kurzweil (abbr.
H-K) integrable to a vector z ∈ X on [a, b] if for given ε > 0 there is a positive function δε

on [a, b] such that for any δε-fine P-partition P = {([ui, vi], ξi) : i = 1, 2, · · · , h} of [a, b], we
have

p

(
h∑

i=1

f(ξi)(vi − ui) − z

)
< ε,

or alternatively,

p

(∑
P

f(ξ)(v − u) − z

)
< ε,

where ([u, v], ξ) denotes a typical interval-point pair in P with ξ ∈ [u, v] ⊂ (ξ − δε(ξ), ξ +
δε(ξ)).

It is easy to see that the vector z is uniquely determined. The integral of f on [a, b] is
given by the vector z, and it is written

∫ b

a f(t)dt. The function f is said to be H-K integrable
on a set A ⊂ [a, b] if A is a Lebesgue measurable subset of [a, b] and the function χAf is
H-K integrable on [a, b], where χA is the characteristic function of A.

Let f be an X-valued H-K integrable function defined on [a, b]. Then, f is also H-K
integrable on any subinterval [c, d] of [a, b]. The primitive of f is the function F such that
F (x) =

∫ x

a
f(t)dt for each x ∈ (a, b] and F (a) = 0. We say that the Saks-Henstock Lemma

holds for f , if, given ε > 0, there is a positive function δε on [a, b] such that for any δε-fine
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P-partition {([ci, di], ξi) : i = 1, 2, · · · , h} in [a, b] we have

h∑
i=1

p (f(ξi)(di − ci) − (F (di) − F (ci))) < ε.

Definition 1.2. Let (X, {pn}) be a separated (Cs-N) space. An X-valued function f
defined on [a, b] is said to be H-K integrable to a vector z ∈ X on [a, b] if for every n ∈ N there
is a positive function δn(ξ) on [a, b] such that for any δn-fine P-partition P = {([u, v], ξ)} of
[a, b], we have

pn

(∑
P

f(ξ)(v − u) − z

)
< 1/2n,

It is easy to see that the vector z is uniquely determined. The definitions of the integral∫ b

a f(t)dt and the primitive of f are similar to the normed space valued case.

Let X be a (Cs-N) space (X, {pn}). Put N(n) = {x ∈ X : pn(x) = 0}. Then, the quotient
space X/N(n) is a normed space. We denote the element of the quotient space with x ∈ X
as a representative by [x]n. We denote the completion of the normed space X/N(n) by
(X̂n, p̂n), where p̂n denotes the norm on X̂n. In particular, we denote the element of X̂n

with a Cauchy sequence {[x]n, [x]n, · · · } (x ∈ X) as a representative by {[x]n}∧. For an
X-valued function f , we define X̂n-valued function f̂n by f̂n(t) = {[f (t)]n}∧. (see [11, p.8]).

Then, the following proposition holds from [11, Proposition 3].

Proposition 1.3. Let (X, {pn}) be a separated complete (Cs-N) space, and f an X-
valued function. Then, the function f is H-K integrable on [a, b] as an (X, {pn})-valued
function if and only if for every n ∈ N , the function f̂n is H-K integrable on [a, b] as an
(X̂n, p̂n)-valued function. In this case,

∫ b

a
f̂n(t)dt = {[∫ b

a
f(t)dt]n}∧ for every n ∈ N .

Definition 1.4. Let X be a separated (UCs-N) space with component spaces (Xα, {pα
n})

(α ∈ Ξ). An X-valued function f defined on [a, b] is said to be H-K integrable to a vector
z ∈ X on [a, b] if there is a component space Xα such that:

(1) The image of [a, b] by f is contained in Xα and z ∈ Xα;
(2) f is H-K integrable to z on [a, b] as an (Xα, {pα

n})-valued function.
If it is necessary to indicate such an Xα explicitly, for convenience we will say that f is
H-K integrable(Xα) to z on [a, b]. By [10, (0.13)] the vector z is determined uniquely
independently of the choice of Xα. The definitions of the integral and the primitive are
similar to the normed space valued case.

Next, according to Paredes and Chew([12]), we recall the controlled convergence theorem.

(1.3) HL integrals and the controlled convergence theorem.

