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K-THEORY OF THE PULLBACK AND PUSHOUT C∗-ALGEBRAS
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Abstract. We study K-theory of the pullback C∗-algebras and the pushout C∗-
algebras such as amalgams of C∗-algebras and balanced tensor products of C∗-algebras,
and obtain that their K-groups are isomorphic under the reasonable assumptions on
their ∗-homomorphisms.

Introduction In the C∗-algebra theory, K-theory has played an important and useful role
in some topics of C∗-algebras such as classification theory for amenable (or nuclear) C∗-
algebras, extension theory and isomorphism problems such as the classification of irrational
rotation C∗-algebras and the full or reduced C∗-algebras of free groups (see Rørdam [5],
Davidson [2] and Wegge-Olsen [6]). On the other hand, some functorial methods of con-
structing examples of C∗-algebras such as the pullback construction of C∗-algebras and
the pushout construction of C∗-algebras such as (universal) amalgamated free products (or
amalgams) of C∗-algebras and (balanced) tensor products of C∗-algebras have been well
studied (see Pedersen [3] (a survey) and [4]).

In this paper we study K-theory of the pullback C∗-algebras and the pushout C∗-
algebras such as amalgams of C∗-algebras and balanced tensor products of C∗-algebras,
and obtain that their K-groups are isomorphic under some reasonable assumptions on their
∗-homomorphisms. For this purpose, in Section 1 we first review about the pullback C∗-
algebras and the pushout C∗-algebras and their successive construction from Pedersen [3]
(and [4]). In Section 2 we include a formula for K-groups of (universal) amalgamated
free products of C∗-algebras under an assumption for ∗-homomorphisms of common C∗-
subalgebras to have (inverse) retractions (i.e., surjective ∗-homomorphisms) ¿from Black-
adar [1] with our modified proof, while the case for full free products of C∗-algebras is first
considered by J. Cuntz. Using this formula extensively we obtain a number of formulas
for K-groups of successive amalgams and balanced tensor products of C∗-algebras through
K-groups of their associated pullback C∗-algebras. To define the associated pullback C∗-
algebras we need to assume that the ∗-homomorphisms from common C∗-subalgebras in
the successive amalgams and balanced tensor products have (inverse) retractions.

See [1] and [6] for the details about K-theory of C∗-algebras, and see [3] for the details
about the pullback and pushout constructions for C∗-algebras.

C∗-algebras of

1 The pullback and pushout C∗-algebras

Pullbacks For C∗-algebras A, B,C, suppose that there exist ∗-homomorphisms α1 : A → C,
α2 : B → C. Then their pullback C∗-algebra denoted by A ⊕C B is defined by

A ⊕C B = {(a, b) ∈ A ⊕ B |α1(a) = α2(b)}.
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We have the following diagram:

A ⊕C B
p2−−−−→ B

p1

⏐⏐�
⏐⏐�α2

A
α1−−−−→ C

where p1, p2 are the canonical projections.
Now consider the commutative case. Let X, Y, Z be compact Hausdorff spaces and

C(X), C(Y ), C(Z) the C∗-algebras of continuous functions on them respectively. Suppose
that there exist continuous maps f : Z → X , g : Z → Y . Then the pullback C∗-algebra
C(X)⊕C(Z) C(Y ) corresponds to the space X ∪Z Y obtained from the disjoint union X ∪Y
by identifying f(Z) and g(Z).
Amalgams Let A, B be C∗-algebras. Assume that there exists a common C∗-subalgebra
C of A and B with embeddings µ1 : C → A, µ2 : C → B. Then as their pushout C∗-algebra
we define the (universal) amalgamated free product (or amalgam) of A, B over C, denoted
by A∗C B, to be the quotient C∗-algebra of the (universal) free product C∗-algebra A∗B of
A, B by the closed ideal generated by the set {µ1(c)−µ2(c) | c ∈ C}. We have the following
diagram:

C
µ2−−−−→ B

µ1

⏐⏐� ⏐⏐�idB

A
idA−−−−→ A ∗C B

where idA, idB are the canonical inclusions.
Balanced tensor products Let A, B be unital C∗-algebras. Assume that there exists
a common C∗-subalgebra C of A and B with embeddings µ1 : C → A, µ2 : C → B.
Then as another version of their pushout C∗-algebra we define the balanced tensor product
C∗-algebra of A, B over C, denoted by A ⊗C B, to be the quotient C∗-algebra of the
(maximal) tensor product C∗-algebra A ⊗ B of A, B by the closed ideal generated by the
set {µ1(c) − µ2(c) | c ∈ C}. We have the following diagram:

C
µ2−−−−→ B

µ1

⏐⏐�
⏐⏐�idB

A
idA−−−−→ A ⊗C B

where idA, idB are the canonical inclusions. We may take nonunital A, B if not use this
diagram.

