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ABSTRACT. Let B be a ring with 1 and C the center of B. It is shown that if B is a
Galois algebra over R with a finite Galois group G, J, = {b € B|bz = g(z)b for all
x € B} for each g € G, and e4 an idempotent in C such that BJ; = Beg, then the
algebra B(g) generated by {J, |h € G and e;, = ¢4} for an g € G is a separable algebra
over Rey and a central weakly Galois algebra with Galois group K(g) generated by
{h € G|en = e4}. Moreover, {B(g)|g € G} and {K(g)|g € G} are in a one-to-one
correspondence, and three characterizations of a Galois extension are also given.

1. INTRODUCTION

The Boolean algebra of the idempotents in a commutative Galois algebra plays an
important role ([2],[9]). For a noncommutative Galois algebra B over a commutative ring
R with a finite Galois group G and center C, and J; = {b € B|bx = g(z)b for all z € B}
for each ¢ € G, it was shown that BJ; = Be, for some central idempotent e, (€ C) for
any g € G ([5]). We note that the central idempotent ey is uniquely determined by g in
G. To see this, let e be a central idempotent of B. Then the mapping b — be (b € B)
defines a ring epimorphism B — Be because (b+ b')e = be + b’e and (bb')e = (be)(b'e) for
every b, b’ € B. Thus, as the image of 1, e is the identity of the subring Be. Therefore if f
is another central idempotent of B such that Be = Bf, then f is also the identity of Be,
and so we know that e = f. Hence, in particular, if f is a central idempotent such that
BJ, = Bf, i.e.,, Be, = Bf, then it follows that f = e;. Let B, be the Boolean algebra
generated by {0,e4|g € G}. Then a structure theorem for B was given by using B, ([6])
and the subalgebra & 3" i ;) Jg Was investigated where K (1) = {h € G|e, = 1} ([8]). We
note that B is a central Galois algebra with Galois group G if and only if K (1) = G. Let
S(g) ={h € Gle, = ey} for each g € G. Then S(1) = K(1), but S(g) is not a subgroup of
G for any e4 # 1 ([7]). Denote the subgroup generated by the elements in S(g) by K(g). The
purpose of the present paper is to investigate a more general class of algebras B(g) generated
by {Jn|h € S(g)} for an g € G. The major results are (1) B(g) = ® > e () €glks (2)
B(g) is a separable algebra over Reg, (3) B(g) is a central weakly Galois algebra with Galois
group K (g) where a weakly Galois algebra is in the sense of [9], and (4) there exists a one-
to-one correspondence between the set of algebras {B(g) | g € G} and the set of subgroups
{K(g9)|g € G}. Thus B = >  ; B(g) such that B(g) is a central weakly Galois algebra
with Galois group K (g) for each g € G. Three remarkable characterizations of a Galois
extension in section 5 were given by the first author. This paper was written under the
support of a Caterpillar Fellowship at Bradley University. The authors would like to thank
Caterpillar Inc. for the support.
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2. BASIC NOTATIONS AND DEFINITIONS

Throughout this paper, B will represent a ring with 1 and G a finite automorphism
group of B. We keep the definitions of a Galois extension, a Galois algebra, a central Galois
algebra, a separable extension, and an Azumaya algebra as defined in ([6]).

From now on, let B be a Galois algebra over a commutative ring R with a finite Galois
group G, C the center of B, J;, = {b € B|bx = g(x)b for all x € B} for cach g € G, ¢,
a central idempotent in C' such that BJ, = Bey ([5]), S(g) = {h € G|er = ez} for each
g € G, K(g) the subgroup of G generated by {h|h € S(g)}, B(g) the algebra contained
in B generated by {J;, |h € S(g)} for each g € G, and Jg(A) = {a € Alax = g(z)a for
all z € A} for a subring A of B. A weakly Galois extension A with Galois group G is a
finitely generated projective right module A over A“ such that 4;G = Hom 4c (A, A) where
A; = {ay, the left multiplication map by a € A} and (a;9)(x) = ag(x) for each a; € 4; and
x € A ([9]). We call A a weakly Galois algebra with Galois group G if A is a weakly Galois
extension with Galois group G such that A% is contained in the center of A and that A is
a central weakly Galois algebra with Galois group G if A is a weakly Galois extension with
Galois group G such that A® is the center of A. An Azumaya Galois extension A with
Galois group G is a Galois extension A of A which is a C%-Azumaya algebra where C is
the center of A ([1]). We call A an Azumaya weakly Galois extension with Galois group
G if it is a weakly Galois extension of A which is a C%-Azumaya algebra where C' is the
center of A.

3. THE SEPARABLE ALGEBRA B(g)

Let g € G and B(g) the algebra generated by {J |h € S(g)}. Keeping the notations in
section 2, we shall show that B(g) = &> ¢ (,) €9k and that B(g) is a separable algebra
over Rey. We begin with some lemmas.