An interval function in [a, b] means a function defined on the family of all subintervals of
[a, b]. An interval function F in [a, b] is called finitely additive if F (I1 ∪ I2) = F (I1)+ F (I2)
for any pair of non-overlapping intervals I1 and I2 in [a, b] whose union is an interval(see
[14, p.61]). Let F be a function defined on [a, b]. Then F can be treated as a function of
intervals by defining F ([u, v]) = F (v) − F (u).
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Definition 1.5. (cf. [1]) Let (X, p) be a Banach space with a norm p. An X-valued
function f defined on [a, b] is said to be HL integrable on [a, b] if there is an X-valued
interval function F in [a, b] which is finitely additive and having the following property :
for given ε > 0 there is a positive function δε on [a, b] such that for any δε-fine P-partition
P = {([u, v], ξ)} of [a, b] we have

∑
P

p (f(ξ)(v − u) − F ([u, v])) < ε.

It is easy to see that the vector F ([a, b]) is uniquely determined. The HL integral of f on [a, b]
is given by the vector F ([a, b]), and it is denoted by (HL)

∫ b

a f(t)dt. Setting F (t) = F ([a, t])
when t ∈ (a, b], and F (a) = 0, the function F is called the HL-primitive of f on [a, b], or
simply the primitive.

Definition 1.6. (cf. [4]) Let (X, p) be a normed space and let F be an X-valued function
defined on [a, b]. Let E be a subset of [a, b].

(1) F is said to be absolutely continuous (abbr. AC ) on E if for every ε > 0 there
exists an η > 0 such that for every finite collection of non-overlapping intervals {[ui, vi] :
i = 1, 2, · · · , h} with the endpoints belonging to E and with

∑h
i=1(vi − ui) < η, we have

h∑
i=1

p (F ([ui, vi])) < ε.

(2) F is said to be absolutely continuous in the restricted sense (abbr. AC∗) on E if for
every ε > 0 there exists an η > 0 such that for every finite collection of non-overlapping
intervals {[ui, vi] : i = 1, 2, · · · , h} with one of the endpoints belonging to E and with∑h

i=1(vi − ui) < η, we have
h∑

i=1

p (F ([ui, vi])) < ε.

(3) F is said to be generalized absolutely continuous (abbr. ACG ) on E if E can
be written as a countable union of sets on each of which F is AC. F is said to be
generalized absolutely continuous in the restricted sense (abbr. ACG∗) on E if E can be
written as a countable union of sets on each of which F is AC∗.

The following statement holds from the Theorem 3.1 in [12].

Theorem 1.7 (Controlled convergence theorem). Let (X, p) be a Banach space,
let {fj} be a sequence of X-valued functions which are HL integrable on [a, b], and let Fj be
the primitive of fj for every j. Suppose that:

(1) limj→∞ fj(t) = f(t) almost everywhere on [a, b].
(2) {Fj} is ACG∗ on [a, b] uniformly in j, i.e., [a, b] is the union of a sequence {Es} of

closed sets such that {Fj} is AC∗ on each Es uniformly in j.
(3) {Fj} converges uniformly on [a, b].

Then, f is also HL integrable on [a, b] and

lim
j→∞

(HL)
∫ b

a

fj(t)dt = (HL)
∫ b

a

f(t)dt.
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2. Controlled convergence theorem for H-K integrals of functions with values
in Hilbert spaces.

Throught this section, H1 and H2 are Hilbert spaces and T is a nuclear operator of H1

into H2.
The following lemma holds from [10, (0.7), and Lemmas 1, 2 and 9].

Lemma 2.1. Let f be an H1-valued function defined on [a, b]. If f is H-K integrable
on [a, b] and F is the primitive of f , then Tf has the following properties as an H2-valued
function.

(1) Tf is measurable on [a, b].
(2) Tf is H-K integrable on [a, b], and

∫ b

a
Tfdt = T

∫ b

a
fdt.

(3) TF is the primitive of Tf .
(4) Saks-Henstock Lemma holds for Tf .
(5) TF is continuous on [a, b].

Let {fj} be a sequence of H1-valued functions which are H-K integrable on [a, b], and Fj

the primitive of fj for every j. By Lemma 2.1, for every j, Tfj is H-K integrable on [a, b],
TFj is the primitive of Tfj, and Saks-Henstock Lemma holds for Tfj. Hence {Tfj} is a
sequence of H2-valued functions which are HL integrable on [a, b]. Therefore, the following
statement holds from Theorem 1.7.

Theorem 2.2 (Controlled convergence theorem). Let {fj} be a sequence of H1-
valued functions which are H-K integrable on [a, b]

(1) limj→∞ Tfj(t) = f(t) in H2 almost everywhere on [a, b].
(2) {TFj} is ACG∗ on [a, b] uniformly in j.
(3) {TFj} converges uniformly on [a, b].

