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Abstract. Let B be a ring with 1 and C the center of B. It is shown that if B is a
Galois algebra over R with a finite Galois group G, Jg = {b ∈ B | bx = g(x)b for all
x ∈ B} for each g ∈ G, and eg an idempotent in C such that BJg = Beg, then the
algebra B(g) generated by {Jh |h ∈ G and eh = eg} for an g ∈ G is a separable algebra
over Reg and a central weakly Galois algebra with Galois group K(g) generated by
{h ∈ G | eh = eg}. Moreover, {B(g) | g ∈ G} and {K(g) | g ∈ G} are in a one-to-one
correspondence, and three characterizations of a Galois extension are also given.

1. INTRODUCTION
The Boolean algebra of the idempotents in a commutative Galois algebra plays an

important role ([2],[9]). For a noncommutative Galois algebra B over a commutative ring
R with a finite Galois group G and center C, and Jg = {b ∈ B | bx = g(x)b for all x ∈ B}
for each g ∈ G, it was shown that BJg = Beg for some central idempotent eg (∈ C) for
any g ∈ G ([5]). We note that the central idempotent eg is uniquely determined by g in
G. To see this, let e be a central idempotent of B. Then the mapping b �−→ be (b ∈ B)
defines a ring epimorphism B −→ Be because (b+ b′)e = be+ b′e and (bb′)e = (be)(b′e) for
every b, b′ ∈ B. Thus, as the image of 1, e is the identity of the subring Be. Therefore if f
is another central idempotent of B such that Be = Bf , then f is also the identity of Be,
and so we know that e = f . Hence, in particular, if f is a central idempotent such that
BJg = Bf , i.e., Beg = Bf , then it follows that f = eg. Let Ba be the Boolean algebra
generated by {0, eg | g ∈ G}. Then a structure theorem for B was given by using Ba ([6])
and the subalgebra ⊕∑

g∈K(1) Jg was investigated where K(1) = {h ∈ G | eh = 1} ([8]). We
note that B is a central Galois algebra with Galois group G if and only if K(1) = G. Let
S(g) = {h ∈ G | eh = eg} for each g ∈ G. Then S(1) = K(1), but S(g) is not a subgroup of
G for any eg �= 1 ([7]). Denote the subgroup generated by the elements in S(g) byK(g). The
purpose of the present paper is to investigate a more general class of algebras B(g) generated
by {Jh |h ∈ S(g)} for an g ∈ G. The major results are (1) B(g) = ⊕∑

k∈K(g) egJk, (2)
B(g) is a separable algebra over Reg, (3) B(g) is a central weakly Galois algebra with Galois
group K(g) where a weakly Galois algebra is in the sense of [9], and (4) there exists a one-
to-one correspondence between the set of algebras {B(g) | g ∈ G} and the set of subgroups
{K(g) | g ∈ G}. Thus B =

∑
g∈G B(g) such that B(g) is a central weakly Galois algebra

with Galois group K(g) for each g ∈ G. Three remarkable characterizations of a Galois
extension in section 5 were given by the first author. This paper was written under the
support of a Caterpillar Fellowship at Bradley University. The authors would like to thank
Caterpillar Inc. for the support.
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2. BASIC NOTATIONS AND DEFINITIONS

Throughout this paper, B will represent a ring with 1 and G a finite automorphism
group of B. We keep the definitions of a Galois extension, a Galois algebra, a central Galois
algebra, a separable extension, and an Azumaya algebra as defined in ([6]).

¿From now on, let B be a Galois algebra over a commutative ring R with a finite Galois
group G, C the center of B, Jg = {b ∈ B | bx = g(x)b for all x ∈ B} for each g ∈ G, eg

a central idempotent in C such that BJg = Beg ([5]), S(g) = {h ∈ G | eh = eg} for each
g ∈ G, K(g) the subgroup of G generated by {h |h ∈ S(g)}, B(g) the algebra contained
in B generated by {Jh |h ∈ S(g)} for each g ∈ G, and J

(A)
g = {a ∈ A | ax = g(x)a for

all x ∈ A} for a subring A of B. A weakly Galois extension A with Galois group G is a
finitely generated projective right module A over AG such that AlG = HomAG(A,A) where
Al = {al, the left multiplication map by a ∈ A} and (alg)(x) = ag(x) for each al ∈ Al and
x ∈ A ([9]). We call A a weakly Galois algebra with Galois group G if A is a weakly Galois
extension with Galois group G such that AG is contained in the center of A and that A is
a central weakly Galois algebra with Galois group G if A is a weakly Galois extension with
Galois group G such that AG is the center of A. An Azumaya Galois extension A with
Galois group G is a Galois extension A of AG which is a CG-Azumaya algebra where C is
the center of A ([1]). We call A an Azumaya weakly Galois extension with Galois group
G if it is a weakly Galois extension of AG which is a CG-Azumaya algebra where C is the
center of A.

3. THE SEPARABLE ALGEBRA B(g)

Let g ∈ G and B(g) the algebra generated by {Jh |h ∈ S(g)}. Keeping the notations in
section 2, we shall show that B(g) = ⊕∑

k∈K(g) egJk and that B(g) is a separable algebra
over Reg. We begin with some lemmas.

Lemma 3.1.
Let G(g) = {h ∈ G |h(eg) = eg}. Then K(g) is a normal subgroup of G(g).

