CONTINUOUS SELECTIONS OF SIMPLEX-VALUED MAPPINGS

TAKAMITSU YAMAUCHI

Received November 9, 2005; revised December 14, 2005

ABSTRACT. It is proved that for a T_1 -space X the following statements are equivalent: (1) X is PF-normal, (2) for every simplicial complex K, every locally selectionable simplex-valued mapping $\varphi : X \to 2^{|K|_w}$ admits a continuous selection $f : X \to |K|_w$, (3) for every simplicial complex K, every lower semicontinuous simplex-valued mapping $\varphi : X \to 2^{|K|_m}$ admits a continuous selection $f : X \to |K|_m$. We also characterize finite-dimensional spaces, pseudofinitistic spaces, strongly countable-dimensional spaces, spaces with strong large transfinite dimension and locally finite-dimensional spaces in terms of simplex-valued mappings.

1 Introduction. Throughout this paper, all spaces are assumed to be T_1 . Let 2^Y denote the set of all non-empty subsets of a set Y. For sets X, Y and a mapping $\varphi : X \to 2^Y$, a mapping $f : X \to Y$ is called a *selection* of φ if $f(x) \in \varphi(x)$ for every $x \in X$. For spaces X and Y, a mapping $\varphi : X \to 2^Y$ is called *locally selectionable* ([12]) if for each point $x \in X$, there exist a neighborhood U of x and a continuous selection $f : U \to Y$ of the restriction $\varphi|_U : U \to 2^Y$. Note that $\varphi : X \to 2^Y$ is locally selectionable if and only if there is an open cover $\{U_\alpha \mid \alpha \in A\}$ of X and continuous mappings $f_\alpha : U_\alpha \to Y$, $\alpha \in A$ such that $f_\alpha(x) \in \varphi(x)$ for each $x \in U_\alpha$.

Let K be a simplicial complex and $\varphi: X \to K$ a mapping. Then φ is naturally viewed as a mapping $\varphi: X \to 2^{|K|}$ of X, where |K| is the geometric realization of K. Such a mapping is said to be a simplex-valued mapping. For a simplicial complex K, let $|K|_w$ and $|K|_m$ denote its geometric realizations with the weak topology and the metric topology, respectively. For simplex-valued mappings to simplicial complexes with the weak topology, in [8, Theorem 1.2], I. Ivanšić and L. R. Rubin proved the following selection theorem.

Theorem 1.1 (I. Ivanšić and L. R. Rubin [8]). Let X be a hereditarily normal paracompact Hausdorff space, K a simplicial complex and $\varphi : X \to K$ a mapping. If $\varphi : X \to 2^{|K|_w}$ is locally selectionable, then φ admits a continuous selection $f : X \to |K|_w$.

In order to mention a result for simplicial complexes with the metric topology, let us recall the following theorem due to T. Kandô [9, Theorem IV] and S. Nedev [11, Theorem 4.1]. Let λ be an infinite cardinal. A space X is λ -PF-normal if every point-finite open cover \mathcal{U} of X of cardinality $\leq \lambda$ is normal; a space X is PF-normal ([14]) if X is λ -PF-normal for every λ . Every collectionwise normal space is PF-normal, and a space is ω -PF-normal if and only if it is normal, where ω denotes the first infinite cardinal (see [3]).

Theorem 1.2 (T. Kandô [9] and S. Nedev [11]). A space X is λ -PF-normal if and only if for every Banach space Y of weight $\leq \lambda$, every lower semicontinuous mapping $\varphi: X \to C_c(Y)$ admits a continuous selection, where $C_c(Y)$ is the set of all compact convex subsets of Y.

²⁰⁰⁰ Mathematics Subject Classification. 54C60, 54C65, 54F45.

Key words and phrases. set-valued mapping, selection, simplicial complex, PF-normal, K-approximation, dimension, finitistic, strongly countable-dimensional, locally finite-dimensional, large transfinite dimension.

