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ON IDEALS IN SUBTRACTION ALGEBRAS

YouNG BAE JuN AND HEE Sik Kim
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ABSTRACT. The ideal generated by a set is established, and related results are dis-
cussed.

1. Introduction.

B. M. Schein [6] considered systems of the form (®;o0,\), where ® is a set of functions
closed under the composition “o” of functions (and hence (®;0) is a function semigroup)
and the set theoretic subtraction “\” (and hence (®;\) is a subtraction algebra in the
sense of [2]). He proved that every subtraction semigroup is isomorphic to a difference
semigroup of invertible functions. B. Zelinka [7] discussed a problem proposed by B. M.
Schein concerning the structure of multiplication in a subtraction semigroup. He solved the
problem for subtraction algebras of a special type, called the atomic subtraction algebras. Y.
H. Kim and H. S. Kim [5] showed that a subtraction algebra is equivalent to an implicative
BC K-algebra, and a subtraction semigroup is a special case of an IS-algebra, established by
Y. B. Jun et al. [3], which is a generalization of a ring. The present authors with E. H. Roh
[4] introduced the notion of ideals in subtraction algebras and discussed characterization of
ideals. In this paper, we establish an ideal generated by a subset of a subtraction algebra,
and discuss related results.

2. Preliminaries

A subtraction algebra ([6]) is defined as an algebra (X; —) with a single binary operation
—” that satisfies the following identities: for any z,y,z € X,

(S1) z— (y— =) = x;
(S2) = (z-y)=y—(y—2);
(S3) (r—y)—z=(v—2)—y.

The last identity permits us to omit parentheses in expressions of the form (z — y) — z.
The subtraction determines an order relation on X: a < b < a—b =0, where 0 =a —a
is an element that does not depend on the choice of a € X. The ordered set (X;<) is
a semi-Boolean algebra in the sense of [2], that is, it is a meet semilattice with zero 0 in
which every interval [0,a] is a Boolean algebra with respect to the induced order. Here
aNb=a—(a—>b); the complement of an element b € [0, a] is a — b; and if b, ¢ € [0, a], then

[43

bve = (WA =a—-((a=Db)A(a—2c))

= a—((a=b) = ((a=b) = (a—c))).

In a subtraction algebra, the following are true (see [4]):
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pl) (z—y)—y=z—y.
p2) z—0=xand 0 —z = 0.
p3) (x —y)—x=0.

pd) z—(z—y) <y.

r—(z—(r—y)=z—y.
p7) (z—y)—(z—y) <z -2

p8

pb6

x <y if and only if x = y — w for some w € X.

P9) x <yimpliesx —z<y—zand z—y < z—x forall z€ X.

(p1)
(p2)
(p3)
(p4)
(P5) (z—y)—(y—=z) =z —y.
(p6)
(p7)
(p8)
(p9)
)

(pl0) z,y < zimplies z —y =z A (z — y).

3. Ideals generated by a subset

Definition 3.1 (Jun et al. [4]). A nonempty subset A of a subtraction algebra X is
called an ideal of X if it satisfies

M)oeA
(I12) ye Aand x —y € A imply z € A for all z,y € X.

Theorem 3.2. Let A be a nonempty subset of a subtraction algebra X. Then the set

K={zeX | (+(z—a1)—a2)—-)—ap,=0
for some ay,as, - ,a, € A}

1s a minimal ideal of X containing A.
Proof. Obviously 0 € K. Let x,y € X be such that y € K and x —y € K. Then
(- ((y—a1) —az) —-+) —an =0

for some ay, a9, -+ ,a, € A, and

(- (((=y)=b1) =ba) =) =bm =0 (3.1)
for some b1, ba, -+, by, € A. Applying (S3) to (3.1), we have

(- ((@=b1) =b2) =++) = bm) —y =0,
that is, (--- ((x —b1) —b2) — -+ ) — by, < y. Using (p9) repeatedly, we get

(o (o (=) = b) =) =) =) = +) —a

< (- (y-—a)—ag) =) —an =0,

and so (- (((+--((x =by) =bg) —+++) = bpm) —a1) —--+) —ap = 0. It follows that x € K so
that K is an ideal of X. Let G be an ideal of X containing A and let € K. Then

(- ((—a1) —az) =) —an=0
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for some ai,as,--- ,a, € A, which implies that x € G because G is an ideal of X and
a1,G2, - ,a, € G. This completes the proof. O

The ideal K described in Theorem 3.2 is called the ideal generated by A, and denoted
by (A).

