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K-THEORY OF THE PULLBACK AND PUSHOUT C*-ALGEBRAS

TAKAHIRO SUDO

Received April 13, 2006

ABSTRACT. We study K-theory of the pullback C*-algebras and the pushout C*-
algebras such as amalgams of C*-algebras and balanced tensor products of C*-algebras,
and obtain that their K-groups are isomorphic under the reasonable assumptions on
their *-homomorphisms.

Introduction In the C*-algebra theory, K-theory has played an important and useful role
in some topics of C*-algebras such as classification theory for amenable (or nuclear) C*-
algebras, extension theory and isomorphism problems such as the classification of irrational
rotation C*-algebras and the full or reduced C*-algebras of free groups (see Rgrdam [5],
Davidson [2] and Wegge-Olsen [6]). On the other hand, some functorial methods of con-
structing examples of C*-algebras such as the pullback construction of C*-algebras and
the pushout construction of C*-algebras such as (universal) amalgamated free products (or
amalgams) of C*-algebras and (balanced) tensor products of C*-algebras have been well
studied (see Pedersen [3] (a survey) and [4]).

In this paper we study K-theory of the pullback C*-algebras and the pushout C*-
algebras such as amalgams of C*-algebras and balanced tensor products of C*-algebras,
and obtain that their K-groups are isomorphic under some reasonable assumptions on their
s-homomorphisms. For this purpose, in Section 1 we first review about the pullback C*-
algebras and the pushout C*-algebras and their successive construction from Pedersen [3]
(and [4]). In Section 2 we include a formula for K-groups of (universal) amalgamated
free products of C*-algebras under an assumption for *-homomorphisms of common C*-
subalgebras to have (inverse) retractions (i.e., surjective #-homomorphisms) ¢from Black-
adar [1] with our modified proof, while the case for full free products of C*-algebras is first
considered by J. Cuntz. Using this formula extensively we obtain a number of formulas
for K-groups of successive amalgams and balanced tensor products of C*-algebras through
K-groups of their associated pullback C*-algebras. To define the associated pullback C*-
algebras we need to assume that the x-homomorphisms from common C*-subalgebras in
the successive amalgams and balanced tensor products have (inverse) retractions.

See [1] and [6] for the details about K-theory of C*-algebras, and see [3] for the details
about the pullback and pushout constructions for C*-algebras.

C*-algebras of

1 The pullback and pushout C*-algebras

Pullbacks For C*-algebras 2, 8B, €, suppose that there exist *-homomorphisms a; : A — €,
ag B — €. Then their pullback C*-algebra denoted by 2 ®¢ 9B is defined by

ADe B = {(a,b) € AD B |a1(a) = az(b)}.
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We have the following diagram:
ADe B —2— B

a [

A e
where p1, p2 are the canonical projections.

Now consider the commutative case. Let X,Y,Z be compact Hausdorff spaces and

C(X),C(Y),C(Z) the C*-algebras of continuous functions on them respectively. Suppose
that there exist continuous maps f: Z — X, g : Z — Y. Then the pullback C*-algebra
C(X)®c(z)C(Y) corresponds to the space X Uz Y obtained from the disjoint union X UY
by identifying f(Z) and ¢g(Z).
Amalgams Let 2,98 be C*-algebras. Assume that there exists a common C*-subalgebra
¢ of A and B with embeddings 1 : € — A, ps : € — B. Then as their pushout C*-algebra
we define the (universal) amalgamated free product (or amalgam) of 2, B over €, denoted
by Axe B, to be the quotient C*-algebra of the (universal) free product C*-algebra A B of
A, B by the closed ideal generated by the set {pu1(c) — p2(c) | ¢ € €}. We have the following
diagram:

€ H2

ml lid%

o g x¢ B

where idg, idgs are the canonical inclusions.

