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Abstract. In this paper we consider a large deviations problem for a discrete-time
polling system consisting of two-parallel queues and a single server. The arrival process
of each queue is a superposition of traffic streams generated by a number of mutually
independent and identical Markovian on/off sources, and the single server serves the
two queues according to the so-called Bernoulli service schedule. Using the large de-
viations techniques, we derive the upper and lower bounds of the probability that the
queue length of each queue exceeds a certain level (i.e., the buffer overflow probabil-
ity). These results have important implications for traffic management of high-speed
communication networks such as call admission control and bandwidth allocation.

1. Introduction

Polling systems consisting of two-parallel queues and a single server have been exten-
sively applied to modelling high-speed communication systems with two types of traffic:
real-time traffic (e.g., voice and video) and non-real-time traffic (e.g., data). Various ser-
vice policies such as the exhaustive, K-limited, Bernoulli and Markovian disciplines have
been also proposed in order to meet the increasing demands for development of high-speed
communication networks (see[4], [16], [17], [18], [21], [22], [25], [26],[23] and [24]).

In this paper, we model an ATM multiplexer transmitting two types of traffic as a
discrete-time fluid polling system with two queues (Q1 and Q2) and a single server. The
arrival process in Qi is a superposition of traffic streams generated by Ni mutually inde-
pendent and identical Markovian on/off sources. Each source behaves independently of
other sources, and alternates between the on-state and the off-state by following a binary
Markov chain with transition probabilities αi, 1 − αi and 1 − βi, βi( 0 < αi, βi < 1). A
source produces information of traffic at the constant rate ri while in the on-state, and no
information in the off-state. The single server serves Q1 and Q2 according to the Bernoulli
service schedule described as follows: at each discrete-time, the server (suppose that it just
completed the service at Qi) makes a random decision: with probability pi, 0 < pi < 1, it
continues to deal with packets of Qi in the next slot, and with probability qi = 1 − pi, it
switches to Qj(j �= i) and deals with packets there in the next slot. The service rate at
Qi is ci. The service is assumed to be work-conserving, that is, in each slot, the server can
devote its residual service capacity to another queue whenever the present queue becomes
empty. Further, the server is assumed not to take switching times in its transition from one
queue to the other. All arrival processes and service processes are mutually independent.

We are motivated to consider such a discrete-time polling system by the following two-
fold. The first is its application-oriented. With the development of high-speed communi-
cation networks employing ATM digital technology, discrete-time queueing models become
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more and more important and a lot of research work has been done (see [1], [2], [5], [6], [28]
and [29]). The second is the interesting feature that our model, in fact, is obtained from
discretization of a continuous-time Markovian fluid polling system, which also consists of
two queues (Q1 and Q2) and a single server. There have Ni independent sources emitting
information of traffic into Qi. Each source alternates between the on-state and the off-state
according to a two-state ({on, off}) Markov process with the infinitesimal generator matrix

Qi =
( −λon

i λon
i

λoff
i −λoff

i

)
.

Then, 1/λon
i (resp. 1/λoff

i ) is the mean duration of the on-state (resp. the off-state). The
emitting rate of each source while in the on-state is ri. The single server deals with the two
queues by following to a two-state ({1, 2}) Markov process with the infinitesimal generator
matrix

Q =
( −µ1 µ1

µ2 −µ2

)
.

Then, 1/µi is the mean duration of service spent in Qi. The service rate at Qi is ci. The
service is assumed to be work-conserving. That is, the server is permitted to devote its
residual service capacity to the other queue when the total input rate of the present queue
is less than its service rate. Here, assume that all arrival processes and service processes
are observed at time n� (n ∈ N, � > 0), and interpret the amount of traffic emitted in
the interval [n�, (n + 1)�) as the amount of arrival at time (n + 1)�, and the amount of
traffic dealt with in the interval [n�, (n + 1)�) as the amount of service at time (n + 1)�.
Then, the resulting discrete-time arrival processes and service process in Qi are respectively
two-state Markov chains with the transition matrices,

Pi = e∆Qi =
(

e−λon
i � 1 − e−λon

i �

1 − e−λoff
i

� e−λoff
i

�

)
, P = e�Q =

(
e−µ1� 1 − e−µ1�

1 − e−µ2� e−µ2∆

)
.

Taking αi = e−λon
i �, βi = e−λoff

i
� and pi = e−µi�, qi = 1−e−µi�, we obtain the discrete-

time fluid polling system. Up to now, most of work for continuous-time fluid queueing
models is mainly devoted to performance analysis of single queueing systems, very little
attention has been paid for continuous-time fluid queueing networks.

In high-speed communication networks, as known, packet loss probabilities due to buffer
overflows are often taken as criteria of quality of service (QoS), and desired to be controlled
below very small level, e.g. in the order of 10−9. Therefore, estimating the delay and buffer
overflow probability is an important work for traffic management of high-speed commu-
nication networks. The aim of the paper is to derive the buffer overflow probability for
each queue of the discrete-time polling system. However, the autocorrelation structure in
the arrival processes and the service processes makes it extremely difficult to get the exact
results for these probabilities (even in the case of i.i.d. arrival processes, the exact results
are also very complicated, see Lee [22] and Feng et al. [18]). Here we utilize large deviations
techniques to derive the upper and lower bounds of the buffer overflow probabilities. In the
last decade, the theory of large deviations has been widely applied to problems of estimat-
ing the buffer overflow probability of queueing systems (see [3], [8], [11], [14], [19], [30] for
single queueing systems, and [1], [2], [9], [10], [27], [28], [29] for queueing networks). For an
Markovian polling system with a single server, Poisson arrival processes and exponentially
distributed service times, Delcogne and Fortelle [12] presented a local rate function govern-
ing the sample path large deviations principle. To the best of our knowledge, the analysis of
large deviations for discrete-time polling models with the autocorrelation arrival processes
and service processes has not been carried out yet.
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The paper is organized as follows. In Section 2, we first define exactly the arrival pro-
cesses superposed by mutually independent Markovian on/off sources and the potential
service processes by using Markov chains, and then give some large deviations results for
these processes. In Section 3, we introduce a single MAP/MSP/1 queueing system, and
derive the effective bandwidth functions of its departure processes. In Section 4, we prove
the large deviations upper and lower bounds of the buffer overflow probabilities for the
polling system, and In Section 5, some conclusions are included.

2. Preliminaries

In this section we define the arrival processes and the potential service processes of the
polling system, and give some large deviations results for these processes. Throughout the
paper, all time indices t, τ , etc. are always integers and N = {0, 1, 2, · · ·}.

A. The arrival processes

The arrival process in Qi is the superposition of traffic streams generated by Ni mutually
independent and identical Markovian on/off sources. Each source alternates between the
on-state and the off-state according to a binary Markov chain with the transition probability
matrix

Pi =
(

αi 1 − αi

1 − βi βi

)
.

The definition implies that the lengths of on-state periods and off-state periods are mutually
independent sequences of i.i.d. random variables with geometric distributions

P{on-state period contains t slots} = (1 − αi)αt−1
i , t ≥ 1,

P{off-state period contains t slots} = (1 − βi)βt−1
i , t ≥ 1.

Let ai
t be the number of sources in the on-state at time t. Then, we have

ai
t+1 =

ai
t∑

j=1

σi
j +

Ni−ai
t∑

j=1

ηi
j ,(1)

where {σi
j, j = 1, 2, · · · , Ni} and {ηi

j, j = 1, 2, · · · , Ni} are two mutually independent collec-
tions of i.i.d. Bernoulli random variables with probability distributions

P{σi
j = 1} = αi, P{σi

j = 0} = 1 − αi and P{ηi
j = 1} = βi, P{ηi

j = 0} = 1 − βi.