Proof. Clearly, G(g) is a subgroup of G. Next, let k ∈ S(g). Then ek = eg; and so
k(eg) = k(ek) = ekkk−1 = ek = eg. Hence k ∈ G(g). Thus S(g) ⊂ G(g). But K(g) is
the subgroup generated by the elements in S(g) by the definition of K(g), so K(g) is a
subgroup of G(g). Next we show K(g) is a normal subgroup of G(g). For any h ∈ G(g)
and k ∈ S(g), we have that ehkh−1 = h(ek) = h(eg) = eg, so hkh−1 ∈ S(g). Clearly,
k−1 ∈ S(g) if k ∈ S(g). Hence for any k ∈ K(g), k = k1k2 · · · km for some integer m and
some ki ∈ S(g), i = 1, 2, · · · ,m. Thus, for any h ∈ G(g), hkh−1 = h(k1k2 · · · km)h−1 =
(hk1h

−1)(hk2h
−1) · · · (hkmh

−1) ∈ K(g). Therefore hK(g)h−1 ⊂ K(g) for any h ∈ G(g).
This proves that K(g) is a normal subgroup of G(g).

Lemma 3.2.
Beg is a separable algebra over Reg.

Proof. Since B is a Galois algebra over R, B is a separable algebra over R. Hence Beg

is a separable algebra over Reg ([3], Proposition 1.11, page 46).

Lemma 3.3.
For each h ∈ G(g), J (Beg)

h = egJh.

Proof. See Lemma 3.3 in [6].
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Theorem 3.4.
B(g) = ⊕∑

k∈K(g) egJk.

Proof. Since B(g) is generated by {Jh |h ∈ S(g)},

B(g) =
{∑

(ΠJh), a finite sum of finite products of Jh for some h ∈ S(g)
}
.

By Proposition 2 in [5], JhJh′ = ehJhh′ = egJhh′ for any h, h′ ∈ S(g), so ΠJh = egJΠh for
some h ∈ S(g). Hence B(g) =

∑
k∈K(g) egJk. But B is a Galois algebra over R with Galois

group G, so B = ⊕∑
g∈G Jg ([5], Theorem 1). Noting that Jh is a C-module, we have that

egJh ⊂ Jh for each h ∈ K(g). Thus, the sum is direct, that is, B(g) = ⊕∑
k∈K(g) egJk.

Theorem 3.5.
For each k ∈ K(g), ekeg = eg.

Proof. We want to prove that

(∗) eg1eg2 · · · egn = eg2 · · · egneg1g2···gn

for any integer n ≥ 2 and any elements g1, g2, · · · , gn of G. Consider now the case
for n = 2. We know by Proposition 2 in [5] that Jg1Jg2 = eg2Jg1g2 , and so eg1eg2B =
eg1BJg2 = BJg1Jg2 = Beg2Jg1g2 = eg2BJg1g2 = eg2eg1g2B. Since eg1eg2 and eg2eg1g2 are
central idempotents, we have

(1) eg1eg2 = eg2eg1g2 for any g1, g2 ∈ G.

Now assume that (∗) is true for an n(≥ 2) and any g1, g2, · · · , gn ∈ G. Let gn+1 be any
element of G. Then by applying (1) to g1g2 · · · gn and gn+1 instead of g1 and g2 respectively,
we have

(2) eg1g2···gnegn+1 = egn+1eg1g2···gngn+1 .

Thus we conclude

eg1eg2 · · · egnegn+1 = (eg1eg2 · · · egn)egn+1

= (eg2 · · · egneg1g2···gn)egn+1 by the assumption (∗)
= (eg2 · · · egn)(eg1g2···gnegn+1)
= (eg2 · · · egn)(egn+1eg1g2···gngn+1) by (2)
= eg2 · · · egnegn+1eg1g2···gngn+1 .

This shows by induction that (∗) holds for any n ≥ 2 and any g1, g2, · · · , gn ∈ G.
Now assume that h1, h2, · · · , hn ∈ S(g) for some integer n, so eg = eh1 = eh2 = · · · =

ehn . Then eg = egeh1h2···hn by the above result (∗). Let L be the set of those elements of G
which are finite products of elements in S(g). Then clearly L is closed under multiplication.
Since eh = eh−1 for any h ∈ G ([5], Proposition 2-(3)), eg = eh = eh−1 for any h ∈ S(g);
and so h−1 ∈ S(g). It follows that if h = h1h2 · · ·hn ∈ L where h1, h2, · · · , hn ∈ S(g)
for some integer n, then h−1 = h−1

n · · ·h−1
1 ∈ L. Thus L is a subgroup generated by the

elements in S(g); that is, L = K(g). Therefore, for any element k ∈ K(g), k = h1h2 · · ·hn

where h1, h2, · · · , hn ∈ S(g) for some integer n, we have that eg = egek. This completes
the proof.

Next is the main theorem in this section.
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Theorem 3.6.
B(g) is a separable algebra over Reg.

Proof. Since B is a Galois algebra over R with Galois group G, there exists a c ∈ C such
that TrG(c) = 1 by the proof of proposition 5 in [5]. Let {K(g)gi | gi ∈ G, i = 1, 2, · · · ,m
for some integer m} be the set of the right cosets of K(g) in G and d =

∑m
i=1 gi(c). Then

TrK(g)(d) =
∑

k∈K(g) k(d) =
∑

k∈K(g)

