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CONTINUOUS SELECTIONS OF SIMPLEX-VALUED MAPPINGS
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Abstract. It is proved that for a T1-space X the following statements are equivalent:
(1) X is PF-normal, (2) for every simplicial complex K, every locally selectionable
simplex-valued mapping ϕ : X → 2|K|w admits a continuous selection f : X → |K|w ,
(3) for every simplicial complex K, every lower semicontinuous simplex-valued map-
ping ϕ : X → 2|K|m admits a continuous selection f : X → |K|m. We also character-
ize finite-dimensional spaces, pseudofinitistic spaces, strongly countable-dimensional
spaces, spaces with strong large transfinite dimension and locally finite-dimensional
spaces in terms of simplex-valued mappings.

1 Introduction. Throughout this paper, all spaces are assumed to be T1. Let 2Y denote
the set of all non-empty subsets of a set Y . For sets X , Y and a mapping ϕ : X → 2Y , a
mapping f : X → Y is called a selection of ϕ if f(x) ∈ ϕ(x) for every x ∈ X . For spaces X
and Y , a mapping ϕ : X → 2Y is called locally selectionable ([12]) if for each point x ∈ X ,
there exist a neighborhood U of x and a continuous selection f : U → Y of the restriction
ϕ|U : U → 2Y . Note that ϕ : X → 2Y is locally selectionable if and only if there is an
open cover {Uα | α ∈ A} of X and continuous mappings fα : Uα → Y , α ∈ A such that
fα(x) ∈ ϕ(x) for each x ∈ Uα.

Let K be a simplicial complex and ϕ : X → K a mapping. Then ϕ is naturally viewed
as a mapping ϕ : X → 2|K| of X , where |K| is the geometric realization of K. Such a
mapping is said to be a simplex-valued mapping. For a simplicial complex K, let |K|w and
|K|m denote its geometric realizations with the weak topology and the metric topology,
respectively. For simplex-valued mappings to simplicial complexes with the weak topology,
in [8, Theorem 1.2], I. Ivanšić and L. R. Rubin proved the following selection theorem.

Theorem 1.1 (I. Ivanšić and L. R. Rubin [8]). Let X be a hereditarily normal para-
compact Hausdorff space, K a simplicial complex and ϕ : X → K a mapping. If ϕ : X →
2|K|w is locally selectionable, then ϕ admits a continuous selection f : X → |K|w.

In order to mention a result for simplicial complexes with the metric topology, let us
recall the following theorem due to T. Kandô [9, Theorem IV] and S. Nedev [11, Theorem
4.1]. Let λ be an infinite cardinal. A space X is λ-PF-normal if every point-finite open cover
U of X of cardinality ≤ λ is normal; a space X is PF-normal ([14]) if X is λ-PF-normal
for every λ. Every collectionwise normal space is PF-normal, and a space is ω-PF-normal
if and only if it is normal, where ω denotes the first infinite cardinal (see [3]).

Theorem 1.2 (T. Kandô [9] and S. Nedev [11]). A space X is λ-PF-normal if and
only if for every Banach space Y of weight ≤ λ, every lower semicontinuous mapping
ϕ : X → Cc(Y ) admits a continuous selection, where Cc(Y ) is the set of all compact convex
subsets of Y .
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Let K be a simplicial complex. Then |K|m is naturally embedded in the Banach space
l1(V ) generated by the set V of all vertices of K. Thus Theorem 1.2 implies that if a
space X is λ-PF-normal, then for every simplicial complex K of cardinality ≤ λ, every
lower semicontinuous simplex-valued mapping ϕ : X → 2|K|m admits a continuous selection
f : X → |K|m.

The purpose of this paper is to characterize some topological properties in terms of
simplex-valued mappings. In section 3 we establish the following theorem, which shows
that λ-PF-normality is essentially described by Theorem 1.1 and the fact above.

Theorem 1.3. For a T1-space X and an infinite cardinal λ, the following are equivalent.

(a) X is λ-PF-normal.

(b) For every simplicial complex K with CardK ≤ λ, every locally selectionable mapping
ϕ : X → K admits a continuous selection f : X → |K|w.

(c) For every simplicial complex K with CardK ≤ λ, every lower semicontinuous simplex-
valued mapping ϕ : X → 2|K|m admits a continuous selection f : X → |K|m.