Balanced tensor products Let 2,8 be unital C*-algebras. Assume that there exists
a common C*-subalgebra € of 2 and 8 with embeddings p; : € — A, ps : € — B.
Then as another version of their pushout C*-algebra we define the balanced tensor product
C*-algebra of 2, B over €, denoted by 2 ®¢ B, to be the quotient C*-algebra of the
(maximal) tensor product C*-algebra 2 ® B of 2, B by the closed ideal generated by the
set {p1(c) — pa(c) | c € €}. We have the following diagram:

LN

ml lid%

A L A e B

where idg,idgs are the canonical inclusions. We may take nonunital 2, 95 if not use this
diagram.
If we have continuous maps f: X — Z, g: Y — Z, then the space X Xz Y defined by

XxzY ={(z,y) € X xY | f(z) =g(y)}

corresponds to C(X) ®¢(z) C(Y) (or C(X) x¢(z) C(Y)).

Successive construction Let 2 @¢ B be a pullback C*-algebra and ©, E be C*-algebras.
Suppose that there exist x-homomorphisms f; : € — E, 35 : ® — E. Then we can define
the extension of 51 by the same symbol 81 : A B¢ B — E. Thus, we can define the pullback
C*-algebra (A @¢ B) &g D such that

ABeB)dopD® —L— D

| |

ADe B LE
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where p1, p2 are the canonical projections. Moreover,
AP B)PrD Y (ADED) Degro (BDE D).

Let A x¢ B be an amalgam C*-algebra and ©, E be C*-algebras. Suppose that there
exist *-homomorphisms 11 : E — &€, vy : E — . Then we can define the extension of
vy by the same symbol v1 : E — A x¢ B. Thus, we can define the amalgam C*-algebra
(A ¢ B) *g D such that

V1 J/ J/id@
id
Axe B —— (AxeB)*pD
where id, idg are the canonical inclusions. Moreover,

(Axe B) kg D X2 (Axp D) *¢upyo (BxpD).

Let A®¢ B be a balanced tensor product C*-algebra and ©, E be C*-algebras. Suppose
that there exist #-homomorphisms v; : £ — €, vy : E — . Then we can define the
extension of vy by the same symbol v; : E — 2A ®¢ B. Thus, we can define the balanced
tensor product C*-algebra (U ®¢ B) @ g ©. Moreover,

AReB) D= (ARED) egpo (BRED).

Furthermore, under the successive assumptions on *-homomorphisms involved we can
construct an n-successive pullback C*-algebra as follows:

(- (% DB, A2) Do, Az) - -+) Des,_, An

where ; (1 < j < n), B; (1 <j < n—1)are C*-algebras, and we assume that there
exist *-homomorphisms: a; : %y — By, a; : A — B (2<j5<n), G :B; — B
(1<j<n-2).

Also, we can construct an n-successive amalgam C*-algebra:

(- (A1 *p, Aa) *m, Az) -+ ) *m,_, Any

where ; (1 < j < n), B; (1 <j < n—1) are C*-algebras, and we assume that there
exist *-homomorphisms: pq : B1 — Ay, p; :B; = Aj11 2<j<n—-1),v;: B — Bj
(1<j<n-2).

Similarly, we can construct an n-successive balanced tensor product C*-algebra:

(- (U ®p, Ag) @, As) -+ ) O, _, Any

where ; (1 < j <n), B; (1 <j <n-—1)are C*-algebras, and we assume that there
exist *-homomorphisms: pq : B1 — Ay, p; 0 B; = A1 2<j<n—-1),v;: B — Bj
(1<j<n-2).

2 K-theory

Let 2, B be C*-algebras. Let € be a common C*-subalgebra of 2 and B with em-
beddings p1 : € — A, us 1 € — B. Let A *p B be the amalgam of A, B over €. Let
t1 2 A = Axg B, 1o 1 B — Axg B be the natural injective x-homomorphisms. Suppose
that there exist retractions (i.e., surjective *-homomorphisms) 1 : % — € and ro : B — €
satisfying r1 oy = ide and 190 g = ide. Let A@¢ B be the pullback C*-algebra associated
with r1,ro defined by

ADe B = {(a,b) e AD B |ri(a) =ra2(b)}.
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Theorem 2.1 (Blackadar [1, 10.11.11]) Let A *¢ B be the amalgamated free product of C*-
algebras A, B over a common C*-subalgebra € with retractions r1,7r5 to €, and A e B be
the associated pull back C*-algebra. Then

Proof. Define the map r : A®¢ B — € by r(a,b) =r1(a) =72(b) € Candlet i : € — Axe B
be the canonical inclusion. Define the map g by the following composition:

g ADe B —— € —— Ak B.