T. YAMAUCHI

Let K be a simplicial complex. Then $|K|_m$ is naturally embedded in the Banach space $l_1(V)$ generated by the set V of all vertices of K. Thus Theorem 1.2 implies that if a space X is λ -PF-normal, then for every simplicial complex K of cardinality $\leq \lambda$, every lower semicontinuous simplex-valued mapping $\varphi : X \to 2^{|K|_m}$ admits a continuous selection $f: X \to |K|_m$.

The purpose of this paper is to characterize some topological properties in terms of simplex-valued mappings. In section 3 we establish the following theorem, which shows that λ -PF-normality is essentially described by Theorem 1.1 and the fact above.

Theorem 1.3. For a T_1 -space X and an infinite cardinal λ , the following are equivalent.

- (a) X is λ -PF-normal.
- (b) For every simplicial complex K with Card $K \leq \lambda$, every locally selectionable mapping $\varphi: X \to K$ admits a continuous selection $f: X \to |K|_w$.
- (c) For every simplicial complex K with Card $K \leq \lambda$, every lower semicontinuous simplexvalued mapping $\varphi : X \to 2^{|K|_m}$ admits a continuous selection $f : X \to |K|_m$.

In section 2, we present some properties of continuity for simplex-valued mappings, which are preliminary in our discussion.

Section 3 is devoted to prove Theorem 1.3. In particular, we show that if a mapping $\varphi : X \to K$ admits a continuous selection $f : X \to |K|_m$, then φ also has a continuous selection $g : X \to |K|_w$.

In section 4, we describe characterizations of finite-dimensional spaces, pseudofinitistic spaces, strongly countable-dimensional spaces, spaces with strong large transfinite dimension and locally finite-dimensional spaces in terms of simplex-valued mappings.

For undefined terminology, we refer to [3] and [13].

2 Continuity of simplex-valued mappings. Let X and Y be spaces and K a simplicial complex. For a subset S of X, Int S (respectively, Cl S) denotes the interior (respectively, closure) of S in X. For a mapping $\varphi : X \to 2^Y$ and $A \subset Y$, put $\varphi^{-1}[A] = \{x \in X \mid \varphi(x) \cap A \neq \emptyset\}$. Let $\langle v_i \mid i = 0, 1, \dots n \rangle$ or $\langle v_0, v_1, \dots v_n \rangle$ denote the *n*-simplex spanned by the vertices $v_0, v_1, \dots v_n$. For a simplex σ and a vertex v of K, let int σ denote the geometric interior of σ in K and St(v, K) the open star of v on K, that is, $\bigcup \{ \text{int } \sigma \mid v \in \sigma \in K \}$. By $K^{(n)}$ we denote the *n*-skeleton of K.

We will use the fact that for a mapping $\varphi: X \to K$,

(1)
$$\varphi^{-1}[\{v\}] = \varphi^{-1}[\operatorname{St}(v, K)]$$

holds for each vertex v of K. In particular, the collection $\{\varphi^{-1}[\{v\}] \mid v \in K^{(0)}\}$ covers X.

Recall that a mapping $\varphi : X \to 2^Y$ is said to have the *local intersection property* ([17]) if each $x \in X$ has a neighborhood U with $\bigcap \{\varphi(z) \mid z \in U\} \neq \emptyset$. It is obvious that every mapping $\varphi : X \to 2^Y$ with the local intersection property is locally selectionable. For simplex-valued mappings we have the following.

Proposition 2.1. Let $\varphi : X \to K$ be a mapping of a space X to a simplicial complex K and |K| the geometrical realization of K with the weak topology or the metric topology. Then the following are equivalent.

- (a) The mapping φ has the local intersection property.
- (b) The mapping $\varphi: X \to 2^{|K|}$ is locally selectionable.

(c) The collection $\{\operatorname{Int} \varphi^{-1}[\{v\}] \mid v \in K^{(0)}\}$ covers X.

Proof. The implication $(a) \Rightarrow (b)$ is obvious. Let us show the implication $(b) \Rightarrow (c)$. For $x \in X$, take a neighborhood U of x and a continuous selection $f: U \to |K|$ of the restriction $\varphi|_U: U \to K$. Choose a vertex v of K so that $f(x) \in \operatorname{St}(v, K)$. Then $U \cap f^{-1}(\operatorname{St}(v, K))$ is a neighborhood of x contained in $\varphi^{-1}[\operatorname{St}(v, K)]$. By (1), we have that $x \in \operatorname{Int} \varphi^{-1}[\{v\}]$. The implication $(c) \Rightarrow (a)$ follows from the fact that a mapping $\varphi: X \to 2^Y$ has the local intersection property if and only if the collection $\{\operatorname{Int} \varphi^{-1}[\{y\}] \mid y \in Y\}$ covers X.

