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CONTINUOUS SELECTIONS OF SIMPLEX-VALUED MAPPINGS
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ABSTRACT. It is proved that for a Ti-space X the following statements are equivalent:
(1) X is PF-normal, (2) for every simplicial complex K, every locally selectionable
simplex-valued mapping ¢ : X — 2/¥lv admits a continuous selection f : X — |K|w,
(3) for every simplicial complex K, every lower semicontinuous simplex-valued map-
ping ¢ : X — 21Klm admits a continuous selection f:+ X — |K|m. We also character-
ize finite-dimensional spaces, pseudofinitistic spaces, strongly countable-dimensional
spaces, spaces with strong large transfinite dimension and locally finite-dimensional
spaces in terms of simplex-valued mappings.

1 Introduction. Throughout this paper, all spaces are assumed to be 7. Let 2 denote
the set of all non-empty subsets of a set Y. For sets X, Y and a mapping ¢ : X — 2Y, a
mapping f: X — Y is called a selection of ¢ if f(x) € p(z) for every € X. For spaces X
and Y, a mapping ¢ : X — 2Y is called locally selectionable ([12]) if for each point = € X,
there exist a neighborhood U of & and a continuous selection f : U — Y of the restriction
¢l : U — 2Y. Note that ¢ : X — 2Y is locally selectionable if and only if there is an
open cover {U, | @ € A} of X and continuous mappings f, : Uy — Y, @ € A such that
fal(z) € p(x) for each x € U,.

Let K be a simplicial complex and ¢ : X — K a mapping. Then ¢ is naturally viewed
as a mapping ¢ : X — 2/Xl of X, where |K| is the geometric realization of K. Such a
mapping is said to be a simplex-valued mapping. For a simplicial complex K, let |K|,, and
|K|,, denote its geometric realizations with the weak topology and the metric topology,
respectively. For simplex-valued mappings to simplicial complexes with the weak topology,
in [8, Theorem 1.2], I. Ivansi¢ and L. R. Rubin proved the following selection theorem.

Theorem 1.1 (I. Ivansi¢ and L. R. Rubin [8]). Let X be a hereditarily normal para-
compact Hausdorff space, K a simplicial complex and ¢ : X — K a mapping. If ¢ : X —
2Klw s locally selectionable, then ¢ admits a continuous selection f : X — | K |-

In order to mention a result for simplicial complexes with the metric topology, let us
recall the following theorem due to T. Kand6 [9, Theorem IV] and S. Nedev [11, Theorem
4.1]. Let A be an infinite cardinal. A space X is A\-PF-normal if every point-finite open cover
U of X of cardinality < A is normal; a space X is PF-normal ([14]) if X is A-PF-normal
for every A. Every collectionwise normal space is PF-normal, and a space is w-PF-normal
if and only if it is normal, where w denotes the first infinite cardinal (see [3]).

Theorem 1.2 (T. Kando6 [9] and S. Nedev [11]). A space X is A\-PF-normal if and
only if for every Banach space Y of weight < X, every lower semicontinuous mapping
v : X — C(Y) admits a continuous selection, where C.(Y) is the set of all compact convex
subsets of Y.
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Let K be a simplicial complex. Then |K]|,, is naturally embedded in the Banach space
[1(V) generated by the set V' of all vertices of K. Thus Theorem 1.2 implies that if a
space X is A-PF-normal, then for every simplicial complex K of cardinality < A, every
lower semicontinuous simplex-valued mapping ¢ : X — 2/ admits a continuous selection
f: X = |K|n.

The purpose of this paper is to characterize some topological properties in terms of
simplex-valued mappings. In section 3 we establish the following theorem, which shows
that A-PF-normality is essentially described by Theorem 1.1 and the fact above.

Theorem 1.3. For a Ty-space X and an infinite cardinal X, the following are equivalent.
(a) X is A\-PF-normal.

(b) For every simplicial complex K with Card K < X, every locally selectionable mapping
p: X — K admits a continuous selection [ : X — |K|y.