∑m
i=1 kgi(c) = TrG(c) = 1. Hence TrK(g)(degx) =

egx for each egx ∈ (egB)K(g). Thus the map TrK(g)(d ) : egB −→ (egB)K(g) is a split
bimodule homomorphism over (egB)K(g). This implies that (egB)K(g) is a direct summand
of egB as a bimodule over (egB)K(g). On the other hand, egB is a Galois extension of
(egB)G(g) with Galois group G(g) by Lemma 3.7 in [6], so egB is a Galois extension of
(egB)K(g) with Galois group K(g) for K(g) is a subgroup of G(g) by Lemma 3.1. Hence
egB is a finitely generated and projective left (or right) module over (egB)K(g). Thus
(egB)K(g) is a separable algebra over Reg by the proof of Theorem 3.8 on page 55 in
[3] because Beg is a separable algebra over Reg by Lemma 3.2. Next, we claim that
Ceg ⊂ (egB)K(g). In fact, for any ceg ∈ Ceg, k ∈ K(g), and x ∈ Jk, we have that
(ceg)x = x(ceg) = k(ceg)x, so (ceg − k(ceg))x = 0. Hence (ceg − k(ceg))Jk = {0}. But
JkJk−1 = ekC ([5], Proposition 2), so (ceg − k(ceg))ekC = {0}. By Lemma 3.5, egek = eg,
so (ceg − k(ceg))C = {0}. Thus ceg − k(ceg) = 0, that is, k(ceg) = ceg. This implies that
Ceg ⊂ (egB)K(g). Therefore Ceg is contained in the center of (egB)K(g) for Ceg is contained
in the center of B. Consequently (egB)K(g) is separable over Ceg ([3], Proposition 1.12, page
46). Moreover, since Beg is separable over Reg, Beg is an Azumaya algebra over Ceg and
Ceg is separable over Reg ([3], Theorem 3.8, page 55). Hence VBeg ((egB)K(g)) is separable
over Ceg by the commutator theorem for Azumaya algebras ([3], Theorem 4.3, page 57);
and so it is separable over Reg by the transitivity of separable algebras. But, by Proposition
1 in [5], VBeg ((egB)K(g)) = ⊕∑

k∈K(g) J
(Beg)
k , so VBeg ((egB)K(g)) = ⊕∑

k∈K(g) egJk by
Lemma 3.3. Therefore B(g) (= ⊕∑

k∈K(g) egJk by Theorem 3.4) is a separable algebra
over Reg.

4. THE CENTRAL WEAKLY GALOIS ALGEBRA B(g)

We recall that an algebra A over a commutative ring R with a finite automorphism
group G is called a weakly Galois extension with Galois group G if A is a finitely generated
projective right AG-module such that AlG = HomAG(A,A) where Al = {al, the left multi-
plication map by a ∈ A}. We shall show that B(g) is a central weakly Galois algebra with
Galois group U(g) where U(g) = K(g)/L and L = {k ∈ K(g) | k(a) = a for all a ∈ B(g)}.
For each k ∈ K(g), k is denoted as the coset kL ∈ U(g) and k(b) = k(b) for b ∈ B(g).

Lemma 4.1.
(B(g))K(g) = Z, the center of B(g).

Proof. Let x be any element in (B(g))K(g) and b any element in B(g). Then b =∑
k∈K(g) egbk where bk ∈ Jk for each k ∈ K(g) by Theorem 3.4. Hence

bx =
∑

k∈K(g)

egbkx =
∑

k∈K(g)

egk(x)bk =
∑

k∈K(g)

egxbk = x
∑

k∈K(g)

egbk = xb.

Thus x ∈ Z. Therefore (B(g))K(g) ⊂ Z. Conversely, for any z ∈ Z, k ∈ K(g), and
x ∈ Jk, we have that zx = xz = k(z)x, so (k(z) − z)x = 0 for any x ∈ Jk. Hence
(k(z) − z)Jk = {0}. Noting that JkJk−1 = ekC, we have that (k(z) − z)ekC = {0}. By
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Lemma 3.5, egC = egekC ⊂ ekC. Hence (k(z) − z)egC = {0}, so (k(z) − z)eg = 0, that is,
k(zeg) = zeg. But z is in the center of B(g) and B(g) = ⊕∑

k∈K(g) egJk, so zeg = z. Thus
k(z) = z for any z ∈ Z and k ∈ K(g); and so Z ⊂ (B(g))K(g).

Theorem 4.2.
B(g) is a central weakly Galois algebra with Galois group U(g), that is, B(g) is a weakly
Galois algebra over its center Z with Galois group U(g).

Proof. By Lemma 4.1, it suffices to show that B(g) is a weakly Galois algebra with
Galois group U(g). In fact, by Theorem 3.6, B(g) is separable over Reg, so B(g) is an
Azumaya algebra over Z. Hence B(g) is a finitely generated projective module over Z
(= (B(g))U(g)), and the map f : B(g)⊗Z (B(g))o −→ HomZ(B(g), B(g)) is an isomorphism
([3], Theorem 3.4, page 52) where (B(g))o is the opposite algebra of B(g), f(a⊗b)(x) = axb
for each a ⊗ b ∈ B(g) ⊗Z (B(g))o and each x ∈ B(g). By denoting the left multipli-
cation map with a ∈ B(g) by al and the right multiplication map with b ∈ B(g) by
br, f(a ⊗ b)(x) = axb = (albr)(x). Since B(g) = ⊕∑

k∈K(g) egJk, B(g) ⊗Z (B(g))o ∼=∑
k∈K(g)(B(g))l(Jk)r. Observing that (Jk)r = (Jk)lk

−1
where k = kL ∈ U(g) = K(g)/L,

we have that B(g) ⊗Z (B(g))o ∼= ∑
k∈K(g)(B(g))l(Jk)r =

∑
k∈K(g)(B(g))l(Jk)lk

−1
=∑

k∈K(g)(B(g)Jk)lk
−1

. Moreover, since B(g) = ⊕∑
h∈K(g) egJh and egeh = eg for each h ∈

K(g), B(g)Jk = ⊕∑
h∈K(g) egJhJk = ⊕∑

h∈K(g) egehJhk = ⊕∑
h∈K(g) egJhk = B(g) for

each k ∈ K(g). Therefore B(g)⊗Z (B(g))o ∼= ∑
k∈K(g)(B(g)Jk)lk

−1
=

∑
k∈K(g)(B(g))lk

−1

= (B(g))lU(g). Consequently (B(g))lU(g) ∼= HomZ(B(g), B(g)). This completes the proof.