For spaces X and Y, a mapping $\varphi: X \to 2^Y$ is called *lower semicontinuous* if for every open subset V in Y, the subset $\varphi^{-1}[V]$ is open in X. A mapping $\varphi: X \to 2^Y$ is strongly *lower semicontinuous* ([16]) if the set $\{x \in X \mid C \subset \varphi(x)\}$ is open in X for each compact subset C of Y. It is obvious that strong lower semicontinuity implies lower semicontinuity, but not conversely in general. Indeed, let **R** be the space of real numbers with the usual topology and let $\varphi: \mathbf{R} \to 2^{\mathbf{R}}$ be the mapping defined by $\varphi(x) = \{x\}$ for each $x \in \mathbf{R}$. Then φ is lower semicontinuous, but not strongly lower semicontinuous. For simplex-valued mappings these two notions coincide.

Proposition 2.2. Let $\varphi : X \to K$ be a mapping of a space X to a simplicial complex K and |K| the geometrical realization of K with the weak topology or the metric topology. Then the following are equivalent.

- (a) The mapping $\varphi: X \to 2^{|K|}$ is strongly lower semicontinuous.
- (b) The mapping $\varphi: X \to 2^{|K|}$ is lower semicontinuous.
- (c) The set $\varphi^{-1}[\{v\}]$ is open in X for each vertex v in K.

Proof. The implication $(a) \Rightarrow (b)$ is obvious. The implication $(b) \Rightarrow (c)$ follows from (1). To show the implication $(c) \Rightarrow (a)$, assume (c) and let C be a compact subset of |K| such that $\{x \in X \mid C \subset \varphi(x)\}$ is non-empty. Then C is contained in some simplex in K. Let $\sigma = \langle v_0, v_1, \ldots, v_n \rangle$ be the smallest simplex in K containing C. Then we have that $\{x \in X \mid C \subset \varphi(x)\} = \{x \in X \mid \sigma \subset \varphi(x)\} = \bigcap \{\varphi^{-1}[\{v_i\}] \mid i = 1, 2, \ldots, n\}$, which is open in X.

Propositions 2.1 and 2.2 yield that every lower semicontinuous simplex-valued mapping is locally selectionable, which will be used in section 3. The following example is a locally selectionable simplex-valued mapping $\varphi: X \to 2^{|K|}$ which is not lower semicontinuous

Example 2.3. Let K be the simplicial complex $\{v_1, v_2, v_3, \langle v_1, v_2 \rangle, \langle v_2, v_3 \rangle\}$ and define a mapping $\varphi : [0, 1] \to K$ as follows.

$$\varphi(x) = \begin{cases} \langle v_1, v_2 \rangle & \text{if } x \in [0, 1) \\ \langle v_2, v_3 \rangle & \text{if } x = 1 \end{cases}$$

Let |K| be the geometric realization of K with the weak topology or the metric topology. Then $\varphi: X \to 2^{|K|}$ is locally selectionable, but not lower semicontinuous.

3 Proof of Theorem 1.3. For a real-valued function f of a space X, set $\operatorname{Coz}(f) = \{x \in X \mid f(x) \neq 0\}$. A subset S of X is a *cozero-set* if $S = \operatorname{Coz}(f)$ for some real-valued continuous function f on X. A family $\{p_{\lambda} \mid \lambda \in \Lambda\}$ of continuous functions $p_{\lambda} : X \to [0, 1]$ is called a *partition of unity* on X if $\sum_{\lambda \in \Lambda} p_{\lambda}(x) = 1$ for each $x \in X$. A partition of unity $\{p_{\lambda} \mid \lambda \in \Lambda\}$ on X is said to be *locally finite* if $\{\operatorname{Coz}(p_{\lambda}) \mid \lambda \in \Lambda\}$ of X is locally finite.