Let ai
0 = 0 (i = 1, 2), i.e., both the queues start from empty. The following proposition can

be obtained easily using the expression (1).

Proposition 2.1: {ai
t; t ∈ N} is an irreducible Markov chain with state space {0, 1, 2, · · · , Ni}

and transition probabilities:

pi
lk ≡ P{ai

t+1 = k|ai
t = l}(2)

=
min{l,k}∑

n=0

(
l

n

)
αn

i (1−αi)l−n

(
Ni − l

k − n

)
βk−n

i (1−βi)(Ni−l)−(k−n), l, k ∈ {0, 1, 2, · · · , Ni}.
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Define Ai
t = ai

tri, t ∈ N. Then, {Ai
t, t ∈ N} is the input process of Qi. Obviously,

{Ai
t, t ∈ N} is also an irreducible Markov chain with state space SAi = {0, ri, 2ri, · · · , Niri}

and transition matrix (pi
lri,kri

= pi
lk). We denote its equilibrium distribution by πi

A =
(πi

0, π
i
1, · · · , πi

Ni
) and the mean by Ai = E[Ai

t] =
∑Ni

j=0 jriπ
i
j . Because of simplicity and

capability to capture some of the correlation characteristics of ATM traffics, Markovian
on/off source processes have been widely used in modeling high-speed communication net-
work traffic (see [5], [6] and [15]).

B. The potential service processes

The Bernoulli service schedule describes that whenever both the Q1 and Q2 are not
empty, the server switches its service between the two queues with probabilities pi, qi(i =
1, 2). Denote by bi

t the position of the server at time t, that is, bi
t = 1 if the server is Qi at

time t, otherwise bi
t = 0. Note that b2

t = 1−b1
t . Let Bi

t = bi
tci, where ci is the service rate at

Qi. Then {Bi
t, t ∈ N} is the service process devoted to Qi by the server under the condition

that both the queues are not empty. We call it potential service process. According to the
Bernoulli service schedule, {Bi

t, t ∈ N} is an Markov chain with state space SBi = {0, ci}
and the transition matrix Pbi , where

Pb1 =
(

p2 q2

q1 p1

)
, Pb2 =

(
p1 q1

q2 p2

)
.

The equilibrium distributions of {B1
t , t ∈ N} and {B2

t , t ∈ N} are given by π1
B =

(q2/(q1+q2), q1/(q1+q2)) and π2
B = (q1/(q1+q2), q2/(q1+q2)), respectively, and the means

by Bi = E[Bi
t] = qici/(q1+q2), i = 1, 2. Note that the sum process {B1

t +B2
t , t ∈ N} is also

an Markov chain with state space {c1, c2} and the transition matrix Pb2 . The equilibrium
distribution and the mean are given by π2

B = (q1/(q1 + q2), q2/(q1 + q2)) and B1 + B2,
respectively.

C. The stability condition

Let Li
t be the queue length of Qi at time t and Lt = L1

t + L2
t . Since no switching times

are needed in the server transitions from one queue to another, {B1
t + B2

t , t ∈ N} can be
referred as the service process of the aggregate queue {Lt, t ∈ N}. Then, it follows from
Loynes’s Stability Theorem 2 [20] that the polling system is stable if

A1 + A2 < B1 + B2.(3)

Throughout the paper, we assume that the stability condition holds. Thus, the aggregate
queue length process Lt converges in distribution to a finite random variable. As Li

t ≤ Lt,
Li

t also converges in distribution to a finite random variable.

D. Large deviations results for the arrival processes and the potential service process

Here we present some large deviations results for the Markov arrival processes (MAP )
{Ai

t, t ∈ N}, and the Markov potential service processes (MSP ) {Bi
t, t ∈ N}.

Denote by SX
τ,t =

∑t−1
k=τ Xk, τ < t (SX

t = SX
0,t) and SX

t (s) =
∑�ts�

k=0 Xk/t, 0 ≤ s ≤ 1
the partial sums and the scaled partial sums of the random sequence X = {Xt; t ∈ N},
respectively. Denote by ΛX(θ) and Λ∗

X(α) the limit logarithmic moment generating function
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of the partial sum process of X , and the Legendre-Fenchel transform of ΛX(θ):

ΛX(θ) = lim
t→∞

1
t

log E[eθSX
t ], θ ∈ R; Λ∗

X(α) = sup
θ∈R

{θα − ΛX(θ)}, α ∈ R.(4)

For θ ∈ R and i = 1, 2, define (Ni+1)×(Ni+1) matrix ΨAi(θ) = (pi
lri,kri

eθkri)1≤l,k≤Ni+1,
and 2 × 2 matrices as follows:

ΨB1(θ) =
(

p2 q2e
θc1

q1 p1e
θc1

)
, ΨB2(θ) =

(
p1 q1e

θc2

q2 p2e
θc2

)
.

Let ρAi(θ) = sp(ΨAi(θ)) and ρBi(θ) = sp(ΨBi(θ)) be the spectral radii of ΨAi(θ) and
ΨBi(θ), and let xAi

(θ) = (xAi

0 (θ), xAi

1 (θ), · · · , xAi

Ni
(θ))T and xBi

(θ) = (xBi

0 (θ), xBi

1 (θ))T be
the positive right eigenvector corresponding to ρAi(θ) and ρBi(θ). Further, let ΓAi(θ) =
max0≤k,j≤Ni xAi

k (θ)/xAi

j (θ) and ΓBi(θ) = max0≤k,j≤1 xBi

k (θ)/xBi

j (θ). Then, we can directly
calculate these eigenvalues and eigenvectors.

Proposition 2.2: (i) ρB1(θ) =
p2 + p1e

θc1 +
√

(p2 − p1eθc1)2 + 4q1q2eθc1

2
,

ρB2(θ) =
p1 + p2e

θc2 +
√

(p1 − p2eθc2)2 + 4q1q2eθc2

2
.

(ii) xBi

(θ) = (
ρBi(θ) − pie

θci

ρBi(θ) + qi − pieθci
,

qi

ρBi(θ) + qi − pieθci
)T , i = 1, 2.

(iii) ΓBi(θ) = max{ qi

ρBi(θ) − pieθci
,

ρBi(θ) − pie
θci

qi
}, i = 1, 2.

Applying the general results about the theory of large deviations for Markov chains (see
[7], [8], [9] and [13]) to the arrival processes {Ai

t, t ∈ N} and the potential service processes
{Bi

t, t ∈ N}, we have the following theorem.

Theorem 2.3: (i) ΛAi(θ) = log(ρAi(θ)) and ΛBi(θ) = log(ρBi(θ)).
(ii) The processes {SAi

t /t; t ∈ N} and {SBi

t /t; t ∈ N} satisfy the large deviations prin-
ciple with the convex, good rate functions Λ∗

Ai(α) = supθ∈R{θα − ΛAi(θ)} and Λ∗
Bi(α) =

supθ∈R{θα − ΛBi(θ)}, respectively.
(iii) Let FAi

t = σ{Ai
τ ; τ ≤ t} and FBi

t = σ{Bi
τ ; τ ≤ t}, then for all θ ∈ R and τ, t ≤ 0,

ΛAi(θ)t−ΓAi(θ) ≤ log E[eθSAi

τ,τ+t |FAi

τ ] = log E[eθSAi

τ,τ+t |Ai
τ ] ≤ ΛAi(θ)t+ΓAi(θ), a.s.