Let k: Axe B — A Pe B be the map induced by setting
k(a) = (a,r1(a)) for a € A and k(b) = (r2(b),b) for b € B

and using the universal property of 2 ¢ B. Define [ : A D¢ B — Ma(U ¢ B) (the 2 x 2
matrix algebra over Ax¢B) by f(a,b) = a®b the diagonal sum. Then we have the following
composition:

(1®k)of:ADcB ., Mo (U +¢ B) LN My (A B¢ B),

(1 k)o flab) = (<a,r6<a)> - b)) = (a,1(a)) & (ra(b), ),

and this homomorphism is homotopic to lgg,.s @ (ko g) by conjugation by the unitaries
(1agy(20) D ue), where

w (cos(ﬂ't/Q) —sin(ﬂ't/Z))
¢ sin(wt/2)  cos(wt/2) ]’

Indeed, (k 0 g)(a,b) = k(r1(a)) = (r1(a),r1(r1(a))) = (r1(a), r2(b)) and

(a,0) @ (kog)(a,b)
= (a, Tl(a 2(0)) = (a @ ri(a)) ® (b D ra(h))

(0 (@) © (O ol > € My(2) @ Ma(B),
(Lary ) ®ur)((@a®ri(a),b® r2(b))(Lagy ) S uy)

= (a®r1(a)) ® ur(b @ r2(b))u]
= (a®7r1(a)) ® (r2(b) @ b) € M2(A) ® Ma(B).

Hence, it follows that k. o f. — k. o g« is the identity map on the K-groups K, (2 @¢ B) of
Ade B (j =0,1). Also we have the following composition:
hi=fok:UAseB — s ABe B —L s My(Use B),

which is homotopic to hg = lgx,.m @ (g o k) via the path of homomorphisms h; defined by
hi(a) = a®ri(a) = (f o k)(a), hi(b) = uy((b® r2(b))uy. Indeed, (g o k)(a) = g(a,r1(a)) =
ri(a) = ra(ri(a)) and (g o k)(b) = g(r2(b),b) = r2(b) = r1(r2(b)) and

ho(a) =a&ri(a), ho(b) =b®ra((b),

ur(b® ra(b))ui = r2(b) ® b= (f o k)(b)

Thus, it follows that f. o k. — g« o k. is the identity map on the K-groups K;(2 *¢ B) of
A *¢ B (] = 0,1).
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Therefore, we conclude that k. : K;(Axe B) — K;(APe B) is an isomorphism with its
inverse fx — g« (j =0,1). o

Remark. If € = {0}, then we can take the retractions 71, r2 as zero ones, and Ax¢ B = AxB
the free product C*-algebra of 2, B. Moreover, for j =0, 1,

Furthermore,

Theorem 2.2 We have the following splitting exact sequence:

0 —— K;(€) Y2 pe o) @ K(B) 272 K (A ke B) —— 0.

Proof. By Mayer-Vietoris sequence for K-theory, the following sequence:

0 —— Kj(e) M Kj(Ql)@Kj(%) Rl LN Kj(QlEB¢%) -0

is exact and splitting ([1, 10.11.11]). O

Corollary 2.3 We have
KA xe B) = (K;(A) © K;(B))/K;5(€) (5=0,1).

Exactly by the same way as Theorem 2.1, under an additional assumption on commu-
tativity we obtain

Theorem 2.4 Let A ®¢ B be the balanced tensor product C*-algebra of unital C*-algebras
A, B over a common nonzero unital C*-subalgebra € with retractions r1,rs to €, and AP B
be the associated pull back C*-algebra defined as above. Assume that € commutes with A
and B and has the same unit with them. Then

Kj(A®eB) = K;Ade B) (j=0,1).