T. YAMAUCHI

For an open cover \mathcal{U} of X, a partition of unity $\{p_{\lambda} \mid \lambda \in \Lambda\}$ on X is subordinated to \mathcal{U} if $\{\operatorname{Coz}(p_{\lambda}) \mid \lambda \in \Lambda\}$ refines \mathcal{U} .

Let X be a space, K a simplicial complex and $f: X \to |K|$ a mapping. A mapping $g: X \to |K|$ is called a K-approximation ([2]) (or K-modification) of f if $g(x) \in \sigma$ for each simplex σ of K and each $x \in X$ with $f(x) \in \sigma$. For each $x \in X$ there exists the unique simplex $\sigma_{f(x)}$ of K such that $f(x) \in \inf \sigma_{f(x)}$. Note that a mapping $g: X \to |K|$ is a K-approximation of f if and only if $g(x) \in \sigma_{f(x)}$ for each $x \in X$. Since the weak topology is finer than the metric topology, if the mapping $f: X \to |K|_w$ is continuous, then $f: X \to |K|_m$ is continuous. On the other hand, the following holds.

Proposition 3.1. Let X be a space and K a simplicial complex. Then every continuous mapping $f: X \to |K|_m$ admits a continuous K-approximation $g: X \to |K|_w$.

Proof. Let $f: X \to |K|_m$ be a continuous mapping. Since $\mathcal{U} = \{f^{-1}(\operatorname{St}(v,K)) \mid v \in K^{(0)}\}$ is a normal open cover of X, there exists a locally finite partition of unity $\mathcal{P} = \{p_v \mid v \in K^{(0)}\}$ on X such that $\operatorname{Coz}(p_v) \subset f^{-1}(\operatorname{St}(v,K))$ for each $v \in K^{(0)}$ ([1, Theorem 10.10]). Define a mapping $g: X \to |K|$ by $g(x) = \sum_{v \in K^{(0)}} p_v(x) \cdot v$ for each $x \in X$. Then g is a K-approximation of f. Since \mathcal{P} is locally finite, each point $x \in X$ has a neighborhood U in X such that g(U) is contained in some finite subcomplex L of K. Since the weak topology of |L| coincides with the metric topology, the restriction $g|_U: U \to |L|_w$ is continuous. Hence the mapping $g: X \to |K|_w$ is continuous at x.

Proposition 3.1 implies the following.

Proposition 3.2. If a mapping $\varphi : X \to K$ from a space X to a simplicial complex K admits a continuous selection $f : X \to |K|_m$, then φ has a continuous selection $g : X \to |K|_w$.

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. (a) \Rightarrow (b). Assume that X is λ -PF-normal. Let K be a simplicial complex with Card $K \leq \lambda$ and $\varphi : X \to 2^{|K|_w}$ a locally selectionable simplex-valued mapping. By Proposition 2.1, $\mathcal{U} = \{\operatorname{Int} \varphi^{-1}[\{v\}] \mid v \in K^{(0)}\}$ is an open cover of X with Card $\mathcal{U} \leq \lambda$. Since X is λ -PF-normal and \mathcal{U} is point-finite, the cover \mathcal{U} is normal, and hence there exists a locally finite partition of unity $\mathcal{P} = \{p_v \mid v \in K^{(0)}\}$ on X such that $\operatorname{Coz}(p_v) \subset \operatorname{Int} \varphi^{-1}[\{v\}]$ for each $v \in K^{(0)}$ ([1, Theorem 10.10]). Then $v \in \bigcap \{\varphi(z) \mid z \in \operatorname{Coz}(p_v)\}$ for each $v \in K^{(0)}$. Define a mapping $f : X \to |K|$ by $f(x) = \sum_{v \in K^{(0)}} p_v(x) \cdot v$ for $x \in X$. Since each $\varphi(x)$ is convex, the mapping $f : X \to |K|$ is a selection of φ . By the same argument as in Proposition 3.1, the mapping $f : X \to |K|_w$ is continuous.

 $(b) \Rightarrow (c)$. It immediately follows from the fact in section 2.