If we have continuous maps f : X → Z, g : Y → Z, then the space X ×Z Y defined by

X ×Z Y = {(x, y) ∈ X × Y | f(x) = g(y)}
corresponds to C(X) ⊗C(Z) C(Y ) (or C(X) ∗C(Z) C(Y )).
Successive construction Let A⊕C B be a pullback C∗-algebra and D, E be C∗-algebras.
Suppose that there exist ∗-homomorphisms β1 : C → E, β2 : D → E. Then we can define
the extension of β1 by the same symbol β1 : A⊕C B → E. Thus, we can define the pullback
C∗-algebra (A ⊕C B) ⊕E D such that

(A ⊕C B) ⊕E D
p2−−−−→ D

p1

⏐⏐�
⏐⏐�β2

A ⊕C B
β1−−−−→ E
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where p1, p2 are the canonical projections. Moreover,

(A ⊕C B) ⊕E D ∼= (A ⊕E D) ⊕C⊕ED (B ⊕E D).

Let A ∗C B be an amalgam C∗-algebra and D, E be C∗-algebras. Suppose that there
exist ∗-homomorphisms ν1 : E → C, ν2 : E → D. Then we can define the extension of
ν1 by the same symbol ν1 : E → A ∗C B. Thus, we can define the amalgam C∗-algebra
(A ∗C B) ∗E D such that

E
ν2−−−−→ D

ν1

⏐⏐�
⏐⏐�idD

A ∗C B
id−−−−→ (A ∗C B) ∗E D

where id, idD are the canonical inclusions. Moreover,

(A ∗C B) ∗E D ∼= (A ∗E D) ∗C∗ED (B ∗E D).

Let A⊗C B be a balanced tensor product C∗-algebra and D, E be C∗-algebras. Suppose
that there exist ∗-homomorphisms ν1 : E → C, ν2 : E → D. Then we can define the
extension of ν1 by the same symbol ν1 : E → A ⊗C B. Thus, we can define the balanced
tensor product C∗-algebra (A ⊗C B) ⊗E D. Moreover,

(A ⊗C B) ⊗E D ∼= (A ⊗E D) ⊗C⊗ED (B ⊗E D).

Furthermore, under the successive assumptions on ∗-homomorphisms involved we can
construct an n-successive pullback C∗-algebra as follows:

(· · · ((A1 ⊕B1 A2) ⊕B2 A3) · · · ) ⊕Bn−1 An

where Aj (1 ≤ j ≤ n), Bj (1 ≤ j ≤ n − 1) are C∗-algebras, and we assume that there
exist ∗-homomorphisms: α1 : A1 → B1, αj : Aj → Bj−1 (2 ≤ j ≤ n), βj : Bj → Bj+1

(1 ≤ j ≤ n − 2).
Also, we can construct an n-successive amalgam C∗-algebra:

(· · · ((A1 ∗B1 A2) ∗B2 A3) · · · ) ∗Bn−1 An

where Aj (1 ≤ j ≤ n), Bj (1 ≤ j ≤ n − 1) are C∗-algebras, and we assume that there
exist ∗-homomorphisms: µ1 : B1 → A1, µj : Bj → Aj+1 (2 ≤ j ≤ n − 1), νj : Bj+1 → Bj

(1 ≤ j ≤ n − 2).
Similarly, we can construct an n-successive balanced tensor product C∗-algebra:

(· · · ((A1 ⊗B1 A2) ⊗B2 A3) · · · ) ⊗Bn−1 An

where Aj (1 ≤ j ≤ n), Bj (1 ≤ j ≤ n − 1) are C∗-algebras, and we assume that there
exist ∗-homomorphisms: µ1 : B1 → A1, µj : Bj → Aj+1 (2 ≤ j ≤ n − 1), νj : Bj+1 → Bj

(1 ≤ j ≤ n − 2).