Proof. Since 2, B are unital, they are assumed to be C*-subalgebras of A®¢B viaa = a®1
andb=1®bforacAand beB. Sincea®b=(a®1)(1®db) =(1®d)(a®1) and we
need to have that the following elements:

(a,71(a))(r2(b),0) = (arz(b),r1(a)b),  (r2(b),b) = (a,r1(a)) = (r2(b)a, bri(a))

are equal to define the map &’ corresponding to the map % in the proof of Theorem 2.1,
from which we need to assume that € commutes with 2 and 9. Also, € can not be zero
since if € is zero, k'(1 ® 1) = (1,0) and k(1 ® 1) = (0,1). Thus, ¥’ is not well-defined.
If ¢ is unital and nonzero, k¥'(1 ® 1) = (1,71(1)) and k¥'(1 ® 1) = (r2(1),1), Thus, to have
(1,71(1)) = (r2(1),1) we need to assume that € has the same unit with 2, 9B. O

Corollary 2.5 Under the same assumption as above we have

K;j(@®cB) = (K;() & K;(B))/K;(€) (j=0,1).
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Theorem 2.6 Let A x¢ B be the amalgam of C*-algebras A, B over a common C*-
subalgebra € with retractions r1,rs to €, and A e B be the associated pullback C*-algebra
defined as above. Let (Ax¢B)*xgD be the successive amalgam defined above for C*-algebras
D, € with retractions s1 : Ax¢ B — E, s9: D — E, and (A x¢ B) D D be the associated
pullback C*-algebra. Then for j =0,1,

Kj(Axe B) x5 D) = [((K;(A) @ K;(B))/K;(¢) & K;(D)]/K;(E)
= K;j(ADeB) O D)

where (A D¢ B) Dr D is the successive pullback C*-algebra associated with r1,7r9 and s1, sa.

Proof. Using Theorem 2.1 and Corollary 2.3 we compute

Ki(AxeB)*xp D) X K;j(Axe B) P D)
= [K;j(A+eB) @ K;(D)]/K;(E)
= [K;j(Ade B) ® K;(D)]/K;(E)
= [((K; (%) © K;(B))/K;(€)) & K;(D)]/ K (E).

On the other hand, using Mayer-Vietoris sequence repeatedly we obtain

K;j(AdeB) DpD) = [K;(ADe B) ® K;(D)]/K;(E)
= [((K;(2) @ K;())/K;(Q) & K;(D)]/K;(E).

Similarly, using Theorem 2.4 and Corollary 2.5 we obtain

Theorem 2.7 Let A ®¢ B be the balanced tensor product C*-algebra of unital C*-algebras
A, B over a common nonzero unital C*-subalgebra € with retractions r1,r2 to €, and AD B
be the associated pullback C*-algebra defined as above. Let (A®¢B) @D be the successive
balanced tensor product C*-algebra defined in Section 1 for unital C*-algebras ®, E with
retractions s1: A Re B — F, s9: D — F, and (A R¢ B) Dp D be the associated pullback
C*-algebra. Assume that € commutes with A and B, and E commutes with A Q¢ B and
®. Then for j =0,1,

K;j(A®eB) 0p D) = [((K;@) ® K;(B))/K;(€) ® K;(9)]/K,;(E)
2 Ki(A®eB) P D)

where (A D¢ B) DD is the successive pullback C*-algebra associated with 1,79 and s1, 2.

Theorem 2.8 Let 2 be the n-successive pullback C*-algebra as follows:

A= (- (A O, A2) O, A3) ) O, _, An

n—1

where A; (1 < 5 <mn), B; (1 <j<n-—1) are C*-algebras, and we assume that there
exist x-homomorphisms: a1 : %1 — By, o : A; — B4 2<j5<n), 5 :B;, - B,n
(1<j<n-=2). Then for j =0,1,

K(2) = (- (G () DK (A2)) /K (B1)) 0K (U3)) / K (B2)) - - - )BK;(An)) / K (Br—1).