Then, f is also H-K integrable on [a, b] and

lim
j→∞

∫ b

a

Tfj(t)dt =
∫ b

a

f(t)dt in H2.

3. Generalized AC∗ functions with values in (UCs-N) spaces.

Definition 3.1. Let (X, {pn}) be a (Cs-N) space and let F be an X-valued function
defined on [a, b] and let E be a subset of [a, b].

(1) F is said to be AC on E if for every n ∈ N there exists an ηn > 0 such that for every
finite collection of non-overlapping intervals {[ui, vi] : i = 1, 2, · · · , h} with the endpoints
belonging to E and with

∑h
i=1(vi − ui) < ηn, we have

h∑
i=1

pn (F ([ui, vi])) < 1/2n.

(2) F is said to be AC∗ on E if for every n ∈ N there exists an ηn > 0 such that for
every finite collection of non-overlapping intervals {[ui, vi] : i = 1, 2, · · · , h} with one of the
endpoints belonging to E and with

∑h
i=1(vi − ui) < ηn, we have

h∑
i=1

pn (F ([ui, vi])) < 1/2n.

(3) F is said to be ACG(resp. ACG∗) on E if E can be written as a countable union of
sets on each of which F is AC(resp. AC∗).
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The proofs of the next two propositions are essentially similar to the real-valued case(see
[4] or [3]).

Proposition 3.2. Let X be a separated complete (Cs-N) space. Let E be a closed subset
of [a, b] and let (a, b)\E be the union of (ak, bk) for k = 1, 2, · · · . Suppose that an X-valued
function F is continuous on [a, b]. Then the following statements are equivalent:

(1) F is AC∗ on E.
(2) F is AC on E and

∑∞
k=1 ωn(F ; [ak, bk]) < ∞ for every n ∈ N.

(3) For every n ∈ N there exists an ηn > 0 such that for every finite collection {[ui, vi] :
i = 1, 2, · · · , h} of non-overlapping intervals in [a, b] with the endpoints belonging to
E and with

∑h
i=1(vi − ui) < ηn, we have

h∑
i=1

ωn(F ; [ui, vi]) < 1/2n

where ωn(F ; [u, v]) = sup{pn (F (x) − F (y)) ; x, y ∈ [u, v]}.

Proposition 3.3. Let X be a separated complete (Cs-N) space. Let E be a subset of
[a, b]. If an X-valued function F is AC∗ on E and continuous on [a, b], then F is AC∗ on
E, where E is the closure of E.

Definition 3.4. Let X be a (UCs-N) space with component spaces (Xα, {pα
n}) (α ∈ Ξ).

Let F be an X-valued function defined on [a, b] and let E be a subset of [a, b].
F is said to be AC (resp. AC∗, ACG, ACG∗) on E if there is a component space

(Xα, {pα
n}) such that the image of [a, b] by F is contained in Xα and F is AC (resp. AC∗,

ACG, ACG∗) on E as an (Xα, {pα
n})-valued function.

Proposition 3.5. Let X be a separated (UCs-N) space with complete component spaces
(Xα, {pα

n}) (α ∈ Ξ). Let E be a closed subset of [a, b] and let (a, b)\E be the union of (ak, bk)
for k = 1, 2, · · · . Suppose that an X-valued function F defined on [a, b] is continuous on
[a, b]. Then the following statements are equivalent:

(1) F is AC∗ on E.
(2) F is AC on E and there exists a β ∈ Ξ such that

∑∞
k=1 ωβ

n(F ; [ak, bk]) < ∞ for
every n ∈ N, where ωβ

n(F ; [u, v]) = sup{pβ
n (F (x) − F (y)) ; x, y ∈ [u, v]}.

(3) There is a component space Xα such that the image of [a, b] by F is contained in
Xα and for every n ∈ N there exists an ηα

n > 0 such that for every finite collection
{[ui, vi] : i = 1, 2, · · · , h} of non-overlapping intervals in [a, b] with the endpoints
belonging to E and with

∑h
i=1(vi − ui) < ηα

n , we have

h∑
i=1

ωα
n(F ; [ui, vi]) < 1/2n.