In section 2, we present some properties of continuity for simplex-valued mappings,
which are preliminary in our discussion.

Section 3 is devoted to prove Theorem 1.3. In particular, we show that if a mapping
ϕ : X → K admits a continuous selection f : X → |K|m, then ϕ also has a continuous
selection g : X → |K|w.

In section 4, we describe characterizations of finite-dimensional spaces, pseudofinitistic
spaces, strongly countable-dimensional spaces, spaces with strong large transfinite dimen-
sion and locally finite-dimensional spaces in terms of simplex-valued mappings.

For undefined terminology, we refer to [3] and [13].

2 Continuity of simplex-valued mappings. Let X and Y be spaces and K a simplicial
complex. For a subset S of X , IntS (respectively, ClS) denotes the interior (respectively,
closure) of S in X . For a mapping ϕ : X → 2Y and A ⊂ Y , put ϕ−1[A] = {x ∈ X |
ϕ(x) ∩ A �= ∅}. Let 〈vi | i = 0, 1, . . . n〉 or 〈v0, v1, . . . vn〉 denote the n-simplex spanned by
the vertices v0, v1, . . . vn. For a simplex σ and a vertex v of K, let intσ denote the geometric
interior of σ in K and St(v,K) the open star of v on K, that is,

⋃{intσ | v ∈ σ ∈ K}. By
K(n) we denote the n-skeleton of K.

We will use the fact that for a mapping ϕ : X → K,

ϕ−1[{v}] = ϕ−1[St(v,K)](1)

holds for each vertex v of K. In particular, the collection {ϕ−1[{v}] | v ∈ K(0)} covers X .
Recall that a mapping ϕ : X → 2Y is said to have the local intersection property ([17])

if each x ∈ X has a neighborhood U with
⋂{ϕ(z) | z ∈ U} �= ∅. It is obvious that every

mapping ϕ : X → 2Y with the local intersection property is locally selectionable. For
simplex-valued mappings we have the following.

Proposition 2.1. Let ϕ : X → K be a mapping of a space X to a simplicial complex
K and |K| the geometrical realization of K with the weak topology or the metric topology.
Then the following are equivalent.

(a) The mapping ϕ has the local intersection property.

(b) The mapping ϕ : X → 2|K| is locally selectionable.
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(c) The collection {Intϕ−1[{v}] | v ∈ K(0)} covers X.

Proof. The implication (a) ⇒ (b) is obvious. Let us show the implication (b) ⇒ (c). For
x ∈ X , take a neighborhood U of x and a continuous selection f : U → |K| of the restriction
ϕ|U : U → K. Choose a vertex v of K so that f(x) ∈ St(v,K). Then U ∩ f−1(St(v,K))
is a neighborhood of x contained in ϕ−1[St(v,K)]. By (1), we have that x ∈ Intϕ−1[{v}].
The implication (c) ⇒ (a) follows from the fact that a mapping ϕ : X → 2Y has the local
intersection property if and only if the collection {Intϕ−1[{y}] | y ∈ Y } covers X .

For spaces X and Y , a mapping ϕ : X → 2Y is called lower semicontinuous if for every
open subset V in Y , the subset ϕ−1[V ] is open in X . A mapping ϕ : X → 2Y is strongly
lower semicontinuous ([16]) if the set {x ∈ X | C ⊂ ϕ(x)} is open in X for each compact
subset C of Y . It is obvious that strong lower semicontinuity implies lower semicontinuity,
but not conversely in general. Indeed, let R be the space of real numbers with the usual
topology and let ϕ : R → 2R be the mapping defined by ϕ(x) = {x} for each x ∈ R.
Then ϕ is lower semicontinuous, but not strongly lower semicontinuous. For simplex-valued
mappings these two notions coincide.

Proposition 2.2. Let ϕ : X → K be a mapping of a space X to a simplicial complex
K and |K| the geometrical realization of K with the weak topology or the metric topology.
Then the following are equivalent.

(a) The mapping ϕ : X → 2|K| is strongly lower semicontinuous.

(b) The mapping ϕ : X → 2|K| is lower semicontinuous.

(c) The set ϕ−1[{v}] is open in X for each vertex v in K.