ΛBi(θ)t−ΓBi(θ) ≤ log E[eθSBi

τ,τ+t |FBi

τ ] = log E[eθSBi

τ,τ+t |Bi
τ ] ≤ ΛBi(θ)t+ΓBi(θ), a.s..

ΛAi(θ), ΛBi(θ) and Λ∗
Ai(α), Λ∗

Bi(α) have the similar properties to those given in [28].
In particular, the following proposition holds by the non-negative and bounded properties
of {Ai

t, t ∈ N} and {Bi
t, t ∈ N}(note that for any t ∈ N, 0 ≤ Ai

t ≤ Niri and 0 ≤ Bi
t ≤ ci,

i = 1, 2).

Proposition 2.4:

Λ∗
Ai(α) = sup

θ∈R
{θα − ΛAi(θ)} =

⎧⎨
⎩

supθ≥0{θα − ΛAi(θ)} if Ai < α ≤ Niri

supθ<0{θα − ΛAi(θ)} if 0 < α ≤ Ai

∞ otherwise
(5)
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Λ∗
Bi(α) = sup

θ∈R
{θα − ΛBi(θ)} =

⎧⎨
⎩

supθ≥0{θα − ΛBi(θ)} if Bi < α ≤ ci

supθ<0{θα − ΛBi(θ)} if 0 < α ≤ Bi

∞ otherwise.
(6)

Since we are only concerned with the stationary version of the system, it is convenient to
look backward in time and study the behavior of the system at time 0. The conclusions in
Proposition 2.5 follows from the Markov property of the arrival processes and the potential
service processes, which permit us to deal with the dependence of the stationary queue
length Li

τ at time τ and the further arrival process {Ai
t, t > τ}.

Proposition 2.5: Let FAi

(−∞,k] = σ{Ai
t; −∞ < t ≤ k}, FAi

(k+n,∞) = σ{Ai
t; k+n < t < ∞},

and FBi

(−∞,k] = σ{Bi
t; −∞ < t ≤ k}, FBi

(k+n,∞) = σ{Bi
t; k + n < t < ∞}, and let

vAi

(n) = sup
U∈FAi

(−∞,k],U
′∈FAi

(k+n,∞),P{U}>0

| P (U ′|U) − P (U ′) |,

vBi

(n) = sup
U∈FBi

(−∞,k],U
′∈FBi

(k+n,∞),P{U}>0

| P (U ′|U) − P (U ′) | .

Then, limn→∞ vAi

(n) = 0 and limn→∞ vBi

(n) = 0.

3. Large deviations results for an MAP/MSP/1 queueing system

In order to establish the large deviations bounds for the polling system, we first consider
a single MAP/MSP/1 queueing system with the arrival process {At = A2

t ; t ∈ N} and
the service process {Bt = B2

t ; t ∈ N}. For the convenience, write r2 = r,N2 = N and
c2 = c. This system is stable if A < B, where A =

∑N
j=0 jrπj and B = q2/(q1 + q2)c are

respectively the mean arrival rate and the mean service rate. Let L̃t be the queue length at
time t, then L̃t converges in distribution to a finite random variable L̃∞ under the stable
condition. Look backward in time and assume that the queueing process has reached its
steady state at time 0. The large deviations results for this MAP/MSP/1 queueing system
can be easily obtained from the general discussions for G/G/1 queueing systems given in
[3], [8], [11], [14], [19] and [30].

Theorem 3.1: Under A < B, the tail of the equilibrium distribution of the queue length
L0 is characterized by

lim
x→∞

1
x

log P{L̃0 > x} = −δ∗(7)

where δ∗ > 0 is the largest solution of the equation: ΛA(θ) + ΛB(−θ) = 0.

In the case δ∗ = ∞, the equality (7) holds trivially. To avoid such a case, we assume
that δ∗ is finite, which means that there exists a number n0 ∈ {0, 1, · · · , N} such that
n0r > B. Let αA(θ) = ΛA(θ)/θ and αB(θ) = ΛB(θ)/θ be the effective bandwidths of
the arrival process and the potential service process, respectively. First, we consider the
stationary departure process {Dt, t ∈ N} from the MAP/MSP/1 queue, and calculate its
effective bandwidth αD(θ) = ΛD(θ)/θ. Dt and its partial sum process SD

t are governed by
the following recursive equations:

Dt = min{L̃t−1 + At−1, Bt−1}, SD
t = min{L̃0 + inf

0<τ≤t
{SA

τ + SB
τ,t}, SB

t }.(8)
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Define the process SM
t as follows:

SM
t = min{L̃0 + SA

t , SB
t }, t ∈ N.(9)

Theorem 3.2: Under the stability assumption that A < B, for any α ∈ R,

lim
t→∞

1
t

log P{SD
t > αt} = lim

t→∞
1
t

log P{SM
t > αt} = − inf

x≥α
Λ∗

D(x),(10)

lim
t→∞

1
t

log E[eθSD
t ] = lim

t→∞
1
t

log E[eθSM
t ] = ΛD(θ), θ ≥ 0,(11)

where,

Λ∗
D(α) = δ∗α − sup

x≤α
{δ∗x − Λ∗

A(x)} + inf
x≥α

Λ∗
B(x)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if α < A
Λ∗

A(α) if α ≤ Λ′
A(δ∗) and A < α ≤ B

Λ∗
A(α) + Λ∗

B(α) if α ≤ Λ′
A(δ∗) and B < α ≤ min{c, Nr}

δ∗α − ΛA(δ∗) if α > Λ′
A(δ∗) and A < α ≤ B

δ∗α − ΛA(δ∗) + Λ∗
B(α) if α > Λ′

A(δ∗) and B < α ≤ min{c, Nr}
∞ if α > min{c, Nr},

here, δ∗ is the largest solution of the equation ΛA(θ)+ΛB(−θ) = 0, Λ′
A(δ∗) = ρ′A(δ∗)/ρA(δ∗),

and
ΛD(θ) = sup

A≤α
{θα − Λ∗

D(α)} = sup
A≤α≤min{c,Nr}

{θα − Λ∗
D(α)}.(12)

For the proof, see Theorem 2 in Chang and Zajic [11].

Theorem 3.3: For any θ ≥ 0,

ΛD(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CASE1. A < Λ′
A(δ∗) ≤ B < min{c, Nr}

ΛA(θ) if θ ≤ δ∗

ΛA(δ∗) + ΛB(θ − δ∗) if δ∗ < θ and
B ≤ Λ′

B(θ − δ∗) ≤ min{c, Nr}
ΛA(δ∗) + (θ − δ∗)min{c, Nr} if δ∗ < θ, and

−Λ∗
B(min{c, Nr}) min{c, Nr} < Λ′

B(θ − δ∗)

CASE2. A < B < Λ′
A(δ∗) ≤ min{c, Nr}

ΛA(θ) if θ : Λ′
A(θ) ≤ B

J(θ) if θ : Λ′
A(θ) > B, θ ≤ δ∗ or

Λ′
A(θ) > B, θ > δ∗;

Λ′
B(θ − δ∗) ≤ Λ′

A(δ∗)
max{J(θ),ΛA(δ∗) + ΛB(θ − δ∗)} if θ : Λ′

A(θ) > B, θ > δ∗ and
Λ′

A(δ∗) < Λ′
B(θ − δ∗) ≤ min{c, Nr}

max{J(θ),ΛA(δ∗) + (θ − δ∗)min{c, Nr} if θ : Λ′
A(θ) > B, θ > δ∗ and

−Λ∗
B(min{c, Nr})} Λ′

B(θ − δ∗) > min{c, Nr}
(13)
where, J(θ) = (θ − θ̃∗A(θ) − θ̃∗B(θ))ηAB(θ) + ΛA(θ̃∗A(θ)) + ΛB(θ̃∗B(θ)), here ηAB(θ) is the
maximum point of the function θα − Λ∗

A(α) − Λ∗
B(α) in the interval [B, Λ′

A(δ∗)], and for
θ fixed, θ̃∗A(θ) and θ̃∗B(θ) are the unique solution of the equations Λ′

A(θ̃) = ηAB(θ) and
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Λ′
B(θ̃) = ηAB(θ), respectively.