Proof. (1) ⇒ (2) : Since F is AC∗ on E, there is a component space (Xβ , {pβ
n}) such

that the image of [a, b] by F is contained in Xβ and F is AC∗ on E as an (Xβ , {pβ
n})-valued

function. Hence, by Proposition 3.2, F is AC on E as an (Xβ , {pβ
n})-valued function and∑∞

k=1 ωβ
n(F ; [ak, bk]) < ∞ for every n ∈ N.

(2) ⇒ (3) : Let F be AC on E and there exists a β ∈ Ξ such that
∑∞

k=1 ωβ
n(F ; [ak, bk]) <

∞ for every n ∈ N. Since F is AC on E, there is a component space (Xγ , {pγ
n}) such
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that the image of [a, b] by F is contained in Xγ and F is AC on E as an (Xγ , {pγ
n})-

valued function. By (1.1) (I), choose an α ∈ Ξ such that β ≤ α and γ ≤ α. Then, by
(1.1) (III) and (V), Xγ ⊂ Xα and F is AC on E as an (Xα, {pα

n})-valued function, and∑∞
k=1 ωα

n(F ; [ak, bk]) �
∑∞

k=1 ωβ
n(F ; [ak, bk]) < ∞ for every n ∈ N. Hence, (3) holds by

Proposition 3.2.
(3) ⇒ (1) : By Proposition 3.2, it is clear.

Proposition 3.6. Let X be a separated (UCs-N) space with complete component spaces
(Xα, {pα

n}) (α ∈ Ξ) and let E be a subset of [a, b]. If an X-valued function F is AC∗ on E
and continuous on [a, b], then F is AC∗ on E.

Proof. Since an X-valued function F is AC∗ on E, by definition, there is a component
space (Xα, {pα

n}) such that the image of [a, b] by F is contained in Xα and F is AC∗ on
E as an (Xα, {pα

n})-valued function. Hence, by Proposition 3.3, F is AC∗ on E as an
(Xα, {pα

n})-valued function. Thus, F is AC∗ on E as an X-valued function.

4. Controlled convergence theorem for H-K integrals of functions with values
in nuclear Hilbertian (UCs-N) spaces.

According to Nakanishi [11, pp.5-6], we recall the definition of nuclear Hilbertian (UCs-N)
spaces:

Let X be a separated (UCs-N) space with complete component spaces (Xα, {pα
n}) (α ∈

Ξ) such that, on each component space (Xα, {pα
n}), for every n ∈ N there is defined a

positive hermitian form ( , )α
n and pα

n is the semi-norm associated with ( , )α
n .

Put N(α, n) = {x ∈ Xα : pα
n(x) = 0} and consider the quotient space Xα/N(α, n).

Then, we can regard ( , )α
n as a nondegenerate positive hermitian form on Xα/N(α, n),

and therefore the quotient space Xα/N(α, n), denoted by Xα
n , can be considered to be a

prehilbert space with the scalar product ( , )α
n . We denote the element of Xα

n having x ∈ Xα

as a representative by [x]αn .
Let α ≤ β and m ≥ n. Since X is a (UCs-N) space, we have Xα ⊂ Xβ and pα

m(x) ≥ pβ
n(x)

for x ∈ Xα. We denote the completion of prehilbert spaces Xα
m and Xβ

n with respect to
pα

m and pβ
n by X̂α

m and X̂β
n , respectively. If {[xi]αm}∞i=1 is a Cauchy sequence in Xα

m, then
{[xi]βn}∞i=1 is a Cauchy sequence in Xβ

n . Hence, the element of X̂β
n having the Cauchy

sequence {[xi]βn}∞i=1 as a representative is uniquely determined by the element of X̂α
m having

the Cauchy sequence {[xi]αm}∞i=1 as a representative. We denote the correspondence by T̂ αm
βn .

Then, T̂ αm
βn is a continuous linear mapping of X̂α

m into X̂β
n such that

p̂α
m(x̂α

m) ≥ p̂β
n(T̂ αm

βn (x̂α
m)) for x̂α

m ∈ X̂α
m,

where p̂α
m and p̂β

n are the norms associated with the scalar products on X̂α
m and X̂β

n , respec-
tively.