Proof. The implication (a) ⇒ (b) is obvious. The implication (b) ⇒ (c) follows from (1).
To show the implication (c) ⇒ (a), assume (c) and let C be a compact subset of |K| such
that {x ∈ X | C ⊂ ϕ(x)} is non-empty. Then C is contained in some simplex in K.
Let σ = 〈v0, v1, . . . , vn〉 be the smallest simplex in K containing C. Then we have that
{x ∈ X | C ⊂ ϕ(x)} = {x ∈ X | σ ⊂ ϕ(x)} =

⋂{ϕ−1[{vi}] | i = 1, 2, . . . , n}, which is open
in X .

Propositions 2.1 and 2.2 yield that every lower semicontinuous simplex-valued mapping
is locally selectionable, which will be used in section 3. The following example is a locally
selectionable simplex-valued mapping ϕ : X → 2|K| which is not lower semicontinuous

Example 2.3. Let K be the simplicial complex {v1, v2, v3, 〈v1, v2〉, 〈v2, v3〉} and define a
mapping ϕ : [0, 1] → K as follows.

ϕ(x) =

{
〈v1, v2〉 if x ∈ [0, 1)
〈v2, v3〉 if x = 1

Let |K| be the geometric realization of K with the weak topology or the metric topology.
Then ϕ : X → 2|K| is locally selectionable, but not lower semicontinuous.

3 Proof of Theorem 1.3. For a real-valued function f of a space X , set Coz(f) =
{x ∈ X | f(x) �= 0}. A subset S of X is a cozero-set if S = Coz(f) for some real-valued
continuous function f on X . A family {pλ | λ ∈ Λ} of continuous functions pλ : X → [0, 1]
is called a partition of unity on X if

∑
λ∈Λ pλ(x) = 1 for each x ∈ X . A partition of unity

{pλ | λ ∈ Λ} on X is said to be locally finite if {Coz(pλ) | λ ∈ Λ} of X is locally finite.
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For an open cover U of X , a partition of unity {pλ | λ ∈ Λ} on X is subordinated to U if
{Coz(pλ) | λ ∈ Λ} refines U .

Let X be a space, K a simplicial complex and f : X → |K| a mapping. A mapping
g : X → |K| is called a K-approximation ([2]) (or K-modification) of f if g(x) ∈ σ for
each simplex σ of K and each x ∈ X with f(x) ∈ σ. For each x ∈ X there exists the
unique simplex σf(x) of K such that f(x) ∈ intσf(x). Note that a mapping g : X → |K|
is a K-approximation of f if and only if g(x) ∈ σf(x) for each x ∈ X . Since the weak
topology is finer than the metric topology, if the mapping f : X → |K|w is continuous, then
f : X → |K|m is continuous. On the other hand, the following holds.

Proposition 3.1. Let X be a space and K a simplicial complex. Then every continuous
mapping f : X → |K|m admits a continuous K-approximation g : X → |K|w.

Proof. Let f : X → |K|m be a continuous mapping. Since U = {f−1(St(v,K)) | v ∈ K(0)}
is a normal open cover of X , there exists a locally finite partition of unity P = {pv | v ∈
K(0)} on X such that Coz(pv) ⊂ f−1(St(v,K)) for each v ∈ K(0) ([1, Theorem 10.10]).
Define a mapping g : X → |K| by g(x) =

∑
v∈K(0) pv(x) · v for each x ∈ X . Then g is a

K-approximation of f . Since P is locally finite, each point x ∈ X has a neighborhood U in
X such that g(U) is contained in some finite subcomplex L of K. Since the weak topology
of |L| coincides with the metric topology, the restriction g|U : U → |L|w is continuous.
Hence the mapping g : X → |K|w is continuous at x.

Proposition 3.1 implies the following.

Proposition 3.2. If a mapping ϕ : X → K from a space X to a simplicial complex K
admits a continuous selection f : X → |K|m, then ϕ has a continuous selection g : X →
|K|w.

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. (a) ⇒ (b). Assume that X is λ-PF-normal. Let K be a simpli-
cial complex with CardK ≤ λ and ϕ : X → 2|K|w a locally selectionable simplex-valued
mapping. By Proposition 2.1, U = {Intϕ−1[{v}] | v ∈ K(0)} is an open cover of X
with CardU ≤ λ. Since X is λ-PF-normal and U is point-finite, the cover U is nor-
mal, and hence there exists a locally finite partition of unity P = {pv | v ∈ K(0)}
on X such that Coz(pv) ⊂ Intϕ−1[{v}] for each v ∈ K(0) ([1, Theorem 10.10]). Then
v ∈ ⋂{ϕ(z) | z ∈ Coz(pv)} for each v ∈ K(0). Define a mapping f : X → |K| by
f(x) =

∑
v∈K(0) pv(x) · v for x ∈ X . Since each ϕ(x) is convex, the mapping f : X → |K| is

a selection of ϕ. By the same argument as in Proposition 3.1, the mapping f : X → |K|w
is continuous.