We first verify the following fact that will be used repeatedly in the proof of Theorem 3.3.

Lemma 3.4: For X ∈ {A, B} and any real numbers y < z,

sup
y≤α≤z

{θα − Λ∗
X(α)} =

⎧⎨
⎩

ΛX(θ) if θ : Λ′
X(θ) ∈ [y, z]

θy − Λ∗
X(y) if θ : Λ′

X(θ) ≤ y
θz − Λ∗

X(z) if θ : Λ′
X(θ) ≥ z .

(14)

Proof. For θ such as Λ′
X(θ) ∈ [y, z], we have

θΛ′
X(θ) − Λ∗

X(Λ′
X(θ))) ≤ sup

y≤α≤z
{θα − Λ∗

X(α)} ≤ sup
α∈R

{θα − Λ∗
X(α)} = ΛX(θ).

It follows from the convex and differentiable properties of ΛX(θ) that

ΛX(θ) = θΛ′
X(θ) − Λ∗

A(Λ′
X(θ)).

This implies that in the case Λ′
X(θ) ∈ [y, z], supy≤α≤z{θα − Λ∗

X(α)} = ΛX(θ), i.e., the sup
is achieved at Λ′

X(θ). In the case Λ′
X(θ) �∈ [y, z], since the function θα − Λ∗

X(α) is concave,
it increases if Λ′

X(θ) ≥ z, and decreases if Λ′
X(θ) ≤ y in the interval [y, z]. Thus, the sup

over the interval [y, z] is achieved at the right end point z if Λ′
X(θ) ≥ z, and at the left end

point y if Λ′
X(θ) ≤ y. These complete the proof. �

Proof of Theorem 3.3. Since Nr is the maximum input rate, SA
t < Nrt for all

t ∈ N(). Thus, d(log E[exp(θSA
t )])/dθ = E[SA

t exp(θSA
t )]/E[exp(θSA

t )] < Nrt. We have
that Λ′

A(θ) = lim
t→∞{d(log E[exp(θSA

t )])/dθ}/t ≤ Nr for θ ≥ 0. Similarly, by the bounded

property of the service process, we have that Λ′
B(θ) = lim

t→∞{d(log E[exp(θSB
t )])/dθ}/t ≤ c

for θ ≥ 0. Moreover, since B < c, we only need to distinguish the following two cases for
Λ′

A(δ∗):

CASE1. A < Λ′
A(δ∗) ≤ B < min{c, Nr},

CASE2. A < B < Λ′
A(δ∗) ≤ min{c, Nr}.

CASE1. A < Λ′
A(δ∗) ≤ B < min{c, Nr} : By the definition of Λ∗

D(α), we can divide
the sup of (12) into three parts:

ΛD(θ) = sup
A≤α≤min{c,Nr}

{θα − Λ∗
D(α)}

= max{ sup
A≤α≤Λ′

A
(δ∗)

{θα − Λ∗
A(α)}, sup

Λ′
A

(δ∗)≤α≤B
{θα − (δ∗α − ΛA(δ∗))},

sup
B≤α≤min{c,Nr}

{θα−(δ∗α−ΛA(δ∗)+Λ∗
B(α))} }

≡ max{ Z1
1 (θ), Z1

2 (θ), Z1
3 (θ) }.

(i) 0 ≤ θ ≤ δ∗ (i.e. A ≤ Λ′
A(θ) ≤ Λ′

A(δ∗)):
In this case, Z1

1 (θ) = supA≤α≤Λ′
A

(δ∗){θα − Λ∗
A(α)} = ΛA(θ). Since θ ≤ δ∗ and that

ΛB(α) is an increasing function of α,

Z1
2 (θ) = sup

Λ′
A

(δ∗)≤α≤B
{θα − (δ∗α − ΛA(δ∗))} = sup

Λ′
A

(δ∗)≤α≤B
{(θ − δ∗)α} + ΛA(δ∗)

= (θ − δ∗)Λ′
A(δ∗) + ΛA(δ∗),

and
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Z1
3 (θ) = sup

B≤α≤min{c,Nr}
{θα − (δ∗α − ΛA(δ∗) + Λ∗

B(α))}

= sup
B≤α≤min{c,Nr}

{(θ − δ∗)α − Λ∗
B(α)} + ΛA(δ∗)

= (θ − δ∗)B − Λ∗
B(B) + ΛA(δ∗) = (θ − δ∗)B + ΛA(δ∗),

where the last equality follows from Λ∗
B(B) = 0. Since θ − δ∗ ≤ 0 and Λ′

A(δ∗) ≤ B, it holds
that Z1

2 (θ) ≥ Z1
3(θ). Furthermore, from the convex property of ΛA(·), we have that for any

θ ≤ δ∗,
ΛA(δ∗) − ΛA(θ)

δ∗ − θ
≤ Λ′

A(δ∗).

That is, ΛA(θ) ≥ (θ − δ∗)Λ′
A(δ∗) + ΛA(δ∗), which implicates that Z1

1 (θ) ≥ Z1
2 (θ). Hence,

ΛD(θ) = max{Z1
1 (θ), Z1

2 (θ), Z1
3 (θ)} = Z1

1 (θ).
(ii) θ > δ∗ (i.e. Λ′

A(θ) > Λ′
A(δ∗)):

From Lemma 3.4, we know that the sup restricted to A ≤ α ≤ Λ′
A(δ∗) is achieved at

Λ′
A(δ∗). Thus, Z1

1 (θ) = supA≤α≤Λ′
A

(δ∗){θα − Λ∗
A(α)} = θΛ′

A(δ∗) − Λ∗
A(Λ′

A(δ∗)) = ΛA(δ∗).
As θ > δ∗, we have that

Z1
2 (θ) = sup

Λ′
A

(δ∗)≤α≤B
{θα − (δ∗α − ΛA(δ∗))} = (θ − δ∗)B + ΛA(δ∗).

Clearly, Z1
2 (θ) ≥ Z1

1(θ) because θ− δ∗ ≥ 0. Applying Lemma 3.4 to Λ∗
B(·), furthermore, we

have that ΛB(θ−δ∗) = supα∈R{(θ−δ∗)α−Λ∗
B(α)} = (θ−δ∗)Λ′

B(θ−δ∗)−Λ∗
B(Λ′

B(θ−δ∗)),
i.e., sup is achieved at Λ′

B(θ − δ∗). Hence,

Z1
3 (θ) = sup

B≤α≤min{c,Nr}
{(θ − δ∗)α − Λ∗

B(θ)} + ΛA(δ∗)

=
{

ΛA(δ∗) + ΛB(θ − δ∗) if B ≤ Λ′
B(θ − δ∗) ≤ min{c, Nr}

ΛA(δ∗) + (θ − δ∗)min{c, Nr} − Λ∗
B(min{c, Nr}) if Λ′

B(θ − δ∗) > min{c, Nr}.
Since Λ′

B(·) is increasing, θ > δ∗ and ΛB(0) = 0, we have that Λ′
B(θ − δ∗) ≥ Λ′

B(0) = B.
Thus, ΛB(θ − δ∗) ≥ (θ − δ∗)B in the case that B ≤ Λ′

B(θ − δ∗) ≤ min{c, Nr}. On the
other hand, since (θ − δ∗)α − Λ∗

B(α) is increasing in the interval [B, min{c, Nr}], we have
that (θ − δ∗))B = (θ − δ∗))B − Λ∗