(¢) For every simplicial complex K with Card K < X, every lower semicontinuous simplex-
valued mapping ¢ : X — 215 admits a continuous selection f: X — |K|,.

In section 2, we present some properties of continuity for simplex-valued mappings,
which are preliminary in our discussion.

Section 3 is devoted to prove Theorem 1.3. In particular, we show that if a mapping
¢ : X — K admits a continuous selection f : X — |K|,,, then ¢ also has a continuous
selection g : X — |K|,.

In section 4, we describe characterizations of finite-dimensional spaces, pseudofinitistic
spaces, strongly countable-dimensional spaces, spaces with strong large transfinite dimen-
sion and locally finite-dimensional spaces in terms of simplex-valued mappings.

For undefined terminology, we refer to [3] and [13].

2 Continuity of simplex-valued mappings. Let X and Y be spaces and K a simplicial
complex. For a subset S of X, Int.S (respectively, C1S) denotes the interior (respectively,
closure) of S in X. For a mapping ¢ : X — 2¥ and A C Y, put o [A4] = {z € X |
w(x)NA#0}. Let (v; |4 =0,1,...n) or (vg,v1,...v,) denote the n-simplex spanned by
the vertices vg, v1, ... v,. For a simplex o and a vertex v of K, let int o denote the geometric
interior of ¢ in K and St(v, K) the open star of v on K, that is, | J{into | v € 0 € K}. By
K™ we denote the n-skeleton of K.
We will use the fact that for a mapping ¢ : X — K,

(1) o {v}] = ¢ [St (v, K)]

holds for each vertex v of K. In particular, the collection {o~'[{v}] | v € KD} covers X.

Recall that a mapping ¢ : X — 2Y is said to have the local intersection property ([17])
if each * € X has a neighborhood U with {¢(z) | z € U} # (. It is obvious that every
mapping ¢ : X — 2Y with the local intersection property is locally selectionable. For
simplex-valued mappings we have the following.

Proposition 2.1. Let ¢ : X — K be a mapping of a space X to a simplicial complex
K and |K| the geometrical realization of K with the weak topology or the metric topology.
Then the following are equivalent.

(a) The mapping ¢ has the local intersection property.

(b) The mapping ¢ : X — 21K is locally selectionable.
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(¢) The collection {Int o~ [{v}] | v € KD} covers X.

Proof. The implication (a) = (b) is obvious. Let us show the implication (b) = (c). For
x € X, take a neighborhood U of  and a continuous selection f : U — | K| of the restriction
¢lv : U — K. Choose a vertex v of K so that f(z) € St(v, K). Then U N f~1(St(v, K))
is a neighborhood of = contained in ¢ ~1[St(v, K)]. By (1), we have that x € Int =1 [{v}].
The implication (¢) = (a) follows from the fact that a mapping ¢ : X — 2 has the local
intersection property if and only if the collection {Int o ~![{y}] | y € Y} covers X. O

For spaces X and Y, a mapping ¢ : X — 2V is called lower semicontinuous if for every
open subset V in Y, the subset ¢~![V] is open in X. A mapping ¢ : X — 2Y is strongly
lower semicontinuous ([16]) if the set {x € X | C C p(z)} is open in X for each compact
subset C' of Y. It is obvious that strong lower semicontinuity implies lower semicontinuity,
but not conversely in general. Indeed, let R be the space of real numbers with the usual
topology and let ¢ : R — 2R be the mapping defined by ¢(x) = {z} for each 2 € R.
Then ¢ is lower semicontinuous, but not strongly lower semicontinuous. For simplex-valued
mappings these two notions coincide.

Proposition 2.2. Let ¢ : X — K be a mapping of a space X to a simplicial complex
K and |K| the geometrical realization of K with the weak topology or the metric topology.
Then the following are equivalent.

(a) The mapping ¢ : X — 21Kl s strongly lower semicontinuous.
(b) The mapping ¢ : X — 2Kl is lower semicontinuous.
(c) The set p~1[{v}] is open in X for each vertex v in K.