(b) ⇒ (c). It immediately follows from the fact in section 2.
(c) ⇒ (a). Assume (c) and let U be a point-finite open cover of X with CardU ≤ λ. Note

that the cardinal of the nerve N(U) of U is at most λ. Define a mapping ϕ : X → N(U) by
ϕ(x) = 〈U ∈ U | x ∈ U〉 for each x ∈ X . Since U is point-finite, ϕ is actually defined. Since
ϕ−1[{U}] = U for each U ∈ U , ϕ is lower semicontinuous by Proposition 2.2, and hence it
admits a continuous selection f : X → |N(U)|m. Then f−1(St(U, N(U))) is contained in U
for each U ∈ U . Since the open cover {St(U, N(U)) | U ∈ U} of |N(U)|m is normal, so is
U .

4 Characterizations of dimension-like properties. For a cover U of a space X and
a point x ∈ X , let ordx U = Card{U ∈ U | x ∈ U} and ord U = sup{ordx U | x ∈ X}. The
covering dimension dim X of a space X is the least number n such that any finite open
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cover of X is refined by a finite open cover U of X of ord U ≤ n + 1. A space X is called
finitistic if for every open cover of X is refined by an open cover U of X such that ord U
is finite. Finitistic spaces were introduced by R. Swan [15] for work in fixed point theory.
Some of their properties were investigated from the dimensional viewpoints ([2], [5] and
[6]). A space X is said to be pseudofinitistic ([18]) if every normal open cover of X has a
refinement which is normal and whose order is finite. V. Matijević [10] defined this concept
under the name finitistic and gave characterizations of pseudofinitistic spaces by means
of approximate resolutions. It is clear that every finitistic normal space and every finite-
dimensional normal space is pseudofinitistic and that every pseudofinitistic paracompact
Hausdorff space is finitistic. Note that a normal space X is pseudofinitistic if and only if
every countable locally finite open cover of X is refined by a normal open cover V of X
satisfying sup{ordx V | x ∈ D} < ∞ for each closed discrete subset D of X ([18]).

A mapping g : X → |K| is said to be n-dimensional (respectively, finite-dimensional)
([2]) if g(X) ⊂ |K(n)| (respectively, g(X) ⊂ |K(m)| for some m). J. Dydak, S. N. Mishra
and R. A. Shukla [2, Theorem 2.2] established the following.

Theorem 4.1 (J. Dydak, S. N. Mishra and R. A. Shukla [2]). For a normal space
X, dimX ≤ n if and only if for every simplicial complex K, every continuous mapping
f : X → |K|m has an n-dimensional continuous K-approximation g : X → |K|m.

Proposition 4.2. A T1-space X is λ-PF-normal and dimX ≤ n if and only if for every
simplicial complex K with CardK ≤ λ, every locally selectionable simplex-valued mapping
ϕ : X → 2|K|w admits an n-dimensional continuous selection f : X → |K|w.

Proof. The “only if” part is immediate from Theorems 1.3, 4.1 and Proposition 3.1. Let us
show the “if” part. By Theorem 1.3, it suffices to show dimX ≤ n. We shall apply Theorem
4.1. Let K be a simplicial complex and f : X → |K|m a continuous mapping. For each
x ∈ X , let σf(x) be the unique simplex of K such that f(x) ∈ intσf(x). Define a mapping ϕ :
X → K by ϕ(x) = σf(x) for each x ∈ X . Since f−1(St(v,K)) ⊂ ϕ−1[St(v,K)] = ϕ−1[{v}]
for each vertex v of K, ϕ is locally selectionable by Proposition 2.1. Then ϕ admits an
n-dimensional continuous selection g : X → |K|w, which is a K-approximation of f . Hence
we have dimX ≤ n.

The following is a slight modification of [2, Theorem 2.1]. Let D(X) denote the set of
all closed discrete subsets of a space X .