Corollary 4.3.
By keeping the notations of Theorem 4.2, B =

∑
g∈G B(g), a sum of central weakly Galois

algebras.

Proof. Since B is a Galois algebra with Galois group G, B = ⊕∑
g∈G Jg ([5], Theorem

1). But B(g) is generated by {Jh |h ∈ S(g)} which contains Jg, so Jg ⊂ B(g) for each g ∈ G.
Thus B =

∑
g∈G B(g) such that B(g) is a central weakly Galois algebra by Theorem 4.2.

We recall that a Galois extension A with Galois group G is called an Azumaya Galois
extension if AG is an Azumaya algebra over CG where C is the center of A. We define a
weakly Galois extension A with Galois group G a weakly Azumaya Galois extension if AG

is an Azumaya algebra over CG. As a consequence of Theorem 4.2, B(g)(B(g))K(g) can be
shown to be a weakly Azumaya Galois extension with Galois group U(g).

Corollary 4.4.(
B(g)

)
(egB)K(g) is a weakly Azumaya Galois extension of (egB)K(g) with Galois group

U(g) = K(g)/L.

Proof. By Theorem 4.2, (B(g))lU(g) ∼= HomZ(B(g), B(g)), so

(
(B(g))(egB)K(g)

)
l
U(g) ∼= HomZ(B(g), B(g))(egB)K(g)

∼= HomZ(B(g), B(g)) ⊗Z (egB)K(g)

∼= Hom(egB)K(g)(B(g) ⊗Z (egB)K(g), B(g) ⊗Z (egB)K(g)).
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Moreover, by the proof of Theorem 3.6, B(g) and (egB)K(g) are Azumaya algebras over Z,
so it is easy to see that

(
B(g)

)
(egB)K(g) ∼= B(g)⊗Z (egB)K(g) which is a finitely generated

projective module over (egB)K(g). Thus
(
B(g)

)
(egB)K(g) is a weakly Azumaya Galois

extension of (egB)K(g) with Galois group U(g) = K(g)/L.

Next we characterize a Galois extension B(g) with Galois group U(g).

Theorem 4.5.
The following statements are equivalent:
(1) B(g) is a central Galois algebra with Galois group U(g).
(2) B(g) is a Galois extension with Galois group U(g).
(3) J (B(g))

k
= ⊕∑

l∈L egJkl for each k ∈ U(g).

Proof. (1) =⇒ (2) is clear.

(2) =⇒ (1) is a consequence of Lemma 4.1.

(1) =⇒ (3) Let B(g) be a central Galois algebra with Galois group U(g). Then B(g) =
⊕∑

k∈U(g) J
(B(g))

k
([5], Theorem 1). Next it is easy to check that ⊕∑

l∈L egJkl ⊂ J
(B(g))

k
for each k ∈ K(g). But B(g) = ⊕∑

k∈K(g) egJk by Theorem 3.4, so ⊕∑
k∈K(g) egJk =

⊕∑
k∈U(g) J

(B(g))

k
(by Lemma 3.3) such that ⊕∑

l∈L egJkl ⊂ J
(B(g))

k
. Thus J (B(g))

k
=

⊕∑
l∈L egJkl for each k ∈ U(g).

(3) =⇒ (1) Since J (B(g))

k
= ⊕∑

l∈L egJkl for each k ∈ U(g),

B(g) = ⊕
∑

k∈K(g)

egJk = ⊕
∑

k∈U(g)

J
(B(g))

k
.

Moreover, by Lemma 4.1, (B(g))K(g) = Z, so U(g) is an Z-automorphism group of B(g).
But then it is well known that J (B(g))

k
J

(B(g))

k
−1 = Z for each k ∈ U(g). Thus B(g) is a central

Galois algebra with Galois group U(g) ([4], Theorem 1) for B(g) is an Azumaya algebra
over Z by Theorem 3.6.

5. A ONE-TO-ONE CORRESPONDENCE

In this section we shall establish a one-to-one correspondence between the set of alge-
bras {B(g) | g ∈ G} and the set of subgroups {K(g) | g ∈ G}, and give three remarkable
characterizations of a Galois extension due to the first author.

Lemma 5.1.
Let α : eg −→ K(g). Then α is a bijection between {eg | g ∈ G} and {K(g) | g ∈ G}.

Proof. Assume that K(g) = K(h) for some g, h ∈ G. Since h ∈ K(h), h ∈ K(g). Hence
eg = egeh by Lemma 3.5. Similarly, eh = egeh. Thus eg = eh; and so α is one-to-one.
Clearly, α is onto. Therefore α is a bijection.

Lemma 5.2.
Let β : eg −→ B(g). Then β is a bijection between {eg | g ∈ G} and {B(g) | g ∈ G}.

Proof. Assume that B(g) = B(h) for some g, h ∈ G. If B(g) = B(h) = {0}, then
eg = 0 = eh. If B(g) = B(h) �= {0}, noting that eg ∈ egC = egJ1 ⊂ ⊕∑

k∈K(g) egJk = B(g)
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by Theorem 3.4, we have that eg is the identity of B(g) and eh is the identity of B(h). Hence
eg = eh. Thus β is one-to-one. Clearly, β is onto. Therefore β is a bijection.

Lemma 5.1 and Lemma 5.2 imply a one-to-one correspondence between {B(g) | g ∈ G}
and {K(g) | g ∈ G}.

Theorem 5.3.
Let φ : K(g) −→ B(g). Then φ is a bijection between {K(g) | g ∈ G} and {B(g) | g ∈ G}.

Proof. By Lemma 5.1 and Lemma 5.2, φ = βα−1 is a bijection.

