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KADISON’S SCHWARZ INEQUALITY AND NONCOMMUTATIVE
KANTOROVICH INEQUALITY
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Abstract. Kadison’s Schwarz inequality implies the arithmetic-harmonic (operator)
mean inequality and the Ando-Mond-Pečarić reverse inequality of Kadison’s Schwarz
one implies the noncommutative Kantorovich inequality.

Let Φ be a unital positive linear map on B(H), the C∗-algebra of all bounded linear
operators on a Hilbert space H . Then Kadison’s Schwarz inequality asserts

Φ(A−1)−1 ≤ Φ(A)(1)

for all positive invertible A ∈ B(H).
If Φ is defined on B(H) ⊕ B(H) by

Φ(A ⊕ B) =
1
2
(A + B) for A,B ∈ B(H),(2)

then Φ satisfies

Φ((A ⊕ B)−1)−1 = A ! B, Φ(A ⊕ B) = A∇B(3)

for all positive invertible A,B ∈ B(H), where A ! B is the harmonic operator mean and
A∇B is the arithmetic operator mean in the sense of Kubo-Ando [3], so that (1) implies

Theorem 1. Kadison’s Schwarz inequality implies the arithmetic-harmonic mean inequal-
ity, i.e., A ! B ≤ A∇B.

On the other hand, the Ando-Mond-Pečarić reverse of Kadison’s Schwarz inequality
asserts that

Φ(A) ≤ (M + m)2

4Mm
Φ(A−1)−1(4)

if A satisfies 0 < m ≤ A ≤ M for some constants m < M , cf. [2, Theorem 1.32]. Thus it
follows from (3) that

A∇B ≤ (M + m)2

4Mm
A!B(5)

for A,B with 0 < m ≤ A,B ≤ M . It is nothing but the noncommutative Kantorovich
inequality introduced in [1]. That is,
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Theorem 2. The reverse of Kadison’s Schwarz inequality implies the noncommutative
Kantorovich inequality (5).

In addition, Theorem 2 can be rephrased as follows:

Corollary 3. The noncommutative Kantorovich inequality is a complement of the arithmetic-
harmonic mean inequality.

In [1], a difference version of the noncommutative Kantorovich inequality is also intro-
duced by

A∇B − A ! B ≤ (
√

M −√
m)2(6)

for all positive invertible A,B ∈ B(H) with 0 < m ≤ A,B ≤ M , cf. [1, Theorem 6],
whereas it has already known in [2, Theorem 1.32] that

Φ(A) − Φ(A−1)−1 ≤ (
√

M −√
m)2(7)

for all positive invertible A ∈ B(H) with 0 < m ≤ A ≤ M . So the following is obtained:

Theorem 4. The difference noncommutative Kantorovich inequality is a consequence of
the difference version of Kadison’s Schwarz inequality.

At this end, we explain that the noncommutative Kantorovich inequality is reformed as
follows: If F (t) is an operator-valued continuous function on a closed interval I satisfying
0 < m ≤ F (t) ≤ M for all t ∈ I, then

∫
I

F (t)−1dµ(t) ≤ (M + m)2

4Mm

(∫
I

F (t)dµ(t)
)−1

,(8)

for all probability measures µ on I, where the integral is Bochner’s sense.
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