Proof. The implication (a) = (b) is obvious. The implication (b) = (c¢) follows from (1).
To show the implication (¢) = (a), assume (c) and let C' be a compact subset of |K| such
that {z € X | C C ¢(x)} is non-empty. Then C is contained in some simplex in K.

Let ¢ = (vp,v1,...,v,) be the smallest simplex in K containing C. Then we have that
{reX|CcCo(@)}={reX|oCp@)}=N{¢ [{v}|i=12...,n} which is open
in X. [l

Propositions 2.1 and 2.2 yield that every lower semicontinuous simplex-valued mapping
is locally selectionable, which will be used in section 3. The following example is a locally
selectionable simplex-valued mapping ¢ : X — 2/5| which is not lower semicontinuous

Example 2.3. Let K be the simplicial complex {v1, va, v, (v1,v2), (v2,v3)} and define a
mapping ¢ : [0,1] — K as follows.

if 0,1

o) = {(vl,v2> if x €[0,1)

(vg,v3) fax=1

Let | K| be the geometric realization of K with the weak topology or the metric topology.
Then ¢ : X — 251 is locally selectionable, but not lower semicontinuous.

3 Proof of Theorem 1.3. For a real-valued function f of a space X, set Coz(f) =
{r € X | f(x) # 0}. A subset S of X is a cozero-set if S = Coz(f) for some real-valued
continuous function f on X. A family {px | A € A} of continuous functions py : X — [0, 1]
is called a partition of unity on X if ), pa(z) = 1 for each x € X. A partition of unity
{p» | A € A} on X is said to be locally finite if {Coz(py) | A € A} of X is locally finite.
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For an open cover U of X, a partition of unity {px | A € A} on X is subordinated to U if
{Coz(py) | A € A} refines U.

Let X be a space, K a simplicial complex and f : X — |K| a mapping. A mapping
g : X — |K| is called a K-approzimation ([2]) (or K-modification) of f if g(x) € o for
each simplex o of K and each © € X with f(x) € 0. For each x € X there exists the
unique simplex o,y of K such that f(z) € intoy(,). Note that a mapping g : X — |K|
is a K-approximation of f if and only if g(x) € oy, for each 2 € X. Since the weak
topology is finer than the metric topology, if the mapping f : X — |K]|,, is continuous, then
f: X — |K]|,, is continuous. On the other hand, the following holds.

Proposition 3.1. Let X be a space and K a simplicial complex. Then every continuous
mapping [ : X — |K|;, admits a continuous K -approzimation g : X — |K|,,.

Proof. Let f: X — |K|, be a continuous mapping. Since U = {f~!(St(v, K)) | v e K}
is a normal open cover of X, there exists a locally finite partition of unity P = {p, | v €
K©} on X such that Coz(p,) C f~(St(v, K)) for each v € K© ([1, Theorem 10.10]).
Define a mapping g : X — |K| by g(x) = >, cx Po(x) - v for each x € X. Then g is a
K-approximation of f. Since P is locally finite, each point € X has a neighborhood U in
X such that g(U) is contained in some finite subcomplex L of K. Since the weak topology
of |L| coincides with the metric topology, the restriction gy : U — |L|, is continuous.
Hence the mapping g : X — |K]|,, is continuous at x. O

Proposition 3.1 implies the following.

Proposition 3.2. If a mapping ¢ : X — K from a space X to a simplicial compler K
admits a continuous selection f : X — |K|,,, then ¢ has a continuous selection g : X —
K-

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. (a) = (b). Assume that X is \-PF-normal. Let K be a simpli-
cial complex with Card K < X and ¢ : X — 2/Klw a locally selectionable simplex-valued
mapping. By Proposition 2.1, U = {Inte~'[{v}] | v € K©} is an open cover of X
with CardUd < A. Since X is A-PF-normal and U is point-finite, the cover U is nor-
mal, and hence there exists a locally finite partition of unity P = {p, | v € K©}
on X such that Coz(p,) C Into '[{v}] for each v € K© ([1, Theorem 10.10]). Then
v € N{e(2) | 2 € Coz(p,)} for each v € K. Define a mapping f : X — |K| by
f(x) =3 ckw pu(z)-v for z € X. Since each ¢(z) is convex, the mapping f : X — [K| is
a selection of . By the same argument as in Proposition 3.1, the mapping f : X — | K|y,
is continuous.