2 K-theory

Let A, B be C∗-algebras. Let C be a common C∗-subalgebra of A and B with em-
beddings µ1 : C → A, µ2 : C → B. Let A ∗D B be the amalgam of A, B over C. Let
ι1 : A → A ∗C B, ι2 : B → A ∗C B be the natural injective ∗-homomorphisms. Suppose
that there exist retractions (i.e., surjective ∗-homomorphisms) r1 : A → C and r2 : B → C
satisfying r1 ◦µ1 = idC and r2 ◦µ2 = idC. Let A⊕C B be the pullback C∗-algebra associated
with r1, r2 defined by

A ⊕C B = {(a, b) ∈ A ⊕ B | r1(a) = r2(b)}.
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Theorem 2.1 (Blackadar [1, 10.11.11]) Let A∗C B be the amalgamated free product of C∗-
algebras A, B over a common C∗-subalgebra C with retractions r1, r2 to C, and A ⊕C B be
the associated pull back C∗-algebra. Then

Kj(A ∗C B) ∼= Kj(A ⊕C B) (j = 0, 1).

Proof. Define the map r : A⊕C B → C by r(a, b) = r1(a) = r2(b) ∈ C and let i : C → A∗C B
be the canonical inclusion. Define the map g by the following composition:

g : A ⊕C B
r−−−−→ C

i−−−−→ A ∗C B.

Let k : A ∗C B → A ⊕C B be the map induced by setting

k(a) = (a, r1(a)) for a ∈ A and k(b) = (r2(b), b) for b ∈ B

and using the universal property of A ∗C B. Define f : A ⊕C B → M2(A ∗C B) (the 2 × 2
matrix algebra over A∗CB) by f(a, b) = a⊕b the diagonal sum. Then we have the following
composition:

(1 ⊗ k) ◦ f : A ⊕C B
f−−−−→ M2(A ∗C B) 1⊗k−−−−→ M2(A ⊕C B),

(1 ⊗ k) ◦ f(a, b) =
(

(a, r1(a)) 0
0 (r2(b), b)

)
≡ (a, r1(a)) ⊕ (r2(b), b),

and this homomorphism is homotopic to 1A⊕CB ⊕ (k ◦ g) by conjugation by the unitaries
(1M2(A) ⊕ ut), where

ut =
(

cos(πt/2) − sin(πt/2)
sin(πt/2) cos(πt/2)

)
.

Indeed, (k ◦ g)(a, b) = k(r1(a)) = (r1(a), r1(r1(a))) = (r1(a), r2(b)) and

(a, b) ⊕ (k ◦ g)(a, b)
= (a, b) ⊕ (r1(a), r2(b)) = (a ⊕ r1(a)) ⊕ (b ⊕ r2(b))

=
(

a 0
0 r1(a)

)
⊕

(
b 0
0 r2(b)

)
∈ M2(A) ⊕ M2(B),

(1M2(A) ⊕ u1)((a ⊕ r1(a), b ⊕ r2(b))(1M2(A) ⊕ u∗
1)

= (a ⊕ r1(a)) ⊕ u1(b ⊕ r2(b))u∗
1

= (a ⊕ r1(a)) ⊕ (r2(b) ⊕ b) ∈ M2(A) ⊕ M2(B).

Hence, it follows that k∗ ◦ f∗ − k∗ ◦ g∗ is the identity map on the K-groups Kj(A ⊕C B) of
A ⊕C B (j = 0, 1). Also we have the following composition:

h1 = f ◦ k : A ∗C B
k−−−−→ A ⊕C B

f−−−−→ M2(A ∗C B),

which is homotopic to h0 = 1A∗CB ⊕ (g ◦ k) via the path of homomorphisms ht defined by
ht(a) = a ⊕ r1(a) = (f ◦ k)(a), ht(b) = ut((b ⊕ r2(b))u∗

t . Indeed, (g ◦ k)(a) = g(a, r1(a)) =
r1(a) = r2(r1(a)) and (g ◦ k)(b) = g(r2(b), b) = r2(b) = r1(r2(b)) and

h0(a) = a ⊕ r1(a), h0(b) = b ⊕ r2((b),
u1(b ⊕ r2(b))u∗

1 = r2(b) ⊕ b = (f ◦ k)(b)