Now, suppose that, for every α ∈ Ξ, corresponding to α we can find
(†) a β and two increasing sequences of non-negative integers {m(0) < m(1) < · · · } and

{n(0) < n(1) < · · · } such that:
(4.1) β ≥ α,
(4.2) m(i) ≥ n(i) for every i ∈ N , and
(4.3) T̂

α,m(i)
β,n(i) is nuclear for every i ∈ N , where T̂

α,m(i)
β,n(i) is the continuous linear mapping

of X̂α
m(i) into X̂β

n(i) defined in the above.
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Then we call such a space X a nuclear Hilbertian (UCs-N) space with component spaces
(Xα, {pα

n})(α ∈ Ξ).
Let X be a nuclear Hilbertian (UCs-N) space with component spaces (Xα, {pα

n})(α ∈ Ξ).
We denote the element of X̂α

n with a Cauchy sequence {[x]αn , [x]αn, · · · } (x ∈ Xα) as a
representative by {[x]αn}∧. For an Xα-valued function f defined on [a, b], we define an
X̂α

n -valued function f̂α
n by f̂α

n (t) = {[f (t)]αn}∧.

Now, we obtain the following convergence theorem.

Theorem 4.1 (Controlled convergence theorem). Let X be a nuclear Hilbertian
(UCs-N) space with component spaces (Xα, {pα

n})(α ∈ Ξ). Let {fj} be a sequence of X-
valued functions which are H-K integrable(Xα) on [a, b] for some α, and let Fj be the
primitive of fj for every j. Suppose that there is a β such that:

(1) The image of [a, b] by fj is contained in Xβ for every j, and limj→∞ fj(t) = f(t)
in (Xβ , {pβ

n}) almost everywhere on [a, b].
(2) {Fj} is ACG∗ on [a, b] uniformly in j as (Xβ , {pβ

n})-valued functions.
(3) {Fj} converges uniformly to F on [a, b] as (Xβ , {pβ

n})-valued functions.
Then, f is H-K integrable on [a, b] and

lim
j→∞

∫ b

a

fj(t)dt =
∫ b

a

f(t)dt in X.

Proof. In the theorem we can suppose that β is the β associated with α by (†). In addition
to β, take {m(i)} and {n(i)} associated with α by (†), i.e., for α, we can find a β and two
increasing sequences of non-negative integers {m(0) < m(1) < · · · } and {n(0) < n(1) < · · · }
so that β ≥ α, m(i) ≥ n(i) for every i ∈ N , and T̂

α,m(i)
β,n(i) is nuclear for every i ∈ N .

Given n ∈ N , choose an i ∈ N with n ≤ n(i). Then, since each fj is H-K integrable
on [a, b] as an (Xα, {pα

n})-valued function, by Proposition 1.3 ˆ(fj)
α

m(i) is H-K integrable on

[a, b] as an (X̂α
m(i), p̂

α
m(i))-valued function and ˆ(Fj)

α

m(i) is the primitive of ˆ(fj)
α

m(i) for every
j.

From the assumptions (1), (2) and (3), it is easy to see that the following three conditions
hold:

1) limj→∞ ˆ(fj)
β

n(i)(t) = f̂β
n(i)(t) in (X̂β

n(i), p̂
β
n(i)) a.e. on [a, b].

2) { ˆ(Fj)
β

n(i)} is ACG∗ on [a, b] uniformly in j as (X̂β
n(i), p̂

β
n(i))-valued functions.

3) { ˆ(Fj)
β

n(i)} converges uniformly to F̂ β
n(i) on [a, b] as (X̂β

n(i), p̂
β
n(i))-valued functions.

Hence, by Theorem 2.2 f̂β
n(i) is H-K integrable on [a, b] as an (X̂β

n(i), p̂
β
n(i))-valued function

and

lim
j→∞

∫ b

a

ˆ(fj)
β

n(i)(t)dt =
∫ b

a

f̂β
n(i)(t)dt in (X̂β

n(i), p̂
β
n(i)).

Then, since limj→∞
∫ b

a
ˆ(fj)

β

n(i)(t)dt = limj→∞ ˆ(Fj)
β

n(i)([a, b]) = F̂ β
n(i)([a, b]), we have

∫ b

a

f̂β
n(i)(t)dt = F̂ β

n(i)([a, b]) in (X̂β
n(i), p̂

β
n(i)).

Moreover, since n ≤ n(i), we have∫ b

a

f̂β
n (t)dt = F̂ β

n ([a, b]) in (X̂β
n , p̂β

n).
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Consequently, by Proposition 1.3 f is H-K integrable(Xβ) and

∫ b

a

f(t)dt = F ([a, b]) in (Xβ , {pβ
n}).

　 Since the right side of this equality is limj→∞ Fj([a, b]) = limj→∞
∫ b

a fj(t)dt, we have the
conclusion immediately.
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