(b) = (¢). It immediately follows from the fact in section 2.

(¢) = (a). Assume (c¢) and let U be a point-finite open cover of X with Card/ < . Note
that the cardinal of the nerve N(U) of U is at most . Define a mapping ¢ : X — N(U) by
p(x) =(U e U |z € U) for each € X. Since U is point-finite, ¢ is actually defined. Since
¢ Y{U}] = U for each U € U, ¢ is lower semicontinuous by Proposition 2.2, and hence it
admits a continuous selection f : X — |N(U)|,,. Then f=1(St(U, N(U))) is contained in U
for each U € U. Since the open cover {St(U, N(U)) | U € U} of |N(U)|,, is normal, so is
U. O

4 Characterizations of dimension-like properties. For a cover U of a space X and
a point z € X, let ord, U = Card{U € U | x € U} and ordU = sup{ord, U | z € X}. The
covering dimension dim X of a space X is the least number n such that any finite open
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cover of X is refined by a finite open cover U of X of ordUd < n + 1. A space X is called
finitistic if for every open cover of X is refined by an open cover U of X such that ord U
is finite. Finitistic spaces were introduced by R. Swan [15] for work in fixed point theory.
Some of their properties were investigated from the dimensional viewpoints ([2], [5] and
[6]). A space X is said to be pseudofinitistic ([18]) if every normal open cover of X has a
refinement which is normal and whose order is finite. V. Matijevié [10] defined this concept
under the name finitistic and gave characterizations of pseudofinitistic spaces by means
of approximate resolutions. It is clear that every finitistic normal space and every finite-
dimensional normal space is pseudofinitistic and that every pseudofinitistic paracompact
Hausdorff space is finitistic. Note that a normal space X is pseudofinitistic if and only if
every countable locally finite open cover of X is refined by a normal open cover V of X
satisfying sup{ord, V | # € D} < oo for each closed discrete subset D of X ([18]).

A mapping g : X — |K]| is said to be n-dimensional (respectively, finite-dimensional)
(12]) if g(X) c |[K™)| (respectively, g(X) C |[K(™| for some m). J. Dydak, S. N. Mishra
and R. A. Shukla [2, Theorem 2.2] established the following.

Theorem 4.1 (J. Dydak, S. N. Mishra and R. A. Shukla [2]). For a normal space
X, dimX < n if and only if for every simplicial complex K, every continuous mapping
f: X — |K|m has an n-dimensional continuous K -approzimation g : X — |K|n,.

Proposition 4.2. A Ti-space X is A-PF-normal and dim X < n if and only if for every
simplicial complex K with Card K < A, every locally selectionable simplez-valued mapping
¢ : X — 21Kl admits an n-dimensional continuous selection f : X — |K|,.

Proof. The “only if” part is immediate from Theorems 1.3, 4.1 and Proposition 3.1. Let us
show the “if” part. By Theorem 1.3, it suffices to show dim X < n. We shall apply Theorem
4.1. Let K be a simplicial complex and f : X — |K|,, a continuous mapping. For each
r € X, let 04, be the unique simplex of K such that f(x) € into (.. Define a mapping ¢ :
X — K by (x) = 0y, for each z € X. Since f~1(St(v,K)) C ¢ ![St(v,K)] = ¢ [{v}]
for each vertex v of K, ¢ is locally selectionable by Proposition 2.1. Then ¢ admits an
n-dimensional continuous selection g : X — | K|, which is a K-approximation of f. Hence
we have dim X < n. O

The following is a slight modification of [2, Theorem 2.1]. Let D(X) denote the set of
all closed discrete subsets of a space X.

Theorem 4.3. For a normal space X, the following are equivalent.
(a) X is pseudofinitistic.