Thus, it follows that f∗ ◦ k∗ − g∗ ◦ k∗ is the identity map on the K-groups Kj(A ∗C B) of
A ∗C B (j = 0, 1).
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Therefore, we conclude that k∗ : Kj(A ∗C B) → Kj(A⊕C B) is an isomorphism with its
inverse f∗ − g∗ (j = 0, 1). �

Remark. If C = {0}, then we can take the retractions r1, r2 as zero ones, and A∗CB ∼= A∗B
the free product C∗-algebra of A, B. Moreover, for j = 0, 1,

Kj(A ∗ B) ∼= Kj(A ⊕ B).

Furthermore,

Theorem 2.2 We have the following splitting exact sequence:

0 −−−−→ Kj(C)
(µ1∗,µ2∗)−−−−−−→ Kj(A) ⊕ Kj(B) ι1∗−ι2∗−−−−−→ Kj(A ∗C B) −−−−→ 0.

Proof. By Mayer-Vietoris sequence for K-theory, the following sequence:

0 −−−−→ Kj(C)
(µ1∗,µ2∗)−−−−−−→ Kj(A) ⊕ Kj(B) ι1∗−ι2∗−−−−−→ Kj(A ⊕C B) −−−−→ 0

is exact and splitting ([1, 10.11.11]). �

Corollary 2.3 We have

Kj(A ∗C B) ∼= (Kj(A) ⊕ Kj(B))/Kj(C) (j = 0, 1).

Exactly by the same way as Theorem 2.1, under an additional assumption on commu-
tativity we obtain

Theorem 2.4 Let A⊗C B be the balanced tensor product C∗-algebra of unital C∗-algebras
A, B over a common nonzero unital C∗-subalgebra C with retractions r1, r2 to C, and A⊕CB
be the associated pull back C∗-algebra defined as above. Assume that C commutes with A
and B and has the same unit with them. Then

Kj(A ⊗C B) ∼= Kj(A ⊕C B) (j = 0, 1).

Proof. Since A, B are unital, they are assumed to be C∗-subalgebras of A⊗CB via a = a⊗1
and b = 1 ⊗ b for a ∈ A and b ∈ B. Since a ⊗ b = (a ⊗ 1)(1 ⊗ b) = (1 ⊗ b)(a ⊗ 1) and we
need to have that the following elements:

(a, r1(a))(r2(b), b) = (ar2(b), r1(a)b), (r2(b), b) = (a, r1(a)) = (r2(b)a, br1(a))

are equal to define the map k′ corresponding to the map k in the proof of Theorem 2.1,
from which we need to assume that C commutes with A and B. Also, C can not be zero
since if C is zero, k′(1 ⊗ 1) = (1, 0) and k′(1 ⊗ 1) = (0, 1). Thus, k′ is not well-defined.
If C is unital and nonzero, k′(1 ⊗ 1) = (1, r1(1)) and k′(1 ⊗ 1) = (r2(1), 1), Thus, to have
(1, r1(1)) = (r2(1), 1) we need to assume that C has the same unit with A, B. �

Corollary 2.5 Under the same assumption as above we have

Kj(A ⊗C B) ∼= (Kj(A) ⊕ Kj(B))/Kj(C) (j = 0, 1).
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Theorem 2.6 Let A ∗C B be the amalgam of C∗-algebras A, B over a common C∗-
subalgebra C with retractions r1, r2 to C, and A ⊕C B be the associated pullback C∗-algebra
defined as above. Let (A∗C B)∗E D be the successive amalgam defined above for C∗-algebras
D, E with retractions s1 : A ∗C B → E, s2 : D → E, and (A ∗C B) ⊕E D be the associated
pullback C∗-algebra. Then for j = 0, 1,

Kj((A ∗C B) ∗E D) ∼= [((Kj(A) ⊕ Kj(B))/Kj(C)) ⊕ Kj(D)]/Kj(E)
∼= Kj((A ⊕C B) ⊕E D)

where (A⊕C B)⊕E D is the successive pullback C∗-algebra associated with r1, r2 and s1, s2.