B(B) ≤ (θ − δ∗))min{c, Nr} − Λ∗
B(min{c, Nr})) when

Λ′
B(θ − δ∗) > min{c, Nr}. It follows that Z1

3 (θ) ≥ Z1
2 (θ). Hence, ΛD(θ) = Z1

3 (θ).
The proof of CASE2 is similar, we omit it here. These complete the proof. �

Next, we consider the transient departure process {Et, t ∈ N} from the MAP/MSP/1
queue (i.e., a departure process started from an empty queue at t = 0) and derive its
effective bandwidth αE(θ) = ΛE(θ)/θ. Et and its partial sum process SE

t are governed by
the following recursive equations:

Et = min{L̃t−1 + At−1, Bt−1}, SE
t = min{ inf

0<τ≤t
{SA

τ + SB
τ,t}, SB

t }.(15)

Similarly, define the process S̃M
t as follows:

S̃M
t = min{SA

t , SB
t }.

Then, we derive the large deviations results for these processes by the approach used in
Theorem 3.2 and Theorem 3.3.
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Corollary 3.5: Under A < B, for any α ∈ R,

lim
t→∞

1
t

log P{SE
t > αt} = lim

t→∞
1
t

log P{S̃M
t > αt} = − inf

x≥α
Λ∗

E(x),(16)

lim
t→∞

1
t

log E[eθSE
t ] = lim

t→∞
1
t

log E[eθS̃M
t ] = ΛE(θ), θ ≥ 0,(17)

where,

Λ∗
E(α) = inf

x≥α
Λ∗

A(x) + inf
x≥α

Λ∗
B(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if α < A
Λ∗

A(α) if α ≤ B
Λ∗

A(α) + Λ∗
B(α) if B < α ≤ min{c, Nr}

∞ if α > min{c, Nr}
and

ΛE(θ) = sup
A≤α

{θα − Λ∗
E(α)} = sup

A≤α≤min{c,Nr}
{θα − Λ∗

E(α)}.

Corollary 3.6: For any θ ≥ 0,

ΛE(θ) =
{

ΛA(θ) if θ : Λ′
A(θ) ≤ B

K(θ) if θ : Λ′
A(θ) > B(18)

where, K(θ) = (θ − θ̂∗A(θ) − θ̂∗B(θ))ξAB(θ) + ΛA(θ̂∗A(θ)) + ΛB(θ̂∗B(θ)), here ξAB(θ) is the
maximum point of the function θα − Λ∗

A(α) − Λ∗
B(α) in the interval [B, min{c, Nr}], and

for θ fixed, θ̂∗A(θ) and θ̂∗B(θ) are the unique solution of the equations Λ′
A(θ̂) = ξAB(θ) and

Λ′
B(θ̂) = ξAB(θ), respectively.

Corollary 3.7: (i) For any α ∈ R, Λ∗
D(α) ≤ Λ∗

E(α). In particular, Λ∗
D(α) = Λ∗

E(α) if
α ≤ Λ′

A(δ∗).
(ii) For any θ ≥ 0, ΛD(θ) ≥ ΛE(θ). In particular, ΛD(θ) = ΛE(θ) if θ ≤ δ∗.

Proof. Since L0 ≥ 0, SD
t ≥ SE

t for any t ≥ 0. Thus, P{SD ≥ αt} ≥ P{SE ≥ αt}. It follows
from (10) and (16) that − infx≥α Λ∗

D(x) ≥ − infx≥α Λ∗
E(x). We get that Λ∗

D(α) ≤ Λ∗
E(α)

from the convex properties of Λ∗
D(·) and Λ∗

E(·). Furthermore, we know from Theorem 2 in
[11] that the effect of L0 can be ignored when α ≤ Λ′

A(δ∗). Hence, Λ∗
D(α) = Λ∗

E(α). For
(ii), we have ΛD(θ) = supα∈R{θα − Λ∗

D(α)} ≥ supα∈R{θα − Λ∗
E(α)} = ΛE(θ). Comparing

ΛD(θ) with ΛE(θ) and noting that J(θ) = K(θ) when θ ≤ δ∗, we obtain the assertion that
ΛD(θ) = ΛE(θ). �

4. Large deviations bounds for the polling system

In this section, we derive the upper and lower bounds of the buffer overflow probability
for each queue in the polling system. Let MAP i/MSP i/1 be a single queueing system with
the arrival process {Ai

t, t ∈ N} and the potential service process {Bi
t, t ∈ N}, and denote

their effective bandwidths by αAi(θ) = ΛAi(θ)/θ = log(ρAi(θ))/θ and αBi(θ) = ΛBi(θ)/θ =
log(ρBi(θ))/θ, respectively. Further, let {Ei

t, t ∈ N} and {Di
t, t ∈ N} be the transient and

stationary departure processes from the MAP i/MSP i/1 queue, and denote their effective
bandwidths by αEi(θ) = ΛEi(θ)/θ and αDi(θ) = ΛDi(θ)/θ. Note that under the stability
condition (3) of the polling system, the situation that A1 ≥ B1 or A2 ≥ B2 might occur.
Thus, taking account of these possibilities and using the large deviations results for the
departure processes obtained in the previous section, we define
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ΛEi(θ) and ΛDi(θ) as follows. For any θ ≥ 0,

ΛEi(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CASE1. Ai < Bi

ΛAi(θ) if θ : Λ′
Ai(θ) ≤ Bi

Ki(θ) if θ : Λ′
Ai(θ) > Bi

CASE2. Ai ≥ Bi

Biθ

(19)

where, Ki(θ) = (θ− θ̂∗Ai(θ)− θ̂∗Bi(θ))ξAiBi

(θ)+ΛAi(θ̂∗Ai(θ))+ΛBi(θ̂∗Bi(θ)), here ξAiBi

(θ) is
the maximum point of the function θα−Λ∗

Ai(α)−Λ∗
Bi(α) in the interval [Bi, min{ci, Niri}],

and for θ fixed, θ̂∗Ai(θ) and θ̂∗Bi(θ) are the unique solution of the equations Λ′
Ai(θ̂) = ξAiBi

(θ)
and Λ′

Bi(θ̂) = ξAiBi

(θ), respectively. And for any θ ≥ 0,

ΛDi(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CASE1. Ai < Λ′
Ai(δ∗i ) ≤ Bi < min{ci, Niri}

ΛAi(θ) if θ ≤ δ∗i
ΛAi(δ∗i ) + ΛBi(θ − δ∗i ) if δ∗i < θ and

Bi ≤ Λ′
Bi(θ − δ∗i ) ≤ min{ci, Niri}

ΛAi(δ∗i ) + (θ − δ∗i )min{ci, Niri} if δ∗i < θ, and
−Λ∗

Bi(min{ci, Niri}) min{ci, Niri} < Λ′
Bi(θ − δ∗i )

CASE2. Ai < Bi < Λ′
Ai(δ∗i ) ≤ min{ci, Niri}

ΛAi(θ) if θ : Λ′
Ai(θ) ≤ Bi

Ji(θ) if θ : Λ′
Ai(θ) > Bi, θ ≤ δ∗i or

Λ′
Ai(θ) > Bi, θ > δ∗i ;