 $(c) \Rightarrow (a)$. Assume (c) and let \mathcal{U} be a point-finite open cover of X with $\operatorname{Card} \mathcal{U} \leq \lambda$. Note that the cardinal of the nerve $N(\mathcal{U})$ of \mathcal{U} is at most λ . Define a mapping $\varphi : X \to N(\mathcal{U})$ by $\varphi(x) = \langle U \in \mathcal{U} \mid x \in U \rangle$ for each $x \in X$. Since \mathcal{U} is point-finite, φ is actually defined. Since $\varphi^{-1}[\{U\}] = U$ for each $U \in \mathcal{U}, \varphi$ is lower semicontinuous by Proposition 2.2, and hence it admits a continuous selection $f: X \to |N(\mathcal{U})|_m$. Then $f^{-1}(\operatorname{St}(U, N(\mathcal{U})))$ is contained in U for each $U \in \mathcal{U}$. Since the open cover $\{\operatorname{St}(U, N(\mathcal{U})) \mid U \in \mathcal{U}\}$ of $|N(\mathcal{U})|_m$ is normal, so is \mathcal{U} .

4 Characterizations of dimension-like properties. For a cover \mathcal{U} of a space X and a point $x \in X$, let $\operatorname{ord}_x \mathcal{U} = \operatorname{Card} \{ U \in \mathcal{U} \mid x \in U \}$ and $\operatorname{ord} \mathcal{U} = \sup \{ \operatorname{ord}_x \mathcal{U} \mid x \in X \}$. The covering dimension dim X of a space X is the least number n such that any finite open cover of X is refined by a finite open cover \mathcal{U} of X of $\operatorname{ord} \mathcal{U} \leq n + 1$. A space X is called *finitistic* if for every open cover of X is refined by an open cover \mathcal{U} of X such that $\operatorname{ord} \mathcal{U}$ is finite. Finitistic spaces were introduced by R. Swan [15] for work in fixed point theory. Some of their properties were investigated from the dimensional viewpoints ([2], [5] and [6]). A space X is said to be *pseudofinitistic* ([18]) if every normal open cover of X has a refinement which is normal and whose order is finite. V. Matijević [10] defined this concept under the name finitistic and gave characterizations of pseudofinitistic spaces by means of approximate resolutions. It is clear that every finitistic normal space and every finite-dimensional normal space is pseudofinitistic and that every pseudofinitistic if and only if every countable locally finite open cover of X is refined by a normal open cover \mathcal{V} of X satisfying $\sup\{\operatorname{ord}_x \mathcal{V} \mid x \in D\} < \infty$ for each closed discrete subset D of X ([18]).

A mapping $g: X \to |K|$ is said to be *n*-dimensional (respectively, finite-dimensional) ([2]) if $g(X) \subset |K^{(n)}|$ (respectively, $g(X) \subset |K^{(m)}|$ for some m). J. Dydak, S. N. Mishra and R. A. Shukla [2, Theorem 2.2] established the following.

Theorem 4.1 (J. Dydak, S. N. Mishra and R. A. Shukla [2]). For a normal space X, dim $X \leq n$ if and only if for every simplicial complex K, every continuous mapping $f: X \to |K|_m$ has an n-dimensional continuous K-approximation $g: X \to |K|_m$.

Proposition 4.2. A T_1 -space X is λ -PF-normal and dim $X \leq n$ if and only if for every simplicial complex K with Card $K \leq \lambda$, every locally selectionable simplex-valued mapping $\varphi: X \to 2^{|K|_w}$ admits an n-dimensional continuous selection $f: X \to |K|_w$.

Proof. The "only if" part is immediate from Theorems 1.3, 4.1 and Proposition 3.1. Let us show the "if" part. By Theorem 1.3, it suffices to show dim $X \leq n$. We shall apply Theorem 4.1. Let K be a simplicial complex and $f: X \to |K|_m$ a continuous mapping. For each $x \in X$, let $\sigma_{f(x)}$ be the unique simplex of K such that $f(x) \in \operatorname{int} \sigma_{f(x)}$. Define a mapping $\varphi: X \to K$ by $\varphi(x) = \sigma_{f(x)}$ for each $x \in X$. Since $f^{-1}(\operatorname{St}(v, K)) \subset \varphi^{-1}[\operatorname{St}(v, K)] = \varphi^{-1}[\{v\}]$ for each vertex v of K, φ is locally selectionable by Proposition 2.1. Then φ admits an n-dimensional continuous selection $g: X \to |K|_w$, which is a K-approximation of f. Hence we have dim $X \leq n$.