Proof. Using Theorem 2.1 and Corollary 2.3 we compute

Kj((A ∗C B) ∗E D) ∼= Kj((A ∗C B) ⊕E D)
∼= [Kj(A ∗C B) ⊕ Kj(D)]/Kj(E)
∼= [Kj(A ⊕C B) ⊕ Kj(D)]/Kj(E)
∼= [((Kj(A) ⊕ Kj(B))/Kj(C)) ⊕ Kj(D)]/Kj(E).

On the other hand, using Mayer-Vietoris sequence repeatedly we obtain

Kj((A ⊕C B) ⊕E D) ∼= [Kj(A ⊕C B) ⊕ Kj(D)]/Kj(E)
∼= [((Kj(A) ⊕ Kj(B))/Kj(C)) ⊕ Kj(D)]/Kj(E).

�

Similarly, using Theorem 2.4 and Corollary 2.5 we obtain

Theorem 2.7 Let A⊗C B be the balanced tensor product C∗-algebra of unital C∗-algebras
A, B over a common nonzero unital C∗-subalgebra C with retractions r1, r2 to C, and A⊕CB
be the associated pullback C∗-algebra defined as above. Let (A⊗C B)⊗E D be the successive
balanced tensor product C∗-algebra defined in Section 1 for unital C∗-algebras D, E with
retractions s1 : A ⊗C B → E, s2 : D → E, and (A ⊗C B) ⊕E D be the associated pullback
C∗-algebra. Assume that C commutes with A and B, and E commutes with A ⊗C B and
D. Then for j = 0, 1,

Kj((A ⊗C B) ⊗E D) ∼= [((Kj(A) ⊕ Kj(B))/Kj(C)) ⊕ Kj(D)]/Kj(E)
∼= Kj((A ⊕C B) ⊕E D)

where (A⊕C B)⊕E D is the successive pullback C∗-algebra associated with r1, r2 and s1, s2.

Theorem 2.8 Let A be the n-successive pullback C∗-algebra as follows:

A = (· · · ((A1 ⊕B1 A2) ⊕B2 A3) · · · ) ⊕Bn−1 An

where Aj (1 ≤ j ≤ n), Bj (1 ≤ j ≤ n − 1) are C∗-algebras, and we assume that there
exist ∗-homomorphisms: α1 : A1 → B1, αj : Aj → Bj−1 (2 ≤ j ≤ n), βj : Bj → Bj+1

(1 ≤ j ≤ n − 2). Then for j = 0, 1,

Kj(A) ∼= ((· · · ((((Kj(A1)⊕Kj(A2))/Kj(B1))⊕Kj(A3))/Kj(B2)) · · · )⊕Kj(An))/Kj(Bn−1).

Proof. We use the Mayer-Vietoris sequence for K-theory repeatedly. �
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Theorem 2.9 Let A be the n-successive amalgam C∗-algebra as follows:

A = (· · · ((A1 ∗B1 A2) ∗B2 A3) · · · ) ∗Bn−1 An

where Aj (1 ≤ j ≤ n), Bj (1 ≤ j ≤ n − 1) are C∗-algebras, and we assume that there exist
∗-homomorphisms: µ1 : B1 → A1, µj : Bj → Aj+1 (2 ≤ j ≤ n − 1), νj : Bj+1 → Bj

(1 ≤ j ≤ n − 2). Suppose that there exist retractions r1 : A1 → B1, rj : Aj → Bj−1

(2 ≤ j ≤ n) and sj : Bj → Bj+1 (1 ≤ j ≤ n − 2). Let P be the associated n-bullback
C∗-algebra as follows: P = (· · · ((A1 ⊕B1 A2) ⊕B2 A3) · · · ) ⊕Bn−1 An. Then for j = 0, 1,

Kj(A) ∼= Kj(P )
∼= ((· · · ((((Kj(A1) ⊕ Kj(A2))/Kj(B1)) ⊕ Kj(A3))/Kj(B2)) · · · ) ⊕ Kj(An))/Kj(Bn−1).

Corollary 2.10 Let A be the n-successive amalgam C∗-algebra as follows:

A = (· · · ((A1 ∗C A2) ∗C A3) · · · ) ∗C An

∼= A1 ∗C A2 ∗C · · · ∗C An (n-fold unital free product)

where Aj (1 ≤ j ≤ n) are unital C∗-algebras. Suppose that there exist retractions rj : Aj →
C (1 ≤ j ≤ n). Let P be the associated n-bullback C∗-algebra as follows:

P = (· · · ((A1 ⊕C A2) ⊕C A3) · · · ) ⊕C An.