Theorem 4.3. For a normal space X, the following are equivalent.

(a) X is pseudofinitistic.

(b) For every simplicial complex K, every continuous mapping f : X → |K|m has a
finite-dimensional continuous K-approximation g : X → |K|w.

(c) For every simplicial complex K and every continuous mapping f : X → |K|m, there
exist a mapping m : D(X) → N and a continuous K-approximation g : X → |K|w of
f such that g(D) ⊂ |K(m(D))| for each D ∈ D(X).

By the same argument as in Theorem 4.2, we have the following.

Proposition 4.4. For a T1-space X, the following are equivalent.

(a) X is λ-PF-normal and pseudofinitistic.
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(b) For every simplicial complex K with CardK ≤ λ, every locally selectionable simplex-
valued mapping ϕ : X → 2|K|w admits a finite-dimensional continuous selection f :
X → |K|w.

(c) For every simplicial complex K with CardK ≤ λ and every locally selectionable
simplex-valued mapping ϕ : X → 2|K|w , there exist a mapping m : D(X) → N
and a continuous selection f : X → |K|w of ϕ such that f(D) ⊂ |K(m(D))| for each
D ∈ D(X).

A normal space is said to be strongly countable-dimensional if it can be represented as
the union of countably many finite-dimensional closed subspaces. The following theorem is
due to Y. Hattori [7, Corollary].

Theorem 4.5 (Y. Hattori [7]). A normal space X is strongly countable-dimensional if
and only if there exists a mapping m : X → N such that for every simplicial complex K,
every continuous mapping f : X → |K|m has a continuous K-approximation g : X → |K|m
such that g(x) ∈ |K(m(x))| for each x ∈ X.

Theorems 1.3, 4.5 and Proposition 3.1 yield

Proposition 4.6. A T1-space X is λ-PF-normal and strongly countable-dimensional if and
only if there exists a mapping m : X → N such that for every simplicial complex K with
CardK ≤ λ, every locally selectionable simplex-valued mapping ϕ : X → 2|K|w admits a
continuous selection f : X → |K|w such that f(x) ∈ |K(m(x))| for each x ∈ X.

Proposition 3.1, Theorem 1.3 and [7, Theorem] also provide the following characteri-
zation of strong large transfinite dimension (for the definition of strong large transfinite
dimension, see [7]).

Proposition 4.7. A metrizable space X has strong large transfinite dimension if and only
if there exists a mapping m : D(X) → N such that for every simplicial complex K, every
locally selectionable simplex-valued mapping ϕ : X → 2|K|w admits a continuous selection
f : X → |K|w such that f(D) ⊂ |K(m(D))| for each D ∈ D(X).

A normal space is called locally finite-dimensional if every point has a neighborhood U
such that dim ClU < ∞. A mapping m : X → N is said to be lower semicontinuous if the
set m−1({k ∈ N | k < n}) is open in X for each n ∈ N.

Proposition 4.8. A normal weakly paracompact space X is locally finite-dimensional if
and only if there exists a lower semicontinuous mapping m : X → N such that for every
simplicial complex K, every continuous mapping f : X → |K|m has a continuous K-
approximation g : X → |K|w such that g(x) ∈ |K(m(x))| for each x ∈ X.

Proof. Due to [4, Theorem 5.5.12], a normal weakly paracompact space X is locally finite-
dimensional if and only if there is a lower semicontinuous mapping m : X → N such that
every finite open cover U of X has an open refinement V such that ordx V ≤ m(x) for each
x ∈ X . Note that the phrase “finite open cover” can be replaced with that “locally finite
open cover”. Thus the assertion follows from an argument analogous to Proposition 3.1.

Theorem 1.3 and Proposition 4.8 yield

Proposition 4.9. A weakly paracompact T1-space X is λ-PF-normal and locally finite-
dimensional if and only if there exists a lower semicontinuous mapping m : X → N such
that for every simplicial complex K with CardK ≤ λ, every locally selectionable simplex-
valued mapping ϕ : X → 2|K|w admits a continuous selection f : X → |K|w such that
f(x) ∈ |K(m(x))| for each x ∈ X.
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Remark 4.10. The phrase “locally selectionable” in Propositions 4.2, 4.4, 4.6 and 4.9 can
be replaced by “lower semicontinuous”.

References
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