Proposition 3.3. Let a,z, and y be elements of a subtraction algebra X. Ifa—zx™ =0

and a —y"™ = 0 for some m,n € N, then there exists p € N such that a — (x Ay)P = 0, where
k

a—z"=(--((a—z)—x)—--+)—x in which x occurs k-times.
Proof. Let m,n € N be such that
a—z" =0 and a—y" =0. (3.2)

Note that if a — 2™ = 0, then a — 2F = 0 for kK > m. Thus we can assume that m = n in
(3.2), and so it is sufficient to show that there exists p € N such that

a—(xAy)P =0 whenever a —z" =0=a—y". (3.3)

The proof is by induction on n. For n = 1 we have a < x and a < y, and so a < z Ay, that
is, a — (x A y) = 0. Suppose that (3.3) is true for n. Using (p2) and (S3), we have

0 = a—a" =(a—a™)—y"
= ((a—a")—z)—y" (3.4)
= (a—a)—y") =,
O=a—y""'=(a—y") —a" = ((a—2") —y") —y. (3.5)

Combining (3.4) and (3.5), we get
((a=2") —y") = (xAy) =0
It follows from (S3) that

0 = ((a—(Ay)—am) "
= (((a —(zAy)) — yn) _ xn—l) — (3.6)

From a — y"*! = 0, it follows by means of (p2) and (S3) that
(a=(@Ay)) —y"T =0 (3.7)
for any k € N. In particular, if £ =1 in (3.7) then
(((a—(@Ay) —y") —a"" ) —y=0 (3.8)
by (S3) and (p2). Combining (3.6) and (3.8), and using (S3), we obtain
((a=(zAy)?) —y") —a"" " =0.
In the same way, we can obtain

((a=(zAy)®) —y") —a" > =0.



1084 Y. B. JUN AND H. S. KIM

Continuing this process, we conclude that
(a—(@Ay)™) —y" =0. (3.9)

Similarly, we have
(a—(zAy)" T —2™ =0. (3.10)

Applying the induction hypothesis to (3.9) and (3.10), we have
0=(a—(xAy)"™) = (@AY’ =a—(zAy)" P

This completes the proof. O

Theorem 3.4. Let A be an ideal of a subtraction algebra X and let a,b € X. If
anbe A, then (AU{a}) N (AU{b}) = A.

Proof. Let a,b € X be such that a A b € A. Obviously
AC(AU{a}) (AU ).

Let € (AU {a}) N (AU {b}). Then = € (AU {a}) and = € (AU {b}). Hence there exist
ai,az, - ,an € (AU{a}) and by, ba, -, by, € (AU {b}) such that

(=) —a) =) —ay =0

and

(- ((x=b1) =b2) =) = bm = 0.
Using (S3) we can rewrite the above equalities in the following form
(( (& —w) —ug) — -+ ) —uy) —a* =0,
((((@—v1) —wv2) =) =) = b" =0,

where
{ulau2a"' 7us} = {a1;a2a"' ;an}mA

and
{U17v27"' 7vt} - {b15b27"' 7bm}mA
It follows from (p2) and (S3) that

(- (¢ (@ =ur) —u) =) —ug) —v1) =) —v;) —a* =0,
(o (G (@ —u) —ug) =) —ug) —v1) =) =) =" =0,

so from Proposition 3.3 that

(- (o (=) =) =) ) = 1) =) =) = (@ AP =0

for some p € N. Since A is an ideal containing a A b, we have x € A, that is,

(AU {a}) N (AU {b}) C A.
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This completes the proof. O

Lemma 3.5 (Jun et al. [4, Lemma 3.10]). Every subtraction algebra satisfies the right
self-distributive law, that is, the equality (x —y) —z = (x — 2) — (y — 2) is valid.

Theorem 3.6. Let X be a subtraction algebra. For any a,b € X and n € N, the set
[a;0"] ={x e X | (x —a) — V" =0}

s an ideal of X.

Proof. Obviously 0 € [a;b"]. Let x,y € X be such that y € [a;0"] and x — y € [a;b"].
Using (S3), (p2) and Lemma 3.5, we have

0 = ((z—y)—a)-b"
= (((x—a)—(y—a))—b)—b"1
= ((((IE - a) — b) — ((y—a) — b)) _ b) _pn—2

= (w=a)=b") = ((y—a)—b")
= ((r—a)=0")-0
= (.’E - a’) - bnv
and so z € [a; b"]. Therefore [a;b"] is an ideal of X. U

Using the set [a; b™] we establish a condition for a subset of a subtraction algebra X to
be an ideal of X.

Theorem 3.7. Let A be a nonempty subset of a subtraction algebra X. Then A is an
ideal of X if and only if [a;b™] C A for every a,b € A and n € N.

Proof. Assume that A is an ideal of X and let a,b € A and n € N. If z € [a;b"], then
(x —a) —b" = 0. Since a,b € A, it follows that x € A by using (I2) repeatedly. Hence
[a;b™] € A. Conversely suppose that [a;b"] C A for every a,b € A and n € N. Obviously
0 € [a;b"] C A. Let z,y € X be such that y € A and z —y € A. Then

(@—(z-y)—y" = (@z-(@—-y)—y) -y "
= (z-y) —(z—y) -y
= 0y =0,
and thus z € [z — y;y"] C A. Hence A is an ideal of X. O

Corollary 3.8. If A is an ideal of a subtraction algebra X, then A = |J [a;b"] for
a,be A
every n € N.

Proof. Let A be an ideal of X. The inclusion |J [a;b"] C A is by Theorem 3.7. Let
a,beA
x € A. Since z € [x;07], it follows that

Ac o | b,

TEA a,beA

This completes the proof. O
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