Then

K0(A) ∼= K0(P )
∼= ((· · · ((((K0(A1) ⊕ K0(A2))/Z) ⊕ K0(A3))/Z) · · · ) ⊕ K0(An))/Z, and
K1(A) ∼= K1(P ) ∼= K1(A1) ⊕ K1(A2) ⊕ K1(A3) ⊕ · · · ⊕ K1(An).

Proof. Note that K0(C) ∼= Z and K1(C) ∼= 0. �

Remark. In the theorem above, if Bj = 0 (1 ≤ j ≤ n − 1), then

A ∼= A1 ∗ A2 ∗ · · · ∗ An (n-fold free product),
P ∼= A1 ⊕ A2 ⊕ · · · ⊕ An (n-direct sum),

and Kj(A) ∼= Kj(P ) ∼= Kj(A1) ⊕ Kj(A2) ⊕ · · · ⊕ Kj(An) for j = 0, 1.

Theorem 2.11 Let A be the n-successive balanced tensor product C∗-algebra as follows:

A = (· · · ((A1 ⊗B1 A2) ⊗B2 A3) · · · ) ⊗Bn−1 An

where Aj (1 ≤ j ≤ n), Bj (1 ≤ j ≤ n − 1) are nonzero unital C∗-algebras, and we assume
that there exist ∗-homomorphisms: µ1 : B1 → A1, µj : Bj → Aj+1 (2 ≤ j ≤ n − 1),
νj : Bj+1 → Bj (1 ≤ j ≤ n − 2). Suppose that there exist retractions r1 : A1 → B1,
rj : Aj → Bj−1 (2 ≤ j ≤ n) and sj : Bj → Bj+1 (1 ≤ j ≤ n − 2). Let P be the associated
n-bullback C∗-algebra as follows: P = (· · · ((A1 ⊕B1 A2) ⊕B2 A3) · · · ) ⊕Bn−1 An. Assume
that Bj (1 ≤ j ≤ n − 1) commute with Aj+1 and

(· · · ((A1 ⊗B1 A2) ⊗B2 A3) · · · ) ⊗Bj−1 Aj

and have the same units with them. Then for j = 0, 1,

Kj(A) ∼= Kj(P )
∼= ((· · · ((((Kj(A1) ⊕ Kj(A2))/Kj(B1)) ⊕ Kj(A3))/Kj(B2)) · · · ) ⊕ Kj(An))/Kj(Bn−1).
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Corollary 2.12 Let A be the n-successive balanced tensor product C∗-algebra as follows:

A = (· · · ((A1 ⊗C A2) ⊗C A3) · · · ) ⊗C An

∼= A1 ⊗C A2 ⊗C · · · ⊗C An (n-fold unital tensor product)

where Aj (1 ≤ j ≤ n) are unital C∗-algebras. Suppose that there exist retractions rj : Aj →
C (1 ≤ j ≤ n). Let P be the associated n-bullback C∗-algebra as follows:

P = (· · · ((A1 ⊕C A2) ⊕C A3) · · · ) ⊕C An.

Then

K0(A) ∼= K0(P )
∼= ((· · · ((((K0(A1) ⊕ K0(A2))/Z) ⊕ K0(A3))/Z) · · · ) ⊕ K0(An))/Z, and
K1(A) ∼= K1(P ) ∼= K1(A1) ⊕ K1(A2) ⊕ K1(A3) ⊕ · · · ⊕ K1(An).

Remark. In the theorem above, if Bj = 0 (1 ≤ j ≤ n − 1), then

A ∼= A1 ⊗ A2 ⊗ · · · ⊗ An (n-fold tensor product),
P ∼= A1 ⊕ A2 ⊕ · · · ⊕ An (n-direct sum),

but Kj(A) �∼= Kj(P ) ∼= Kj(A1) ⊕ Kj(A2) ⊕ · · · ⊕ Kj(An) for j = 0, 1 in general. For
instance, if Aj = C (1 ≤ j ≤ n), then A ∼= C and K0(A) ∼= Z but K0(P ) ∼= ⊕n

j=1Z. See [1]
for Künneth Theorem for K-groups of tensor products of C∗-algebras.
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