Lemma 3.1.
Let G(g) = {h € G| h(eg) =e4}. Then K(g) is a normal subgroup of G(g).

Proof. Clearly, G(g) is a subgroup of G. Next, let k£ € S(g). Then e, = ey; and so
k(eg) = k(ex) = epgr—1 = ex = e4. Hence k € G(g). Thus S(g9) C G(g). But K(g) is
the subgroup generated by the elements in S(g) by the definition of K(g), so K(g) is a
subgroup of G(g). Next we show K (g) is a normal subgroup of G(g). For any h € G(g)
and k € S(g), we have that ej,—1 = h(ex) = hleg) = eg4, so hkh™! € S(g). Clearly,
k=! € S(g) if k € S(g). Hence for any k € K(g), k = kiks - - - ky, for some integer m and
some k; € S(g), i = 1,2,---,m. Thus, for any h € G(g), hkh™ = h(kiks---kpn)h™t =
(hkih=Y)(hkoh=1) - (hk,,h~') € K(g). Therefore hK(g)h~! C K(g) for any h € G(g).
This proves that K(g) is a normal subgroup of G(g).

Lemma 3.2.
Beg is a separable algebra over Re.

Proof. Since B is a Galois algebra over R, B is a separable algebra over R. Hence Be,
is a separable algebra over Re, ([3], Proposition 1.11, page 46).

Lemma 3.3.
For each h € G(g), J,SBGQ) =egJh.

Proof. See Lemma 3.3 in [6].
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Theorem 3.4.
B(g) = @ X her(q) o7k
Proof. Since B(g) is generated by {J, |h € S(g)},

B(g) = {Z(HJ;L), a finite sum of finite products of Jj, for some h € S(g)} .

By Proposition 2 in [5], JyJn = epJpn = egJnn for any h,h' € S(g), so ILJy, = ey Jmy, for
some h € S(g). Hence B(g) = > 1cx(y) €9Jk- But B is a Galois algebra over R with Galois
group G, s0o B= & deg Jg ([5], Theorem 1). Noting that Jj is a C-module, we have that
egJn C Jp for each h € K(g). Thus, the sum is direct, that is, B(g) = ® > ek (,) €9Jk-

Theorem 3.5.
For each k € K(g), exeg = eg.

Proof. We want to prove that

(*) €g1€gy " €gn, = €gy " €g,€g195-gn

for any integer n > 2 and any elements g1, g2, -+, g, of G. Consider now the case
for n = 2. We know by Proposition 2 in [5] that Jg, Jy, = €g,Jg,4,, and so ey, €4, B =
eg. BJg, = BJy Jg, = Beg,Jg g, = €9, BJg, 9. = €g,€4,9,B. Since eq, €4, and ey, eq, 4, are
central idempotents, we have

(1) €g1€g, = €g,€4,9, fOT any g1, g2 € G.

Now assume that (x) is true for an n(> 2) and any ¢1, g2, ---, gn € G. Let g,41 be any
element of G. Then by applying (1) to g1g2 - - - gn and g,41 instead of g1 and go respectively,
we have

(2) €g192-9n€gnt+1 = €gn+1€9192-gngn+1-

Thus we conclude

€g1€gs """ egn)egn+1

€g1€g2 """ €g,Cgn i1 (

= (egy " €g,€g1gs--gn)€gnss Dy the assumption ()
(
(

692 T egn)(eglg2'”g“ eg'”+1)
692 e egn)(egn+1 69192"'9n9n+1) by (2)

= €gy"" " €g,€9,11€9192 GnGgnt1-

This shows by induction that () holds for any n > 2 and any g1, g2, -+, gn € G.

Now assume that hi, ha, ---, hy € S(g) for some integer n, so eg = ep, =e€p, = -+ =
en,- Then eq = egep, h,y...n, by the above result (x). Let L be the set of those elementb of G
which are finite products of elements in S(g). Then clearly L is closed under multiplication.
Since ej, = ej,-1 for any h € G ([5], Proposition 2-(3)), e, = e, = ep-1 for any h € S(g);
and so h~! € S(g). It follows that if h = hihg---h, € L where hy, ha, -+, h, € S(g)
for some integer n, then h=* = b 1... hfl € L. Thus L is a subgroup generated by the
elements in S(g); that is, L = K(g). Therefore, for any element k € K(g), k = h1ha---hy,
where hq, ho, ---, h, € S(g) for some integer n, we have that e, = ege. This completes
the proof.

Next is the main theorem in this section.
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Theorem 3.6.
B(g) is a separable algebra over Re,.