Proof. We use the Mayer-Vietoris sequence for K-theory repeatedly. O
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Theorem 2.9 Let 2 be the n-successive amalgam C*-algebra as follows:
2= ( o ((9’[1 *98, QLQ) *9B, 2[3) t ) *%B,_, an

where 2A; (1 <j<n),B; (1 <j<n-—1) are C*-algebras, and we assume that there exist
s-homomorphisms: p1 @ B1 — A1, puj B, — Aj11 (2<j<n-1),v;: Bj1 — B,
(1 < j < n-—2). Suppose that there exist retractions 11 : A1 — By, rj + A; — B
2<j<n)ands;j:B; — By (1 <j<n-—2). Let P be the associated n-bullback
C*-algebra as follows: P = (--- (21 ®w, A2) Bm, A3)---) Pn,,_, An. Then for j =0,1,

K;(2) = K;(P)
(- (G () © K3 (A2))/ K;(B1)) © K;j(U3))/ K;(B2)) -+ ) @ K;j (%)) /Kj(Br—1).

Corollary 2.10 Let 2 be the n-successive amalgam C*-algebra as follows:

n—1

IR

Q[Z (((Q[l *CQ[Q) *Cng)---)*(ci’ln
> Ay ke Ay xc -+ - xc Ay, (n-fold unital free product)

where A; (1 < j < n) are unital C*-algebras. Suppose that there exist retractions rj : A; —
C (1 <j<mn). Let P be the associated n-bullback C*-algebra as follows:

P=( (A &cAs) Oc AU3) -+ ) Bc An.

Then
Ko(2) = Ko(P)
= (- (Ko (2h) @ Ko(RA2))/Z) ® Ko(A3))/Z) -+ ) © Ko(An))/Z,  and
Ki(A) =2 Ki(P)ZKi(U) @ Ki1(™A2) @ K1 (™A3) @ --- @ K1(Ay,).
Proof. Note that Ky(C) 2 Z and K;(C) 0. O

Remark. In the theorem above, if B; =0 (1 < j <n—1), then
A2 A % Ag k- x A, (n-fold free product),
P2 oA @ ---dA, (n-direct sum),

and K;() =2 K;(P) 2 K;(A) e K;() & --- & K;(A,) for j =0,1.
Theorem 2.11 Let A be the n-successive balanced tensor product C*-algebra as follows:

A= (- (A p, A2) D, A3) -+ ) Dp,,_, An

where A; (1 <j<mn), B; (1 <j<n-—1) are nonzero unital C*-algebras, and we assume
that there exist x-homomorphisms: (1 : B1 — A1, pj : B; — A 2 <7 <n-1),
vi t Bit — B; (1 < j < n—2). Suppose that there exist retractions ri : Ay — By,
rj: A =B, 2<j<n)ands;: B; — B (1<j<n—2). Let P be the associated
n-bullback C*-algebra as follows: P = (--- (%1 @, A2) Om, A3) ) Dy, _, An. Assume
that B; (1 <j <mn-—1) commute with A;11 and

(- (U ®p, Az) @, As) -+ +) @, A
and have the same units with them. Then for j =0,1,

K;(A) = K;(P)
= (- ((((KG (M) @ K;(A2))/ K;(B1)) © K (U3)) /K (B2)) -+ ) & K;j(U)) /K (Br—1).
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Corollary 2.12 Let 2 be the n-successive balanced tensor product C*-algebra as follows:

A= (- ((% @A) ®c A3)-+) Bc Ap
> A Rc U2 R¢ -+ - @¢c A, (n-fold unital tensor product)

where A; (1 < j < n) are unital C*-algebras. Suppose that there exist retractions rj : A; —
C (1 <j<mn). Let P be the associated n-bullback C*-algebra as follows:

P=(- (A ScU) BcU3)---) Bc Un.
Then

Ko(2A) = Ko(P)
= (( (((Ko(1) @ Ko(™2))/Z) @ Ko(3))/Z) -+ ) © Ko(™%n))/Z, and
Ki() =K (P) =K ()@ K1(A2) @ K1(A3) @ --- ® K1 (AUp).

Remark. In the theorem above, if B; =0 (1 < j <n —1), then

Ax2A A2 ®--- @2, (n-fold tensor product),
P e @ @A, (n-direct sum),

but K;(A) 2 K;(P) =2 K;(24) & K;(™2) & --- & K;(,) for j = 0,1 in general. For
instance, if A; = C (1 < j <n), then A= C and Ko(2A) = Z but Ko(P) = ©}_4Z. See [1]
for Kiinneth Theorem for K-groups of tensor products of C*-algebras.
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