We conclude the present paper with two interesting equivalent conditions for a Galois
extension of a ring and a characterization of a Galois extension of a field. Let L be a ring
with a finite automorphism group G, K = LG, and R the endomorphism ring of the right
K-module L. Then L can be regarded as a two-sided R-K-module. For each a ∈ L, denote
by a the mapping x −→ ax (x ∈ L). Then a is an endomorphism of LK , i.e., a ∈ R, and
the mapping a −→ a an isomorphism from L into R. Let L be the image of L by this
isomorphism. Let σ be any element in G. Then σ is in R, because (ax)σ = aσxσ = aσx for
every a ∈ L and x ∈ K. Moreover, we have (σa)b = σ(ab) = (ab)σ = aσbσ = (aσσ)b for
any a, b ∈ L, which shows that σa = aσσ for any a ∈ L and in particular σL = Lσ. Now L
is called a Galois extension of K relative to G if the right K-module L is finitely generated
and projective and R =

∑
σ∈G ⊕σL. Thus, without using the crossed product of L and G

with trivial factor set, a Galois extension is characterized.

Theorem A.
The following are equivalent:
A. L is a Galois extension of K relative to G.
B. There exist x1, · · · , xn; y1, · · · , yn in L such that

n∑
i=1

xiy
σ
i =

{
1, if σ = 1
0, if σ �= 1.

Proof. First we prove that A implies B: Assume A. Then LK is finitely generated
and projective, which means the existence of finite number of xi ∈ L and homomorphism
φi : LK −→ KK (i = 1, 2, . . . , n) such that

∑n
i=1 xiφi(x) = x for all x ∈ L. Since K ⊂ L,

each φi is an endomorphism of LK , i.e., φi ∈ R. Then the above equality can be written
as (

∑n
i=1 xiφi)x = x for all x ∈ L. But this means the following equality:

∑n
i=1 xiφi = 1.

Since R =
∑

σ∈G σL by assumption A, each φi can be expressed as φi =
∑

σ∈G σyi,σ with
yi,σ ∈ L (1 ≤ i ≤ n, σ ∈ G). On the other hand, since φix ∈ K for every x ∈ L, it follows
that φix = τ(φix) = (τφi)x for every τ ∈ G and x ∈ L and hence φi = τφi =

∑
σ∈G τσyi,σ

for every τ ∈ G. Since R is a direct sum of σL (σ ∈ G), this implies that yi,τσ = yi,σ

for every σ, τ in G and hence yi,σ is independent of σ and depends only on i. Therefore
we can write yi = yi,σ for every σ, so that we have φi = (

∑
σ∈G σ)yi. It follows then

1 =
∑n

i=1 xiφi =
∑n

i=1 xi(
∑

σ∈G σ)yi =
∑

σ∈G(
∑n

i=1 xiyσ
i )σ. From this we can conclude

that 1 =
∑n

i=1 xiyi and 0 =
∑n

i=1 xiy
σ
i if σ �= 1.

Next we assume B. Let φi = (
∑

σ∈G σ)yi for each i (1 ≤ i ≤ n). Then φi is in R and
satisfies

∑n
i=1 xiφi =

∑n
i=1 xi(

∑
σ∈G σ)yi =

∑
σ∈G(

∑n
i=1 xiyσ

i )σ = 1. This implies that∑n
i=1 xiφi(x) =

∑n
i=1 xi(φix) = (

∑n
i=1 xiφi)x = x for every x ∈ L. Moreover, φi(x) =

(
∑

σ∈G σ)(yix) for every x ∈ L and so for any τ ∈ G we have φi(x)τ = τ(
∑

σ∈G σ)(yix) =
(
∑

σ∈G τσ)(yix) = (
∑

σ∈G σ)(yix) whence φi(x)τ = φi(x) for every x ∈ L and τ ∈ G. Thus
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we know that φi(x) is in LG = K for every x ∈ L, i.e., φi is a homomorphism LK −→ KK

and therefore LK is finitely generated and projective.
Let α be any endomorphism of LK , i.e., α ∈ R. Then we have (

∑n
i=1 αxiφi)x =∑n

i=1 αxiφi(x) =
∑n

i=1(αxi)φi(x). But φi(x) ∈ K, we have

n∑
i=1

(αxi)φi(x) =
n∑

i=1

α(xiφi(x)) = α
n∑

i=1

xiφi(x) = αx.

Thus we have
∑n

i=1 αxiφi = α. Since φi ∈ ∑
σ∈G σL, this means that α ∈ ∑

σ∈G σL.
Therefore we know that R =

∑
σ∈G σL. Let

∑
σ∈G aσσ be any linear combination of σ ∈ G

with aσ ∈ L. Then for each τ ∈ G we have
∑n

i=1(
∑

σ∈G aσσxi)yτ
i =

∑n
i=1(

∑
σ∈G aσx

σ
i )yτ

i

=
∑

σ∈G aσ

∑n
i=1 x

σ
i y

τ
i =

∑
σ∈G aσ(

∑n
i=1 xiy

τσ−1

i )σ = aτ because

n∑
i=1

xiy
τσ−1

i =
{

1, if σ = τ
0, if σ �= τ.

Therefore if
∑

σ∈G aσσ = 0, then it follows aτ = 0 for every τ ∈ G, which shows that R is
a direct sum of Lσ = σL, i.e., R =

∑
σ∈G ⊕σL. Thus L is a Galois extension of K relative

to G.