Proof. Since B is a Galois algebra over R with Galois group G, there exists a ¢ € C such
that Trg(c) = 1 by the proof of proposition 5 in [5]. Let {K(g)gi|g: € G,i=1,2,---,m
for some integer m} be the set of the right cosets of K(g) in G and d = >, g;(c). Then
Tri(g)(d) = ZkeK(g) k(d) = ZkEK(g) ZZ’;I kgi(c) = Tra(c) = 1. Hence Trg (4 (degz) =
eqgx for each e,z € (e,B)X (9. Thus the map Try () (d_) : B — (e,B)K9) is a split
bimodule homomorphism over (e, B)%¥). This implies that (e, B)X(9) is a direct summand
of e,B as a bimodule over (e,B)¥(9). On the other hand, e,B is a Galois extension of
(e,B)C9) with Galois group G(g) by Lemma 3.7 in [6], so e,B is a Galois extension of
(e,B)X9) with Galois group K(g) for K(g) is a subgroup of G(g) by Lemma 3.1. Hence
egB is a finitely generated and projective left (or right) module over (e,B)¥ (@), Thus
(egB)K(g) is a separable algebra over Re, by the proof of Theorem 3.8 on page 55 in
[3] because Be, is a separable algebra over Re, by Lemma 3.2. Next, we claim that
Cey C (egB)K9 . In fact, for any ce, € Cey, k € K(g), and @ € Jj, we have that
(ceg)x = x(cey) = k(ceg)z, so (ceq — k(ceg))z = 0. Hence (cey — k(ceq))J = {0}. But
JiJg—1 = exC ([5], Proposition 2), so (cey — k(cey))erC = {0}. By Lemma 3.5, eger, = eg,
so (ceg — k(cey))C = {0}. Thus cey, — k(cey) = 0, that is, k(cey) = cey. This implies that
Ce, C (eyB)K(9). Therefore Ce,, is contained in the center of (e, B)X(9) for Ce,, is contained
in the center of B. Consequently (e, B)%(9) is separable over Ce,, ([3], Proposition 1.12, page
46). Moreover, since Be, is separable over Regy, Be, is an Azumaya algebra over Cey and
Ce is separable over Re, ([3], Theorem 3.8, page 55). Hence Vg, ((e,B)*(9)) is separable
over Cey by the commutator theorem for Azumaya algebras ([3], Theorem 4.3, page 57);
and so it is separable over Re, by the transitivity of separable algebras. But, by Proposition

. Bey
Lin [5], Vae, ((egB)S @) = @ Yycpey I 50 Vie, (e4B) @) = @ ey €9k by
Lemma 3.3. Therefore B(g) (= ® X jcx(g) €9k by Theorem 3.4) is a separable algebra
over Reg.

4. THE CENTRAL WEAKLY GALOIS ALGEBRA B(g)

We recall that an algebra A over a commutative ring R with a finite automorphism
group G is called a weakly Galois extension with Galois group G if A is a finitely generated
projective right A%-module such that A;G = Hom o (A, A) where A; = {a;, the left multi-
plication map by a € A}. We shall show that B(g) is a central weakly Galois algebra with
Galois group U(g) where U(g) = K(g)/L and L = {k € K(g) | k(a) = a for all a € B(g)}.
For each k € K(g), k is denoted as the coset kL € U(g) and k(b) = k(b) for b € B(g).

Lemma 4.1.
(B(9))X@ = Z, the center of B(g).

Proof. Let = be any element in (B(g))*¥@ and b any element in B(g). Then b =
EkeK(g) egbr, where by, € Jy, for each k € K(g) by Theorem 3.4. Hence

bx = Z egbpr = Z egk(x)by = Z eqgxby = Z egbr = xb.

keK(g) keK(g) keK(g) keK(g)

Thus € Z. Therefore (B(g))%9 < Z. Conversely, for any z € Z, k € K(g), and
x € Ji, we have that zz = zz = k(2)z, so (k(z) — 2)x = 0 for any v € J,. Hence
(k(z) — 2)Jx = {0}. Noting that JyJx-1 = exC, we have that (k(z) — z)e,C = {0}. By
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Lemma 3.5, ¢,C = ege,C C exC. Hence (k(z) — z)e,C = {0}, so (k(z) — z)eqg = 0, that is,
k(zeq) = zey. But z is in the center of B(g) and B(g) = @ 3 ¢ (g €9k, 50 z€g = 2. Thus
k(z) =z for any z € Z and k € K(g); and so Z C (B(g))¥.

Theorem 4.2.
B(g) is a central weakly Galois algebra with Galois group U(g), that is, B(g) is a weakly
Galois algebra over its center Z with Galois group U(g).