The following is a slight modification of [2, Theorem 2.1]. Let $\mathcal{D}(X)$ denote the set of all closed discrete subsets of a space X.

Theorem 4.3. For a normal space X, the following are equivalent.

- (a) X is pseudofinitistic.
- (b) For every simplicial complex K, every continuous mapping $f : X \to |K|_m$ has a finite-dimensional continuous K-approximation $g : X \to |K|_w$.
- (c) For every simplicial complex K and every continuous mapping $f: X \to |K|_m$, there exist a mapping $m: \mathcal{D}(X) \to \mathbf{N}$ and a continuous K-approximation $g: X \to |K|_w$ of f such that $g(D) \subset |K^{(m(D))}|$ for each $D \in \mathcal{D}(X)$.

By the same argument as in Theorem 4.2, we have the following.

Proposition 4.4. For a T_1 -space X, the following are equivalent.

(a) X is λ -PF-normal and pseudofinitistic.

T. YAMAUCHI

- (b) For every simplicial complex K with Card $K \leq \lambda$, every locally selectionable simplexvalued mapping $\varphi : X \to 2^{|K|_w}$ admits a finite-dimensional continuous selection $f : X \to |K|_w$.
- (c) For every simplicial complex K with $\operatorname{Card} K \leq \lambda$ and every locally selectionable simplex-valued mapping $\varphi : X \to 2^{|K|_w}$, there exist a mapping $m : \mathcal{D}(X) \to \mathbf{N}$ and a continuous selection $f : X \to |K|_w$ of φ such that $f(D) \subset |K^{(m(D))}|$ for each $D \in \mathcal{D}(X)$.

A normal space is said to be *strongly countable-dimensional* if it can be represented as the union of countably many finite-dimensional closed subspaces. The following theorem is due to Y. Hattori [7, Corollary].

Theorem 4.5 (Y. Hattori [7]). A normal space X is strongly countable-dimensional if and only if there exists a mapping $m : X \to \mathbf{N}$ such that for every simplicial complex K, every continuous mapping $f : X \to |K|_m$ has a continuous K-approximation $g : X \to |K|_m$ such that $g(x) \in |K^{(m(x))}|$ for each $x \in X$.

Theorems 1.3, 4.5 and Proposition 3.1 yield

Proposition 4.6. A T_1 -space X is λ -PF-normal and strongly countable-dimensional if and only if there exists a mapping $m: X \to \mathbf{N}$ such that for every simplicial complex K with Card $K \leq \lambda$, every locally selectionable simplex-valued mapping $\varphi: X \to 2^{|K|_w}$ admits a continuous selection $f: X \to |K|_w$ such that $f(x) \in |K^{(m(x))}|$ for each $x \in X$.

Proposition 3.1, Theorem 1.3 and [7, Theorem] also provide the following characterization of strong large transfinite dimension (for the definition of strong large transfinite dimension, see [7]).

Proposition 4.7. A metrizable space X has strong large transfinite dimension if and only if there exists a mapping $m : \mathcal{D}(X) \to \mathbf{N}$ such that for every simplicial complex K, every locally selectionable simplex-valued mapping $\varphi : X \to 2^{|K|_w}$ admits a continuous selection $f : X \to |K|_w$ such that $f(D) \subset |K^{(m(D))}|$ for each $D \in \mathcal{D}(X)$.

A normal space is called *locally finite-dimensional* if every point has a neighborhood U such that dim $\operatorname{Cl} U < \infty$. A mapping $m : X \to \mathbf{N}$ is said to be *lower semicontinuous* if the set $m^{-1}(\{k \in \mathbf{N} \mid k < n\})$ is open in X for each $n \in \mathbf{N}$.