Next, consider L as a left K-module and let S be the endomorphism ring of KL. Then
L can be regarded as a two-sided K-S-module. For each a ∈ L, denote by a the mapping
x −→ xa (x ∈ L). Then a is an endomorphism of KL, i.e., a ∈ S, and the mapping a −→ a
an isomorphism from L into S. Let L be the image of L by this isomorphism, so that L
(∼= L) is a subring of S and aσ = σaσ for each σ ∈ G and a ∈ L. Now L is called a
left Galois extension of K relative to G if L as a left K-module is finitely generated and
projective and S =

∑
σ∈G ⊕σL. Then it can be shown that a left Galois extension and a

Galois extension are the same.

Theorem B.
The following are equivalent:
A. L is a Galois extension of K relative to G.
Al. L is a left Galois extension of K relative to G.

Proof. First we prove that Al implies A: Assume Al. Then KL is finitely generated
and projective, i.e., there exist finite number of yi ∈ L and homomorphism ψi :KL −→KK
(i = 1, 2, . . . , n) such that

∑n
i=1 ψi(x)yi = x for all x ∈ L. But since K ⊂ L, each ψi is an

endomorphism of KL, i.e., ψi ∈ S. Then we have x
∑n

i=1 ψiyi
=

∑n
i=1 ψi(x)yi = x for all

x ∈ L, which shows that
∑n

i=1 ψiyi
= 1. On the other hand, each ψi is in S =

∑
σ∈G σL

and therefore it is expressed as ψi =
∑

σ∈G xi,σσ with xi,σ ∈ L (1 ≤ i ≤ n, σ ∈ G). Since
xψi = ψi(x) ∈ K for every i and x ∈ L, we have that x(ψiτ) = ψi(x)τ = ψi(x) = xψi

for every i, τ ∈ G and x ∈ L, and thus ψiτ = ψi for every i and τ ∈ G. But since
ψiτ =

∑
σ∈G xi,σστ for every τ ∈ G and S is a direct sum of σL (σ ∈ G), we know that

xi,τσ = xi,σ for every i and σ, τ in G and therefore xi,σ is independent of σ ∈ G, which
means that if we put xi = xi,1 then xi = xi,σ for every σ ∈ G. Thus we have ψi = xi

∑
σ∈G σ

and therefore

1 =
n∑

i=1

ψiyi
=

n∑
i=1

xi(
∑
σ∈G

σ)y
i
=

∑
σ∈G

σ

n∑
i=1

(xσ
i yi

) =
∑
σ∈G

σ

n∑
i=1

xσ
i yi.
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Since S is a direct sum of σL (σ ∈ G), it follows that
∑n

i=1 x
σ
i yi =

{
1, ifσ = 1
0, if σ �= 1 and

therefore
∑n

i=1 xiy
σ
i = (

∑n
i=1 x

σ−1

i yi)σ =
{

1, if σ = 1
0, if σ �= 1. Thus the condition B of Theorem

A holds. Therefore by Theorem A we have the condition A.

Next we want to prove that A implies Al: Assume A. Then by Theorem A, there exist
x1, · · · , xn; y1, · · · , yn in L such that

n∑
i=1

xiy
σ
i =

{
1, if σ = 1
0, if σ �= 1.

Then we have
n∑

i=1

xσ
i yi = (

n∑
i=1

xiy
σ−1

i )σ =
{

1, if σ = 1
0, if σ �= 1.

Let ψi = xi

∑
σ∈G σ for each i (1 ≤ i ≤ n). Then ψi is in S and satisfies

∑n
i=1 ψiyi

=∑n
i=1 xi(

∑
σ∈G σ)y

i
=

∑
σ∈G σ

∑n
i=1 x

σ
i yi

= 1. Therefore we have

n∑
i=1

ψi(x)yi =
n∑

i=1

(xψi)yi = x

n∑
i=1

ψiyi
= x for every x ∈ L.

Furthermore, ψi(x)τ = (xψi)τ = (xxi

∑
σ∈G σ)τ = x(xi

∑
σ∈G στ) = xxi

∑
σ∈G σ = xψi =

ψi(x) for every x ∈ L and τ ∈ G and this implies that ψi(x) is in LG = K for every x ∈ L
and thus ψi is a homomorphism KL −→KK. This shows that KL is finitely generated and
projective.

The rest part of the proof is similar to the proof for the implication B =⇒ A of
Theorem A. Namely, let β be any endomorphism of KL, i.e., β ∈ S. Then we have
x(

∑n
i=1 ψiyiβ) =

∑n
i=1 ψi(x)(yiβ) = (

∑n
i=1 ψi(x)yi)β = xβ for every x ∈ L, and thus

we know that
∑n

i=1 ψiyiβ = β. Since ψi ∈ ∑
σ∈G σL, it follows that β ∈ ∑

σ∈G σL,
which shows that S =

∑
σ∈G σL. Next let

∑
σ∈G σaσ be any linear combination of σ ∈ G

with coefficients aσ ∈ L. Then we have, for each τ ∈ G,
∑n

i=1 x
τ
i (yi(

∑
σ∈G σaσ)) =∑n

i=1 x
τ
i

∑
σ∈G y

σ
i aσ =

∑
σ∈G(

∑n
i=1 x

τ
i y

σ
i )aσ =

∑
σ∈G(

∑n
i=1 x

τσ−1

i yi)σaσ = aτ because∑n
i=1 x

τσ−1

i yi = 1 if σ = τ and = 0 if σ �= τ . Therefore it follows that
∑

σ∈G σaσ = 0,
then aσ = 0 for every σ ∈ G. Thus we know that S is a direct sum of σL (σ ∈ G), i.e.,
S =

∑
σ∈G ⊕σL. This completes the proof of our theorem.

Theorem C.
Let L be a (commutative) field and G a finite group of automorphism of L and let K = LG.
Then K is a subfield of L and [L : K] = n, where n is the order of G, and moreover L is a
Galois extension of K relative to G.