Proof. By Lemma 4.1, it suffices to show that B(g) is a weakly Galois algebra with
Galois group U(g). In fact, by Theorem 3.6, B(g) is separable over Rey, so B(g) is an
Azumaya algebra over Z. Hence B(g) is a finitely generated projective module over Z
(= (B(g))V@)), and the map f : B(g)®z (B(g))° — Homyz(B(g), B(g)) is an isomorphism
([3], Theorem 3.4, page 52) where (B(g))? is the opposite algebra of B(g), f(a®b)(z) = axb
for each a ® b € B(g) ®z (B(g))° and each x € B(g). By denoting the left multipli-
cation map with a € B(g) by a; and the right multiplication map with b € B(g) by
br, fla®b)(z) = axb = (abr)(z). Since B(g) = ® > ek () €9l Blg) ®z (B(g))” =

> ker(g)(B(9))i(Jr)r. Observing that (Ji), = (Jk)lE71 where k = kL € U(g) = K(g9)/L,

—1
we have that B(g) ®z (B(9))° = Yicr()B@)i(Jk)r = Xier)B@h(Jhik ~ =
ZkeK(g)(B(g)Jk)lEil. Moreover, since B(g) = @ }_j,c (g €9/ and egen = e for each h €
K(9), B(9)Jk = ® Xopek(g) €9InIk = D X per(g) oendnk = @ZheK(g) egJnk = B(g) for

cach k € K(g). Therefore B(g) ®z (B(9))° = X 4c k() (Blg )Jk)lE = ZkeK(g)(B(g))zE_l
= (B(9))1U(g). Consequently (B(g));U(g) = Homz(B(g), B(g)). This completes the proof.

Corollary 4.3.
By keeping the notations of Theorem 4.2, B = dea (9), a sum of central weakly Galois
algebras.

Proof. Since B is a Galois algebra with Galois group G, B =& 3" . Jy ([5], Theorem
1). But B(g) is generated by {J;, | h € S(g)} which contains Jy, so J, C B(g ) foreach g € G.
Thus B =} s B(g) such that B(g) is a central weakly Galois algebra by Theorem 4.2.

We recall that a Galois extension A with Galois group G is called an Azumaya Galois
extension if AY is an Azumaya algebra over C where C is the center of A. We define a
weakly Galois extension A with Galois group G a weakly Azumaya Galois extension if A%
is an Azumaya algebra over C“. As a consequence of Theorem 4.2, B(g)(B(g))¥9) can be
shown to be a weakly Azumaya Galois extension with Galois group U(g).

Corollary 4.4.
(B(9))(egB)K9) is a weakly Azumaya Galois extension of (e,B)X9) with Galois group

Ulg) = K(g)/L.
Proof. By Theorem 4.2, (B(g));U(g) = Homy(B(g), B(g)), so

Homyz(B(g), B(9))(eq B)K(g)
Homy(B(g), B(g)) @z (e,B)K®
Hom,, pyxc) (B(g) ®z (egB) K9 B(g) @z (e,B)K9).

((B(9))(egB)*),U(g)

1%
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Moreover, by the proof of Theorem 3.6, B(g) and (e, B)¥(9) are Azumaya algebras over Z,
so it is easy to see that (B(g))(e,B)X9) = B(g) ®7z (e,B)¥9) which is a finitely generated
projective module over (e,B)X(9). Thus (B(g))(e,B)X@) is a weakly Azumaya Galois
extension of (e, B)X(9) with Galois group U(g) = K(g)/L.

Next we characterize a Galois extension B(g) with Galois group U(g).

Theorem 4.5.

The following statements are equivalent:

(1) B(g) is a central Galois algebra with Galois group U(g).
(2) B(g) is a Galois extension with Galois group U(g).

(3) JéB(g)) =® Y cp, €g it for each k € U(g).
Proof. (1) = (2) is clear.
(2) = (1) is a consequence of Lemma 4.1.

(1) = (3) Let B(g) be a central Galois algebra with Galois group U(g). Then B(g) =
B> Fev(y) JéB(g)) ([5], Theorem 1). Next it is easy to check that &, ; egJu C JéB(g))
for each k € K(g). But B(g) = ® > ;e (g) €9k by Theorem 3.4, so @3 1, €9k =
® Y revig Ko (by Lemma 3.3) such that ® ey g /i C JEE - Thus JPO) =
© D ier g for each k € U(g).

(3) = (1) Since L") =& 37} g for each & € U(y),

B(g) = @ Z egJs = & Z JéB(g)).

keK(g) keU(g)

Moreover, by Lemma 4.1, (B(g))%9) = Z, so U(g) is an Z-automorphism group of B(g).
But then it is well known that JéB(g))Jéi(g)) = Z for each k € U(g). Thus B(g) is a central

Galois algebra with Galois group U(g) ([4], Theorem 1) for B(g) is an Azumaya algebra
over Z by Theorem 3.6.

5. A ONE-TO-ONE CORRESPONDENCE

In this section we shall establish a one-to-one correspondence between the set of alge-
bras {B(g)|g € G} and the set of subgroups {K(g)|g € G}, and give three remarkable
characterizations of a Galois extension due to the first author.

Lemma 5.1.
Let a:eq — K(g). Then « is a bijection between {eq|g € G} and {K(g)|g € G}.

Proof. Assume that K (g) = K(h) for some g,h € G. Since h € K(h), h € K(g). Hence
eg = egep, by Lemma 3.5. Similarly, e, = egep. Thus e, = ep; and so « is one-to-one.
Clearly, « is onto. Therefore a is a bijection.