Λ′
Bi(θ − δ∗i ) ≤ Λ′

Ai(δ∗i )
max{Ji(θ),ΛAi(δ∗i ) + ΛBi(θ − δ∗i )} if θ : Λ′

Ai(θ) > Bi, θ > δ∗i and
Λ′

Ai(δ∗i ) < Λ′
Bi(θ − δ∗i )
≤ min{ci, Niri}

max{Ji(θ),ΛAi(δ∗i ) + (θ − δ∗i )min{ci, Niri} if θ : Λ′
Ai(θ) > Bi, θ > δ∗i and

−Λ∗
Bi(min{ci, Niri})} Λ′

Bi(θ − δ∗i ) > min{ci, Niri}
CASE3. Ai ≥ Bi

ΛBi(θ)
(20)
where, δ∗i is the largest solution to the equation ΛAi(θ) + ΛBi(−θ) = 0, and Ji(θ) = (θ −
θ̃∗Ai(θ)− θ̃∗Bi(θ))ηAiBi

(θ)+ΛAi(θ̃∗Ai(θ))+ΛBi (θ̃∗Bi(θ)), here ηAiBi

(θ) is the maximum point
of the function θα−Λ∗

Ai(α)−Λ∗
Bi(α) in the interval [Bi, Λ′

Ai(δ∗)], and for θ fixed, θ̃∗Ai(θ) and
θ̃∗Bi(θ) are the unique solution of the equations Λ′

Ai(θ̃) = ηAiBi

(θ) and Λ′
Bi(θ̃) = ηAiBi

(θ),
respectively.

Furthermore, we define Λ∗
Ei(α) as follows:

Λ∗
Ei(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CASE1. Ai < Bi

0 if α < Ai

Λ∗
Ai(α) if α ≤ Bi

Λ∗
Ai(α) + Λ∗

Bi(α) if Bi < α ≤ min{ci, Niri}
∞ if α > min{ci, Niri}

CASE2. Ai ≥ Bi

0 if α = Bi

∞ otherwise

(21)
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It follows from Corollary 3.5 that ΛEi(·) and Λ∗
Ei(·) is convex conjugate.

Theorem 4.1: Under the stability condition (3), the steady state queue length Li
0 of the

queue Qi satisfies
(i) upper bound:

lim sup
x→∞

1
x

log P{Li
0 > x} ≤ −Θ∗

ij(vi),(22)

where, Θ∗
ij(vi) is the unique solution of the equation:

αAi(θ) + viαDj (viθ) = ci, i �= j,(23)

and vi = ci/cj , i, j = 1, 2.
(ii) lower bound:

lim inf
x→∞

1
x

log P{Li
0 > x} ≥ −θ∗ij(li),(24)

where, θ∗ij(li) is the unique solution of the equation:

αAi(θ) + liαEj (liθ) = ci, i �= j,(25)

and li = max{vi, 1}1{Aj<Bj} + vi1{Aj≥Bj}, here 1C denotes the indicator function of the
set C.

We will use the following lemma given in [8] in proof of Theorem 4.1.

Lemma 4.2: For the convex conjugate Λ∗
X(·) and ΛX(·), it holds that

inf
α>c

Λ∗
X(α)

α − c
= θ∗(26)

where θ∗ is the unique positive root of the equation ΛX(θ) = cθ, and c > E[X ] is a constant.

Proof of Theorem 4.1. Without loss of generality, we establish the upper (22) and the
lower (24) for Q1, i.e., for the case that i = 1, j = 2. Again, we look backwards in time
from time 0, and assume that the system has reached its steady state. Thus, Li

0 has the
same distribution as Li∞.

1. Upper bound: The work-conservation of the Bernoulli service schedule permits the
server to devote its residual service capacity to another queue whenever the present queue
becomes empty in each slot. Under such the discipline, we analyze the amount of service
actually received by each queue at slot −t − 1. First, assume that the server is in Q2 at
the beginning of slot −t − 1, i.e. B2−t−1 = c2 and B1−t−1 = 0. If L2−t−1 + A2−t−1 < c2,
then (L2

−t−1 + A2
−t−1)/c2 (< 1) is the duration for the server to deal with the amount

of traffic L2−t−1 + A2−t−1. Thus, the amount of service received by Q1 at slot −t − 1 is
max{B1

−t−1, c1(1− (L2
−t−1 + A2

−t−1)/c2)} = c1(1 − (L2
−t−1 + A2

−t−1)/c2). Otherwise, if
L2
−t−1 + A2

−t−1 ≥ c2, then max{B1
−t−1, c1(1− (L2

−t−1 + A2
−t−1)/c2)} = 0. The amount

of service received by Q1 at slot −t − 1 is 0. Next, assume that the server is in Q1 at
the beginning of slot −t − 1, i.e. B2

−t−1 = 0 and B1
−t−1 = c1. Since it always holds

that c1(1− (L2
−t−1 + A2

−t−1)/c2) ≤ c1, max{B1
−t−1, c1(1− (L2

−t−1 + A2
−t−1)/c2)} = c1,

which means that Q1 can receive the amount of service c1 at slot −t − 1. Therefore,
max{B1

−t−1, c1(1− (L2
−t−1 + A2

−t−1)/c2)} is the amount of service actually received by Q1

at slot −t − 1. The similar results hold for Q2. We have that for t ≥ 0,

L1
−t = max{L1

−t−1 + A1
−t−1 − max{B1

−t−1, c1 − v1(L2
−t−1 + A2

−t−1)}, 0},(27)
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L2
−t = max{L2

−t−1 + A2
−t−1 − max{B2

−t−1, c2 − v2(L1
−t−1 + A1

−t−1)}, 0}(28)

where vi = ci/cj for i �= j. Let Ri
−t = max{Bi

−t, ci − vi(L
j
−t + Aj

−t)}, i, j = 1, 2; i �= j.
Expanding (27) and (28) recursively, we have that

Li
0 = max

t∈N
{ SAi

−t − SRi

−t }, i = 1, 2,(29)

where, SRi

−t =
∑−1

τ=−t Ri
τ is the total amount of service actually received by Qi in [−t, 0).

Observing that
SRi

−t = Li
−t + SAi

−t − Li
0. i = 1, 2,(30)

Thus, SRi

t ≥ SAi

t − Li
0. It follows that the maximum in (29) for i = 1 must be achieved at

the time when L1
t = 0. Let −t ≤ 0 be the first time such that L1−t = 0, then L1−τ > 0 for

−τ ∈ (−t, 0]. Since Q1 is busy during the interval (−t, 0] and the Bernoulli service schedule
is work-conserving, Q1 gets at least the amount of service SB1

−t (by considering the situation
that Q2 may become empty during (−t, 0]). Hence, SR1

−t ≥ SB1

−t . On the other hand, since
SR2

−t is the amount of service actually received by Q2 in the interval (−t, 0] and the rate
of service at Q2 is c2, SR2

−t /c2 is the duration that the server spent in Q2 over the interval
(−t, 0]. Thus, c1(t − SR2

−t /c2) = c1t − v1S
R2

−t is the amount of service received by Q1. We
have that

SR1

−t = max{ c1t − v1S
R2

−t , SB1

−t }.(31)

In addition, it follows from the definition of {Bi
t, t ∈ N} that for any t ≥ 0,

SBi

−t = cit − viS
Bj

−t , i, j = 1, 2; i �= j.(32)

Therefore,

SR1

−t = max{ c1t − v1S
R2

−t , c1t − v1S
B2

−t } = c1t − v1 min{ SR2

−t , SB2

−t }.(33)

Substituting (33) into (29) for i = 1 yields

L1
0 = max

t∈N
{ SA1

−t + v1 min{ SR2

−t , SB2

−t } − c1t }.(34)

CASE1 : A2 < B2

In this case we can bound L2
t from the above by the queue length of the single MAP 2/MSP 2/1

queueing system. Let L̃2
−t be the queue length of the single queue at time −t. Since this

queueing system does not receive extra service except SB2

−t , it always holds that L2
−t ≤ L̃2

−t.
We have that from (30)

SR2

−t ≤ L2
−t + SA2

−t ≤ L̃2
−t + SA2

−t .(35)

Combining (34) with (35) yields

L1
0 ≤ max

t∈N
{ SA1

−t + v1 min{ L̃2
−t + SA2

−t , SB2

−t } − c1t } = max
t∈N

{ SA1

−t + v1S
M2

−t − c1t}(36)

where SM2

−t = min{ L̃2
−t +SA2

−t , SB2

−t }. From Theorem 2.3 and Theorem 3.2, it follows that
for any θ > 0,

lim
t→∞

1
t

log E[eθSA1
−t ] = ΛA1(θ),
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lim
t→∞

1
t

log E[eθv1SM2
−t ] = ΛD2(v1θ).