Proof. I. First we prove that [L : K] = n. Let a be any element of L and let
G(a) = {σ ∈ G | aσ = a}. Then G(a) is a subgroup of G. Let n(a) = (G : G(a)).
Then n(a)

∣∣n whence n(a) ≤ n. Let σ, τ be in G. Then aσ = aτ if and only if aστ−1
=

a, i.e., στ−1 ∈ G(a), i.e., G(a)σ = G(a)τ . Let σ1, σ2, . . . , σn(a) be in G such that
G(a)σ1, G(a)σ2, . . . , G(a)σn(a) are all distinct right cosets of G mod G(a). Then for each
σ ∈ G G(a)σ1σ, G(a)σ2σ, . . . , G(a)σn(a)σ are all distinct right cosets of G mod G(a).
Consider now a polynomial f(x) = (x − aσ1)(x − aσ2) · · · (x − aσn(a)) over L. Then for
each σ ∈ G we have f(x)σ = (x − aσ1σ)(x − aσ2σ) · · · (x − aσn(a)σ) = f(x). Therefore
f(x) is a polynomial over K and of degree n(a). Let G(a)σe = G(a), i.e., σe ∈ G(a).
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Then aσe = a. This implies that f(a) = 0. Let g(x) be a polynomial over K such that
g(a) = 0. Then we have g(aσ1) = g(a)σ1 = 0. Therefore g(x) = (x − aσ1)g1(x) with a
polynomial g1(x) over L. Next we have (aσ2 − aσ1)g1(aσ2) = g(aσ2) = g(a)σ2 = 0. But
aσ1 �= aσ2 , i.e., aσ2 −aσ1 �= 0, we have that g1(aσ2) = 0 and therefore g1(x) = (x−aσ2)g2(x)
with a polynomial g2(x) over L. Thus we have g(x) = (x − aσ1)(x − aσ2)g2(x). Simi-
larly, by considering σ2, . . . , σn(a), we have a polynomial gn(a)(x) over L such that g(x) =
(x−aσ1)(x−aσ2 ) · · · (x−aσn(a))gn(a)(x) = f(x)gn(a)(x). Thus f(x) is a minimal polynomial
of a over k, which shows that [K(a) : K] = n(a) and a is separable over K for every a ∈ L.

Now since n(a) ≤ n for every a ∈ L, we can choose u ∈ L such that n(u) is maximal,
i.e., n(a) ≤ n(u) for every a ∈ L. Let a be any element of L, and consider K(a, u). Then
K(a, u) is a finite whence separable extension of K, and therefore as is well known there
exists a b ∈ L such that K(b) = K(a, u). It follows that K(u) ⊂ K(b) whence n(u) ≤ n(b).
But the maximality of n(u) implies that n(u) = n(b) whence K(u) = K(b). Thus we know
that a ∈ K(u) for every a ∈ L, which means that L = K(u) and so [L : K] = n(u). Let
now σ be any element of G(u). Then uσ = u whence aσ = a for every a ∈ L, i.e., σ is the
identity automorphism. Thus we know that n(u) = n and so [L : K] = n.

By using this we shall prove
II. L is a Galois extension of K relative to G: First L is a finite extension of K, LK

is finitely generated. Next since K is a field, every K-module and in particular LK is
projective. Let R be the endomorphism ring of LK and we regard L as a left R-module.
For each l ∈ L, we denote by l the mapping x �−→ lx (x ∈ L). Then l is an endomorphism
of LK , and the mapping l �−→ l is a ring isomorphism of L into R. We denote by L the
image of L by this isomorphism. Similarly we denote by K the image of the subfield K
of L. Now let α be any endomorphism of LK , i.e., α ∈ R. Let a and l be any elements
of K and L respectively. Then by using the commutativity of the field L we have (aα)l =
a(αl) = a(αl) = (αl)a = α(la) = α(al) = α(al) = (αa)l, which shows that aα = αa, i.e., a
is whence K is in the center of R.

Let (l1l2 . . . ln) be any vector of length n with li (i = 1, 2, . . . , n) in L and α an endo-
morphism of LK . Then we define

α(l1 l2 . . . ln) = (αl1 αl2 . . . αln).

Let β be another endomorphism of LK . Then we can see that

αβ(l1 l2 . . . ln) = (αβl1 αβl2 . . . αβln)
= α(βl1 βl2 . . . βln)
= α(β(l1 l2 . . . ln)).

Let u1, u2, . . . , un be a linearly independent basis of LK . Let α be an endomorphism of LK .
Then for each j, αuj is expressed as αuj =

∑
uiaij with aij ∈ K. Then if we put A as the

n×nmatrix whose (i, j)-component is aij , we have (αu1 αu2 . . . αun) = (u1 u2 . . . un)A.
Since u1, u2, . . . , un are linearly independent over K, A is uniquely determined by α. Thus
by associating α with A we have a mapping ϕ from R into the set [K]n of all n×n matrices
over K. Let conversely A be an n × n matrix over K. Let l be any element of L. Then

l = (u1 u2 . . . un)

⎛
⎜⎜⎜⎝
c1
c2
...
cn

⎞
⎟⎟⎟⎠ with a unique vector

⎛
⎜⎜⎜⎝
c1
c2
...
cn

⎞
⎟⎟⎟⎠ in K. Then by associating l with
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(u1 u2 . . . un)A

⎛
⎜⎜⎜⎝
c1
c2
...
cn

⎞
⎟⎟⎟⎠ we have an endomorphism α. Since u1 = (u1 u2 . . . un)

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ ,

u2 = (u1 u2 . . . un)

⎛
⎜⎜⎜⎝

0
1
...
0

⎞
⎟⎟⎟⎠ , . . . , un = (u1 u2 . . . un)

⎛
⎜⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎟⎠ , we know that

(αu1 αu2 . . . αun) = (u1 u2 . . . un)A

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞
⎟⎟⎟⎠

= (u1 u2 . . . un)A.