Lemma 5.2.
Let 3 :eq — B(g). Then [ is a bijection between {e,|g € G} and {B(g)|g € G}.

Proof. Assume that B(g) = B(h) for some g,h € G. If B(g) = B(h) = {0}, then
eg =0=ep. If B(g) = B(h) # {0}, noting that e, € e,C = egJ1 C B3 4y €9k = B(9)
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by Theorem 3.4, we have that e, is the identity of B(g) and ey, is the identity of B(h). Hence
eg = ep. Thus 3 is one-to-one. Clearly, 3 is onto. Therefore 3 is a bijection.

Lemma 5.1 and Lemma 5.2 imply a one-to-one correspondence between {B(g)|g € G}
and {K(g)|g € G}.

Theorem 5.3.
Let ¢ : K(g) — B(g). Then ¢ is a bijection between {K(g)|g € G} and {B(g) | g € G}.

Proof. By Lemma 5.1 and Lemma 5.2, ¢ = Ba~! is a bijection.

We conclude the present paper with two interesting equivalent conditions for a Galois
extension of a ring and a characterization of a Galois extension of a field. Let L be a ring
with a finite automorphism group G, K = L% and R the endomorphism ring of the right
K-module L. Then L can be regarded as a two-sided R-K-module. For each a € L, denote
by @ the mapping © — ax (z € L). Then @ is an endomorphism of Lk, i.e., @ € R, and
the mapping a — @ an isomorphism from L into R. Let L be the image of L by this
isomorphism. Let o be any element in G. Then ¢ is in R, because (ax)? = a’z’ = a’x for
every a € L and x € K. Moreover, we have (ca)b = o(ab) = (ab)? = a°b° = (a°0)b for
any a,b € L, which shows that 0@ = a%¢ for any a € L and in particular oL = Lo. Now L
is called a Galois extension of K relative to G if the right K-module L is finitely generated
and projective and R = ®o L. Thus, without using the crossed product of L and G
with trivial factor set, a Galois extension is characterized.

Theorem A.

The following are equivalent:

A. L is a Galois extension of K relative to G.

B. There exist x1,--+ ,%n; Y1, ,Yn in L such that

z":x}[,_ 1, ifo=1
— Wi TV0, ifo#£l

Proof. First we prove that A implies B: Assume A. Then Ly is finitely generated
and projective, which means the existence of finite number of z; € L and homomorphism
¢i : Ly — Kg (i =1,2,...,n) such that " | @;¢;(z) = z for all z € L. Since K C L,
each ¢; is an endomorphism of Ly, i.e., ¢; € R. Then the above equality can be written
as (31| Ti¢i)x = x for all z € L. But this means the following equality: Y . T;¢; = 1.
Since R = ) . oL by assumption A, each ¢; can be expressed as ¢; = > . 0Y; , With
Yio € L (1 <i<n,o€G). On the other hand, since ¢;z € K for every = € L, it follows
that ¢,z = 7(dsx) = (7¢;)x for every 7 € G and x € L and hence ¢; = 7¢; = Y, 70T, »
for every 7 € G. Since R is a direct sum of oL (¢ € G), this implies that y; ;o0 = ¥Yio
for every o, 7 in G and hence y; , is independent of o and depends only on 7. Therefore
we can write y; = y; o, for every o, so that we have ¢; = (3> ., 0)7;. It follows then
1=3" 1T = >0 1 Ti(Xpeq )i = Yovea(>iy Tiy?)o. From this we can conclude
that 1 =Y 1" @y, and 0= > a;y7 if 0 # 1.

Next we assume B. Let ¢; = (3, 0)y; for each i (1 <4 <n). Then ¢; is in R and
satisfies Y0 | Ty = >0 1 Ti(D,eq 0V = >opec(Xoiey Tiyd)o = 1. This implies that
S widi(x) = Yo xi(¢ir) = (Y Tudi)r = x for every x € L. Moreover, ¢;(z) =
(> e o) (yix) for every x € L and so for any 7 € G we have ¢;(z)” = 7(>_,cq 0)(yix) =
(X pea o) Wiz) = (D e o) (Wix) whence ¢;(x)” = ¢i(x) for every x € L and 7 € G. Thus
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we know that ¢;(z) is in L¢ = K for every € L, i.e., ¢; is a homomorphism Lx — K
and therefore Ly is finitely generated and projective.