Then, for any ε > 0, there exists a sufficiently large tε such that for any t ≥ tε

E[eθSA1
−t ] ≤ e(ΛA1 (θ)+ε)t, and E[eθv1SM2

−t ] ≤ e(ΛD2 (v1θ)+ε)t.

We have

E[eθL1
0] ≤ E[eθ maxt∈N{SA1

−t +v1SM2
−t −c1t}] ≤

∑
t∈N

E[eθ(SA1
−t +v1SM2

−t −c1t)]

=
∑
t∈N

E[eθSA2
−t ]E[eθv1SM2

−t ]e−θc1t ≤ Cε +
∑
t≥tε

e(ΛA1(θ)+ΛD2 (v1θ)+2ε−c1θ)t,

where the last second equality follows from the independence of SA2

−t and SM2

−t , and Cε is a
constant dependent on ε. It follows that E[eθL1

0] < ∞ if ΛA1(θ)+ΛD2 (v1θ)+2ε−c1θ < 0 (i.e.
αA1(θ)+v1αD2(v1θ)+2ε/θ−c1 < 0). By Chebyshev’s inequality, P{L1

0 > x} ≤ e−θxE[eθL1
0]

for any x ≥ 0. Thus, if αA1(θ) + v1αD2(v1θ) + 2ε/θ − c1 < 0,

lim sup
x→∞

1
x

log P{L1
0 > x} ≤ −θ.

Taking ε → 0 and getting the tightest upper bound, we establish (22).

CASE2. : A2 ≥ B2

According to (30), we have that

L1
0 ≤ max

t∈N
{ SA1

−t + v1S
B2

−t − c1t }.

For any θ > 0, similarly, if ΛA1(θ) + ΛB2(v1θ) + 2ε − c1θ < 0, then,

E[eθL1
0] ≤

∑
t∈N

E[eθ(SA2
−t +v1SD2

−t −c1t)] < ∞.

Again by Chebyshev’s inequality, if αA1(θ) + v1αB2(v1θ) + 2ε/θ − c1 < 0,

lim sup
x→∞

1
x

log P{L1
0 > x} ≤ −θ.

Taking ε → 0 and getting the tightest upper bound (note that αD2(θ) = ΛB2(θ)/θ in this
case), we establish (22).

2. Lower bound: In section 2, we have defined Lt = L1
t + L2

t as the aggregate queue
length of the two queues, and Rt = R1

t +R2
t as the aggregate service process for Lt. Hence,

L0 = max
t∈N

{ SA1

−t + SA2

−t − (SR1

−t + SR2

−t ) }.(37)

This maximum must also be achieved at the time when L−t = 0. Let −t∗ ≤ 0 be the first
time such that L−t∗ = 0 (which implies that L1

−t∗ = L2
t∗ = 0) and L−t > 0 for t ∈ (0, t∗).

In addition, we have a similar expression to (34) for L2
0 :

L2
0 = max

t∈N
{ SA2

−t + v2 min{ SR1

−t , SB1

−t } − c2t }.(38)
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This maximum must also be achieved at the time when L2
−t = 0. Let −τ∗ ≤ 0 be the

first time such that L2
−τ∗ = 0 and L2

−t > 0 for t ∈ (0, τ∗). Then, we have τ∗ ≤ t∗,
SA2

−t∗,−τ∗ = SR2

−t∗,−τ∗ and SB2

−τ∗ ≤ SR2

−τ∗ . Utilizing these facts and the relations (37) and
(38), we have that

L1
0 = L0 − L2

0(39)

= max
t∈N

{ SA1

−t + SA2

−t − (SR1

−t + SR2

−t ) } − max
t∈N

{ SA2

−t + v2 min{ SR1

−t , SB1

−t } − c2t }

= max
t∈N

{ SA1

−t + SA2

−t − (SR1

−t + SR2

−t ) − max
0≤τ≤t

{ SA2

−τ + v2 min{ SR1

−τ , SB1

−τ } − c2τ }}

= max
t∈N

{ SA1

−t + SA2

−t − (SR1

−t + SR2

−t ) − max
0≤τ≤t

{ SA2

−τ + v2S
B1

−τ − c2τ }}

= max
t∈N

{ SA1

−t + min
0≤τ≤t

{SA2

−t,−τ + SB2

−τ} − (SR1

−t + SR2

−t )}

= max
t∈N

{ SA1

−t + min
0≤τ≤t

{ SA2

−t,−τ + SB2

−τ } − (c1t − (1 − v1)SR2

−t ) }

= max
t∈N

{ SA1

−t + v1 min
0≤τ≤t

{ SA2

−t,−τ + SB2

−τ } − c1t + (1 − v1)[ min
0≤τ≤t

{ SA2

−t,−τ + SB2

−τ } − SR2

−t ]}

If v1 < 1, then (1 − v1)SR2

−t ≥ 0. It follows from the last second equality that

L1
0 ≥ max

t∈N
{ SA1

−t + min
0≤τ≤t

{ SA2

−t,−τ + SB2

−τ } − c1t}.(40)

Furthermore, the fact that SA2

−t∗,−τ∗ = SR2

−t∗,−τ∗ and SB2

−τ∗ ≤ SR2

−τ∗ implies SA2

−t∗,−τ∗+
SB2

−τ∗ ≤ SR2

−t∗ . We have min
0≤τ≤t

{ SA2

−t,−τ + SB2

−τ } ≤ SB2

−t ≤ SR2

−t . Hence, if v1 ≥ 1, then

(1− v1)[min0≤τ≤t{ SA2

−t,−τ +SB2

−τ }−SR2

−t ] ≥ 0. It follows from the last equality of (39) that

L1
0 ≥ max

t∈N
{ SA1

−t + v1 min
0≤τ≤t

{ SA2

−t,−τ + SB2

−τ } − c1t }.(41)

Let l̃i = max{vi, 1}, i = 1, 2. Then, we can write (40) and (41) together as follows:

L1
0 ≥ max

t∈N
{ SA1

−t + l̃1 min
0≤τ≤t

{ SA2

−t,−τ + SB2

−τ } − c1t }

=st max
t∈N

{ SA1

−t + l̃1 min
0≤τ≤t

{ SA2

−τ + SB2

−t,−τ } − c1t }.

For any x ≥ 0, let t = 	x/β
, where β > 0 is an arbitrary constant. From (41), we obtain
the following inequality:

lim inf
x→∞

1
x

log P{L1
0 > x} ≥ 1

β
lim inf
t→∞

1
t

log P{L1
0 > βt}(42)

≥ 1
β

lim inf
t→∞

1
t

log P{ SA1

−t + l̃1 min
0≤τ≤t

{ SA2

−τ + SB2

−t,−τ } − c1t > βt }

=
1
β

lim inf
t→∞

1
t

log P{ SA1

−t

t
+ l̃1

min0≤τ≤t{ SA2

−τ + SB2

−t,−τ }
t

> c1 + β }.