Proposition 4.8. A normal weakly paracompact space X is locally finite-dimensional if and only if there exists a lower semicontinuous mapping $m : X \to \mathbf{N}$ such that for every simplicial complex K, every continuous mapping $f : X \to |K|_m$ has a continuous Kapproximation $g : X \to |K|_w$ such that $g(x) \in |K^{(m(x))}|$ for each $x \in X$.

Proof. Due to [4, Theorem 5.5.12], a normal weakly paracompact space X is locally finitedimensional if and only if there is a lower semicontinuous mapping $m : X \to \mathbf{N}$ such that every finite open cover \mathcal{U} of X has an open refinement \mathcal{V} such that $\operatorname{ord}_x \mathcal{V} \leq m(x)$ for each $x \in X$. Note that the phrase "finite open cover" can be replaced with that "locally finite open cover". Thus the assertion follows from an argument analogous to Proposition 3.1. \Box

Theorem 1.3 and Proposition 4.8 yield

Proposition 4.9. A weakly paracompact T_1 -space X is λ -PF-normal and locally finitedimensional if and only if there exists a lower semicontinuous mapping $m : X \to \mathbf{N}$ such that for every simplicial complex K with $\operatorname{Card} K \leq \lambda$, every locally selectionable simplexvalued mapping $\varphi : X \to 2^{|K|_w}$ admits a continuous selection $f : X \to |K|_w$ such that $f(x) \in |K^{(m(x))}|$ for each $x \in X$. **Remark 4.10.** The phrase "locally selectionable" in Propositions 4.2, 4.4, 4.6 and 4.9 can be replaced by "lower semicontinuous".

References

- [1] R. A. Aló and H. L. Shapiro, Normal topological spaces, Cambridge, 1974.
- [2] J. Dydak, S. N. Mishra and R. A. Shukla, On finitistic spaces, Top. Appl. 97 (1999), 217–229.
- [3] R. Engelking, General topology, Heldermann Verlag, 1989.
- [4] R. Engelking, Theory of dimensions, finite and infinite, Heldermann Verlag, 1995.
- [5] Y. Hattori, A note on finitistic spaces, Q & A in Gen. Top. 3 (1985), 47–55.
- [6] Y. Hattori, Finitistic spaces and dimension, Houston J. Math. 25 (1999), 687-696.
- [7] Y. Hattori, K-approximations and strongly countable-dimensional spaces, Proc. Japan. Acad. 75, Ser. A (1999), 115–117.
- [8] I. Ivanšić and L. R. Rubin, A selection theorem for simplex-valued maps, Glasnik Mat. 39 (2004), 331–333.
- T. Kandô, Characterization of topological spaces by some continuous functions, J. Math. Soc. Japan 6 (1954), 45–54.
- [10] V. Matijević, Spaces having approximate resolutions consisting of finite-dimensional polyhedra, Publ. Math. Debrecen 46 (1995), 301–314.
- S. Nedev, Selection and factorization theorems for set-valued mappings, Serdica 6 (1980), 291– 317.
- [12] S. Park Continuous selection theorems in generalized convex spaces, Numer. Funct. Anal. and Optimiz. 20 (1999), 567–583.
- [13] D. Repovš and P. V. Semenov, Continuous selections of multivalued mappings, Kluwer Acad. Publ., 1998.
- [14] J. C. Smith, Properties of expandable spaces, General topology and its relations to modern analysis and algebra, III (Proc. Third Prague Topological Sympos., 1971), Academia, Prague, 1972, 405–410.
- [15] R. Swan, A new method in fixed point theory, Comm. Math. Helv. 34 (1960), 1–16.
- [16] V. Valov, Continuous selections and finite C-spaces, Set-valued Anal. 10 (2002), 37–51.
- [17] X. Wu and S. Shen, A further generalization of Yannelis-Prabhakar's continuous selection theorem and its applications, J. Math. Anal. Appl. 197 (1996), 61–74.
- [18] T. Yamauchi, A characterization of metrizable finitistic spaces and its applications to upper semicontinuous selections, preprint.

DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY, MATSUE, 690-8504, JAPAN *E-mail address*: t_yamauchi@riko.shimane-u.ac.jp