Let a be any endomorphism of Lk, i.e., « € R. Then we have (Y} ., az;id;)z =
S amigi(x) =Y (axz;)¢i(z). But ¢(z) € K, we have

n n n
Z ax; ¢l Z o xz(bz = azxi¢i(x) = azx.
i=1 =1 =1

Thus we have !  @%;¢; = . Since ¢; € Y. . 0L, this means that « € >, 0L.
Therefore we know that R =Y _, 0L. Let >, @,0 be any linear combination of o € G
with a; € L. Then for each 7 € G we have 1" | (3", cqTooxi)y] = >0 1 (O seq ot )y

-1
= Yoeq o 2y BTY] = Y peq ae (3o iyl )7 = ar because
Z T . 1, ifo=r1
W7 =0 o4t

Therefore if ) . a@y0 = 0, then it follows a, = 0 for every 7 € G, which shows that R is

a direct sum of Lo = oL, i.e., R=3 ., ®0oL. Thus L is a Galois extension of K relative
to G.

Next, consider L as a left K-module and let S be the endomorphism ring of x L. Then
L can be regarded as a two-sided K-S-module. For each a € L, denote by a the mapping
x — za (x € L). Then a is an endomorphism of kL, i.e., a € S, and the mapping a — a
an isomorphism from L into S. Let L be the image of L by this isomorphism, so that L
(2 L) is a subring of S and a0 = oa? for each ¢ € G and a € L. Now L is called a
left Galois extension of K relative to G if L as a left K-module is finitely generated and
projective and S =}, ®cL. Then it can be shown that a left Galois extension and a
Galois extension are the same.

Theorem B.

The following are equivalent:

A. L is a Galois extension of K relative to G.

A;. L is a left Galois extension of K relative to G.

Proof. First we prove that A; implies A: Assume A;. Then gL is finitely generated
and projective, i.e., there exist finite number of y; € L and homomorphism ¢; :x L. — g K
(i=1,2,...,n) such that > I, 9;(z)y; = z for all z € L. But since K C L, each v; is an
endomorphism of kL, i.e., ¢; € S. Then we have 23 " | ¢y, = >, i(x)y; = « for all
x € L, which shows that Y ., @[Jigi = 1. On the other hand, each v; isin S =} _.0oL
and therefore it is expressed as ¥, = > 5 2; ,0 with z;, € L (1 <i <n, 0 € G). Since
z); = Yi(z) € K for every i and @ € L, we have that z(¢;7) = ¢;(z)7 = ¥;(z) = i,
for every i, 7 € G and x € L, and thus ¥;7 = v; for every ¢ and 7 € G. But since
UiT = Y geq i 0T for every 7 € G and S is a direct sum of oL (0 € G), we know that
Ziro = Tjo for every ¢ and o, 7 in G and therefore z; , is independent of o0 € G, which
means that if we put z; = x; 1 then z; = x; , for every 0 € G. Thus we have ¢; =z, .0
and therefore

1= Zd}iﬂi = Z%(Z o)y, = Z Jz(ﬂﬂi) = Z sz Yi-
i=1 i=1

ceG ceG i=1 oceG =1
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1, ifo=1

0, ifo£1

Since S is a direct sum of oL (0 € G), it follows that Y. | 27y; = {

therefore Z?:l xiyf e (Z?:l x?_lyi)o = { g-)’ i Z: :é } Thus the condition B of Theorem

A holds. Therefore by Theorem A we have the condition A.

Next we want to prove that A implies A;: Assume A. Then by Theorem A, there exist
T1,° " s Tn; Y1, »Yn in L such that

2": .1, ifo=1
‘_lmi_ 0, ifo#1.
Then we have
” . ” oo 1, ifo=1
Setu= (w7 ={4 o7
=1 =1

Let ¢y = 2; > ,cq 0 for each i (1 < i < n). Then v; is in S and satisfies Y, , Yiy, =
i1 2, (e )Y, = 2ogec @ 2oimy 27y, = 1. Therefore we have

n n

ZW(“U)% = Z(Wﬁl)yl = xZW% =z for every x € L.
i=1

=1 =1

Furthermore, ;(z)” = (045)7 = (12,5 e ) = 22, X pe 07) = 22, e 0 = 25 =
() for every € L and 7 € G and this implies that 1;(x) is in L = K for every z € L
and thus v; is a homomorphism gL — i K. This shows that i L is finitely generated and
projective.

The rest part of the proof is similar to the proof for the implication B = A of
Theorem A. Namely, let 0 be any endomorphism of gL, i.e., § € S. Then we have
(X0 i) = Y0, (@) (yiB) = (1, Yu(@)y)8 = B for every @ € L, and thus
we know that Y7 8 = 8. Since ¢ € Y, .;0L, it follows that 3 € Y 0L,
which shows that S = > _.oL. Next let ) .. o0a, be any linear combination of o € G
with coefficients a, € L. Then we have, for each 7 € G, Y1 27 (4i(X,cq0a,)) =

S 2] Y e ¥ e = Loea(Xim 2790)00 = Xpea(Xiy a77 4i)7a, = a; because
Py x{‘flyi =1if o =7 and = 0 if 0 # 7. Therefore it follows that > __.,o0a, = 0,
then a, = 0 for every o € G. Thus we know that S is a direct sum of oL (o € G), i.e.,
S =73 ,cc ®oL. This completes the proof of our theorem.