This shows that ϕ is a mapping fromR onto [K]n. Let α, β be inR and let ϕ(α) = A, ϕ(β) =
B, i.e., α(u1 u2 . . . un) = (u1 u2 . . . un)A, β(u1 u2 . . . un) = (u1 u2 . . . un)B.
Assume ϕ(α) = ϕ(β), i.e., A = B. Then it follows that

α(u1 u2 . . . un) = β(u1 u2 . . . un).

Since u1, u2, . . . , un are basis of LK , this implies that α = β. Thus we know that ϕ is a
one-to-one mapping from R onto [K]n. Let again α, β be in R and let ϕ(α) = A, ϕ(β) = B.
Then

(α+ β)(u1 u2 . . . un) = α(u1 u2 . . . un) + β(u1 u2 . . . un)
= (u1 u2 . . . un)A+ (u1 u2 . . . un)B
= (u1 u2 . . . un)(A+B).

Thus ϕ(α+ β) = A+B. Furthermore,

(αβ)(u1 u2 . . . un) = α(β(u1 u2 . . . un)) = α
(
(u1 u2 . . . un)B

)
= α(u1 u2 . . . un)B = (u1 u2 . . . un)AB,

which shows that ϕ(αβ) = AB. Therefore ϕ is a ring isomorphism from R onto [K]n. Let
a be any element of K. Then

a(u1 u2 . . . un) = (au1 au2 . . . aun) = (u1a u2a . . . una)
= (u1 u2 . . . un)aE

where E is the identity matrix, i.e., the n×nmatrix whose (i, i)-components (1 ≤ i ≤ n) are
1 and other components are all 0. Thus we know that ϕ(a) = aE whence ϕ(K) = KE. Let
for each pair (i, j) with 1 ≤ i, j ≤ n Eij be the n×n matrix whose (i, j)-component is 1 and
other components are all 0. Then each A ∈ [K]n whose (i, j)-component is aij (∈ K) can
be expressed as A =

∑
aijEij . This implies that Eij (1 ≤ i, j ≤ n) are linearly independent

basis of [K]n over K. Thus the dimension of [K]n over K is n2. Since aA = aEA for
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every a ∈ K and A ∈ [K]n, this implies that
[
[K]n : KE

]
= n2. Therefore we know that

[R : K] = n2.
Let σ be any element of G. Then σ is in R, because (lk)σ = lσkσ = lσk for every l ∈ L

and k ∈ K. Moreover, we have (σ)l′ = σ(ll′) = (ll′)σ = lσl′σ = (lσσ)l′ for every l, l′ ∈ L,
which shows that σl = lσσ for any l ∈ L and in particular σL = Lσ. Therefore Lσ can be
regarded as a two-sided L-module LLσL. Let τ be another element of G such that Lσ and
Lτ are isomorphic as two-sided L-modules. Let µ be the isomorphism and µ(σ) = aτ with
a ∈ L (a �= 0 because σ �= 0). Then for every l ∈ L µ(σl) = aτl = alττ . But since σl = lσσ,
we also have µ(σl) = lσaτ . It follows then that alτ = lσa whence lτ = lσ for every l ∈ L,
i.e., σ = τ .

Now, since L is a field, the left L-module LL is simple and therefore the two-sided L-
module LLσL is simple for every σ ∈ G. Let σ1, σ2, . . . , σn be all distinct elements of
G. Then if i �= j, the corresponding L(Lσi)L and L(Lσj)L are not isomorphic. Consider
now S = Lσ1 + Lσ2 + · · · + Lσn. Then S is a two-sided L-submodule of R. We want
to show that S = Lσ1 ⊕ Lσ2 ⊕ · · · ⊕ Lσn. For the proof, consider first Lσ1 ∩ Lσ2. If
Lσ1 ∩Lσ2 �= 0, then this is a non-zero submodule of Lσ1 and Lσ2. But since both L(Lσ1)L

and L(Lσ2)L are simple, it follows that Lσ1 ∩ Lσ2 is equal to Lσ1 and to Lσ2 whence
Lσ1 = Lσ2. But this contradicts to that σ1 �= σ2. Thus we have that Lσ1∩Lσ2 = 0 whence
Lσ1 + Lσ2 = Lσ1 ⊕ Lσ2. Consider next Sr = Lσ1 + Lσ2 + · · · + Lσr with 1 < r < n and
assume that Sr = Lσ1 ⊕ Lσ2 ⊕ · · · ⊕ Lσr. Let Pi (i = 1, 2, . . . , r) be the projection from
Sr to Lσi. Now suppose Sr ∩ Lσr+1 �= 0. Then since this is a non-zero submodule of the
simple two-sided module Lσr+1, this coincides with Lσr+1, i.e., Lσr+1 ⊂ Sr. Then there
must be a Pi such that Pi maps Lσr+1 isomorphically onto Lσi. Then this contradicts to
that σi �= σr+1. Thus Sr ∩ Lσr+1 = 0 whence Sr + Lσr+1 = Sr ⊕ Lσr+1. By applying this
for r = 2, . . . , n− 1 we know that S = Lσ1 ⊕ Lσ2 ⊕ · · · ⊕ Lσn.

Since we have proved that [L : K] = n in I and LLσi
∼=L L for every i (1 ≤ i ≤ n), it

follows that [Lσi : K] = n and therefore [S : K] = n2. But since S is a K-submodule of R
and we proved that [R : K] = n2, we can conclude that R = S =

∑
σ∈G Lσ, which shows

that L is a Galois extension of K relative to G.
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