(b) For every simplicial complex K, every continuous mapping f : X — |K|., has a
finite-dimensional continuous K -approzimation g : X — |K|y,.

(¢) For every simplicial complex K and every continuous mapping f : X — |K|m, there
exist a mapping m : D(X) — N and a continuous K -approzimation g : X — |K|, of
f such that g(D) C |K™P)| for each D € D(X).
By the same argument as in Theorem 4.2, we have the following.

Proposition 4.4. For a T)-space X, the following are equivalent.

(a) X is A-PF-normal and pseudofinitistic.
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(b) For every simplicial complez K with Card K < A, every locally selectionable simplez-

valued mapping ¢ : X — 25w admits a finite-dimensional continuous selection f
X — |K|y.

(¢) For every simplicial complex K with Card K < X and every locally selectionable
simplez-valued mapping ¢ : X — 2Ele there exist a mapping m : D(X) - N
and a continuous selection f : X — |K|y of ¢ such that f(D) C |[K™P)| for each
D eD(X).

A normal space is said to be strongly countable-dimensional if it can be represented as
the union of countably many finite-dimensional closed subspaces. The following theorem is
due to Y. Hattori [7, Corollary].

Theorem 4.5 (Y. Hattori [7]). A normal space X is strongly countable-dimensional if
and only if there exists a mapping m : X — N such that for every simplicial complex K,
every continuous mapping [ : X — |K|,, has a continuous K -approzimation g : X — |K|,
such that g(z) € |[K™@)| for each x € X.

Theorems 1.3, 4.5 and Proposition 3.1 yield

Proposition 4.6. A T3-space X is A-PF-normal and strongly countable-dimensional if and
only if there exists a mapping m : X — N such that for every simplicial complex K with
Card K < X, every locally selectionable simplex-valued mapping ¢ : X — 21Klv admits a
continuous selection f : X — | K|, such that f(z) € |[K™)| for each z € X

Proposition 3.1, Theorem 1.3 and [7, Theorem]| also provide the following characteri-
zation of strong large transfinite dimension (for the definition of strong large transfinite
dimension, see [7]).

Proposition 4.7. A metrizable space X has strong large transfinite dimension if and only
if there exists a mapping m : D(X) — N such that for every simplicial complex K, every
locally selectionable simplex-valued mapping ¢ : X — 2Kl admits a continuous selection
f:X —|K|y such that f(D) C |K™P)| for each D € D(X).

A normal space is called locally finite-dimensional if every point has a neighborhood U
such that dim C1U < co. A mapping m : X — N is said to be lower semicontinuous if the
set m~t({k € N | k <n}) is open in X for each n € N.

Proposition 4.8. A normal weakly paracompact space X is locally finite-dimensional if
and only if there exists a lower semicontinuous mapping m : X — N such that for every
simplicial complex K, every continuous mapping [ : X — |K|m has a continuous K-
approzimation g : X — |K |, such that g(x) € |[K™@)| for each x € X.

Proof. Due to [4, Theorem 5.5.12], a normal weakly paracompact space X is locally finite-
dimensional if and only if there is a lower semicontinuous mapping m : X — N such that
every finite open cover U of X has an open refinement V such that ord, ¥V < m(zx) for each
x € X. Note that the phrase “finite open cover” can be replaced with that “locally finite
open cover”. Thus the assertion follows from an argument analogous to Proposition 3.1. O

Theorem 1.3 and Proposition 4.8 yield

Proposition 4.9. A weakly paracompact T1-space X is \-PF-normal and locally finite-
dimensional if and only if there exists a lower semicontinuous mapping m : X — N such
that for every simplicial complex K with Card K < A, every locally selectionable simplex-

valued mapping ¢ : X — 2Klv admits a continuous selection f : X — |K|, such that
f(z) € |[K™@)| for each x € X.
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Remark 4.10. The phrase “locally selectionable” in Propositions 4.2, 4.4, 4.6 and 4.9 can
be replaced by “lower semicontinuous”.
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