Theorem C.

Let L be a (commutative) field and G a finite group of automorphism of L and let K = LE.
Then K is a subfield of L and [L : K] = n, where n is the order of G, and moreover L is a
Galois extension of K relative to G.

Proof. 1. First we prove that [L : K] = n. Let a be any element of L and let
G(a) = {0 € Gla° = a}. Then G(a) is a subgroup of G. Let n(a) = (G : G(a)).
Then n(a)‘n whence n(a) < n. Let 0,7 be in G. Then a” = " if and only if a®T =
a, ie., ot! € G(a), ie., G(a)o = G(a)r. Let 01,09, ..., On(a) be in G such that
G(a)oy, G(a)oa, ..., G(a)oy(q are all distinct right cosets of G mod G(a). Then for each
o € G G(a)oyo, G(a)oao, ..., G(a)oyq)o are all distinct right cosets of G mod G(a).
Consider now a polynomial f(z) = (x —a”)(z — a®)---(z — a” @) over L. Then for
each ¢ € G we have f(2)? = (v —a”%)(z — a”?7)---(x — a""@%) = f(x). Therefore
f(z) is a polynomial over K and of degree n(a). Let G(a)o. = G(a), i.e., o € G(a).
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Then a = a. This implies that f(a) = 0. Let g(x) be a polynomial over K such that
g(a) = 0. Then we have g(a') = g(a)?* = 0. Therefore g(z) = (z — a’)g1(x) with a
polynomial g;(z) over L. Next we have (a2 — a%)g1(a®?) = g(a®?) = g(a)?? = 0. But
a’ #a% ie., a’ —a% # 0, we have that g1 (a "2) = 0 and therefore g1 () = (x —a?)ga2(z)
with a polynomial go(x) over L. Thus we have g(z) = (z — a”)(x — a”?)g2(z). Simi-
larly, by considering o3, ..., 0p(q), We have a polynomial g,,,)(x) over L such that g(z) =
(x—a)(x—a?) - (x—a")gpa)(x) = [(T)gn(a)(x). Thus f(z) is a minimal polynomial
of a over k, which shows that [K(a) : K] = n(a) and «a is separable over K for every a € L.

Now since n(a) < n for every a € L, we can choose u € L such that n(u) is maximal,
ie., n(a) < n(u) for every a € L. Let a be any element of L, and consider K (a,u). Then
K (a,u) is a finite whence separable extension of K, and therefore as is well known there
exists a b € L such that K(b) = K(a,u). It follows that K(u) C K(b) whence n(u) < n(b).
But the maximality of n(u) implies that n(u) = n(b) whence K (u) = K (b). Thus we know
that a € K(u) for every a € L, which means that L = K(u) and so [L : K| = n(u). Let
now o be any element of G(u). Then u” = u whence a” = a for every a € L, i.e., o is the
identity automorphism. Thus we know that n(u) =n and so [L : K] = n.

By using this we shall prove

II. L is a Galois extension of K relative to GG: First L is a finite extension of K, Ly
is finitely generated. Next since K is a field, every K-module and in particular Ly is
projective. Let R be the endomorphism ring of Lk and we regard L as a left R-module.
For each [ € L, we denote by [ the mapping x — [z (x € L). Then [ is an endomorphism
of Lk, and the mapping | — [ is a ring isomorphism of L into R. We denote by L the
image of L by this isomorphism. Similarly we denote by K the image of the subfield K
of L. Now let a be any endomorphism of Ly, i.e., « € R. Let a and [ be any elements
of K and L respectively. Then by using the commutativity of the field L we have (aa)l =
a(al) = a(al) = (ad)a = a(la) = a(al) = a(al) = («a)l, which shows that aa = aa, i.e., a
is whence K is in the center of R.

Let (l1l2...1,) be any vector of length n with ; (i = 1,2,...,n) in L and « an endo-
morphism of Lx. Then we define

Ot(ll l2 ln):(all O[lQ Oéln)

Let 8 be another endomorphism of L. Then we can see that

af(ly lo ... 1) = (afly afls ... afly,)
a(Bly Bla ... Bl,)

Let uy, us, ..., u, be alinearly independent basis of L. Let o be an endomorphism of L.
Then for each J, auj is expressed as au; = Y u;a;; with a;; € K. Then if we put A as the
nxn matrix whose (i, j)-component is a;;, we have (au; aus ... oup) = (ur u2 ... uy)A.
Since uq, ug, - .., uy, are linearly independent over K, A is uniquely determined by a. Thus
by associating « with A we have a mapping ¢ from R into the set [K],, of all n x n matrices
over K. Let conversely A be an n X n matrix over K. Let [ be any element of L. Then
C1 C1
C2 C2
I=(ur w2 ... uy)| . with a unique vector | . in K. Then by associating [ with
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C1 1
Co 0
(up ug ... up)A| . we have an endomorphism «. Since u; = (u1 uz ... uyp) ,
Cn 0
0 0
1 0
ug = (ug ug ... uy) | . ooy Uy = (U1 u2 ... Up) | . , we know that
0 1
10 0
0 1 0
(ui aug ... aup) = (u1 uz ... up)4 .
0 0 1
= (U1 u ... un)A

This shows that ¢ is a mapping from R onto [K],. Let o, 3 bein R and let p(a) = A, p(8) =
B ie, alur uz ... up)=(u1 uz ... up)A, flur uz ... up)=(ur u2 ... uy)B.
Assume p(a) = ¢(0), i.e., A= B. Then it follows that

alur ue ... up)=pFr us ... up).

Since u1, ug, ..., u, are basis of Lg, this implies that « = 3. Thus we know that ¢ is a
one-to-one mapping from R onto [K],. Let again «, 8 be in R and let p(a) = A, p(8) = B.
Then

(a+08)(ur uo ... un) = alur us ... up)+PBur us ... uy)
up ug ... up)A+(ur u2 ... u,)B
up uz ... up)(A+ B).

Thus ¢(a+ ) = A+ B. Furthermore,

(af)(ur uz ... un) = a(Bur vz ... up))=a((ur vz ... un)B)
= ofur u2 ... up)B=(u1 us ... up)AB,

which shows that ¢(a3) = AB. Therefore ¢ is a ring isomorphism from R onto [K],. Let
a be any element of K. Then

a(ur ua ... up) = (aur aus ... aup) = (wia usa ... una)

= (U1 ug ... un)aE

where E is the identity matrix, i.e., the n x n matrix whose (4, 7)-components (1 < i < n) are
1 and other components are all 0. Thus we know that ¢(@) = aE whence ¢(K) = KE. Let
for each pair (7, 7) with 1 <4, j < n E;; be the n x n matrix whose (7, j)-component is 1 and
other components are all 0. Then each A € [K], whose (i, j)-component is a;; (€ K) can
be expressed as A = > a,;F;;. This implies that E;; (1 <4, j < n) are linearly independent
basis of [K], over K. Thus the dimension of [K], over K is n?. Since aA = aFA for
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every a € K and A € [K],, this implies that [[K], : KE] = n?®. Therefore we know that
[R: K| =n?

Let o be any element of G. Then ¢ is in R, because (Ik)° =17k =19k for every | € L
and k € K. Moreover, we have (o)’ = o(ll") = (I"')? =1°1'7 = (l_‘7 ) for every I,1I' € L,
which shows that ol = [°¢ for any | € L and in particular 0L = Lo. Therefore Lo can be
regarded as a two-sided L-module LLO'L. Let 7 be another element of G such that Lo and
L7 are isomorphic as two-sided L-modules. Let u be the isomorphism and u(o) = @r with
a € L (a # 0 because o # 0). Then for every | € L u(ol) = arl = al™r. But since ol = [70
we also have u(ol) = I°ar. It follows then that al™ = [%a whence |7 = [ for every | € L,
ie,o=r.

Now, since L is a field, the left L-module ff is simple and therefore the two-sided L-
module LfaL is simple for every ¢ € G. Let o1, 02, ..., 0, be all distinct elements of
G. Then if i # j, the correbpondmg +(Lo;)r and 1(Lo;)t are not isomorphic. Consider
now S = Loy + Loy + -+ + Lan Then S is a two-sided L-submodule of R. We want
to show that S = Loy @ Loy @ --- @ Lo,,. For the proof, consider first Loy N Loo. If
Loi1N Loy # 0, then this is a non-zero submodule of Loy and Los. But since both (Lol)
and (Lag)f are simple, it follows that Loy N Lo is equal to Loy, and to Lo whence
Loy = Loy. But this contradicts to that o # 09. Thus we have that LoyNLos = 0 whence
Loy + Loy = Loy @ Loy. Consider next S, = Loy + Los + -+ + Lo, with 1 < r < n and
assume that S, = Loy ® Loy @ -+ @ Lo,. Let P; (i = 1,2,...,r) be the projection from
S, to Lo;. Now suppose S, N Lo,,1 # 0. Then since this is a non-zero submodule of the
simple two-sided module IO—T+1, this coincides with ZJTH, ie., IO—T+1 C Sy. Then there
must be a P; such that P; maps Lo, 41 isomorphically onto Lo;. Then this contradicts to
that o; ;é or+1- Thus S, N LO’T_H = 0 whence S, + LO’T_H =5 ® Lar+1 By applying this
forr=2,...,n—1 we know that S = Loy @ Los @ - -- @ Lo,,.

Since we have proved that [L : K| =nin I and $Lo; 24 L for every i (1 <14 < n), it
follows that [Lo; : K| = n and therefore [S : K] = n%. But since S is a K-submodule of R
and we proved that [R : K] = n?, we can conclude that R = S = Y _ Lo, which shows
that L is a Galois extension of K relative to G.
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