CASE1. v1 ≥ 1 :
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(i) A2 ≥ B2: Since c1 = q1c1/(q1 + q2) + q2c1/(q1 + q2) = B1 + v1q2c2/(q1 + q2) =
B1 + v1B2,

P{ SA1

−t

t
+ v1

min0≤τ≤t{ SA2

−τ + SB2

−t,−τ }
t

> c1 + β }

= P{ SA1

−t

t
+ v1

min0≤τ≤t{ SA2

−τ + SB2

−t,−τ }
t

> B1 + v1B2 + β }

≥ P{ SA1

−t

t
> B1 + β, v1

min0≤τ≤t{ SA2

−τ + SB2

−t,−τ }
t

> v1B2 }

= P{ SA1

−t

t
> B1 + β }P{min0≤τ≤t{ SA2

−τ + SB2

−t,−τ }
t

> B2 },
where, the last equality follows from the independence of {A1

−t; t ∈ N}, {A2
−t; t ∈ N} and

{B2
−t; t ∈ N}. Thus,

lim inf
x→∞

1
x

log P{L1
0 > x}

≥ 1
β

(
lim inf
t→∞

1
t

log P{ SA1

−t

t
> B1 + β } + lim inf

t→∞
1
t

log P{min0≤τ≤t{ SA2

−τ + SB2

−t,−τ }
t

> B2 }
)

≥ − 1
β

inf
α≥B1+β

Λ∗
A1(α) − 1

β
inf

α≥B2
Λ∗

E2(α) = − 1
β

inf
α≥B1+β

Λ∗
A1(α),

where, the last equality follows from the definition (48) of Λ∗
E2(α) that infα≥B2 Λ∗

E2(α) =
Λ∗

E2(B2) = 0 if A2 ≥ B2. As β is arbitrary we have that

lim inf
x→∞

1
x

log P{L1
0 > x} ≥ − inf

β>0
inf

α>B1+β

{
Λ∗

A1(α)
β

}
= − inf

α>B1
inf

α−B1>β

{
Λ∗

A1(α)
β

}

= − inf
α>B1

{
Λ∗

A1(α)
α − B1

}
= −θ∗12(v1),

where, the last second equality follows from the fact that 1/x is a continuous decreasing
function for x > 0, and the last equality follows from Lemma 4.2. Here θ∗12(v1) is the
unique positive solution of the equation: ΛA1(θ) = B1θ. However, by the definition (21),
we have ΛE2(θ) = B2θ in the case A2 ≥ B2. Thus, c1θ − ΛE2(v1θ) = c1θ − B2v1θ =
c1θ − v1q2c2/(q1 + q2)θ = q1c1/(q1 + q2)θ = B1θ. So θ∗12(v1) is in fact the unique solution
of the equation ΛA1(θ) + ΛE2(v1θ) = c1θ, which is identical to the equation (25) because
l1 = v1 in this case.

(ii) A2 < B2: Let αi ≥ Ai, i = 1, 2 and α1 + α2 > c1 + β. Then,

P{ SA1

−t

t
+ v1

min0≤τ≤t{ SA2

−τ + SB2

−t,−τ }
t

> c1 + β }

≥ P{ SA1

−t

t
> α1, v1

min0≤τ≤t{ SA2

−τ + SB2

−t,−τ }
t

> α2 }

= P{ SA1

−t

t
> α1 }P{v1

min0≤τ≤t{ SA2

−τ + SB2

−t,−τ }
t

> α2 }.
We have that

lim inf
x→∞

1
x

log P{L1
0 > x}(43)
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≥ 1
β

(
lim inf
t→∞

1
t

log P{ SA1

−t

t
> α1 } + lim inf

t→∞
1
t

log P{min0≤τ≤t{ SA2

−τ + SB2

−t,−τ }
t

> v2α2 }
)

≥ − 1
β

(
inf

x≥α1
Λ∗

A1(x) + inf
x≥v2α2

Λ∗
E2(x)

)
= − 1

β
(Λ∗

A1(α1) + Λ∗
E2(v2α2)),

where, the last equality follows from the increasing properties of Λ∗
A2(·) and Λ∗

E2(·), and
v2 = 1/v1. As β is arbitrary we have that

lim inf
x→∞

1
x

log P{L1
0 > x} ≥ − inf

β>0

1
β

inf
{αi∈R,αi≥Ai,i=1,2;α1+α2>c1+β}

{Λ∗
A1(α1) + Λ∗

E2(v2α2)}

= − inf
{αi∈R,αi≥Ai,i=1,2;α1+α2>c1}

inf
α1+α2−c1>β

{
Λ∗

A1(α1) + Λ∗
E2(v2α2)

β

}
(44)

= − inf
{αi∈R,αi≥Ai,i=1,2;α1+α2>c1}

{
Λ∗

A1(α1) + Λ∗
E2(v2α2)

α1 + α2 − c1

}

= − inf
α>c1

{
I∗(α)
α − c1

}
= −θ∗12(v1),

where,
I∗(α) ≡ − inf

{αi∈R,αi≥Ai,i=1,2;α1+α2>c1}
{Λ∗

A1(α1) + Λ∗
E2(v2α2)},

and θ∗12(v1) is the unique solution of the equation ΛA1(θ) + ΛE2(v1θ) = c1θ. Let I(θ) =
supα∈R{θα − I∗(α)}. By Lemma 4.2, if we can prove that I(θ) = ΛA2(θ) + ΛE2(v1θ) and
I ′(0) < c1, then the last equality in (44) is obtained. First, we have that

I(θ) = sup
α∈R

{ θα − inf
{αi∈R,αi≥Ai,i=1,2;α1+α2>c1}

{Λ∗
A1(α1) + Λ∗

E2(v2α2)} }

= sup
α∈R

sup
{αi∈R,αi≥Ai,i=1,2;α1+α2>c1}

{ θα − Λ∗
A1(α1) − Λ∗

E2(v2α2) }

= sup
α1∈R,α2∈R

{ θα1 + θα2 − Λ∗
A1(α1) − Λ∗

E2(v2α2) }

= sup
α1∈R,α2∈R

{ (θα1 − Λ∗
A1(α1)) + (v1θv2α2 − Λ∗

E2(v2α2)) }

= sup
α1∈R

{ θα1−Λ∗
A1(α1) }+ sup

α2∈R
{ v1θv2α2−Λ∗

E2(v2α2) } = ΛA2(θ)+ΛE2(v1θ).

Secondly, since A2 < B2 and the stability condition (3), we have

I ′(θ)|θ=0 = (Λ′
A1(θ) + v1Λ′

E2(v1θ))|θ=0 = A1 + v1A2 < B1 + v1B2 = c1.

Hence, we obtain the lower bound (24) in the case A2 < B2.

CASE2. v1 < 1 :

(i) A2 ≥ B2: Note that v1B2 < B2 in this case. We still have that infα≥v1B2 Λ∗
E2(α) = 0.

By the same procedure used in CASE1(i), we have

lim inf
x→∞

1
x

log P{L1
0 > x} ≥= − inf

α>B1

{
Λ∗

A1(α)
α − B1

}
= −θ∗12(v2)

where, the last equality follows from Lemma 4.2, namely, θ∗12(v2) is the unique positive
solution of the equation: ΛA1(θ) = B1θ. Again, we have that ΛE2(θ) = B2θ in this case.
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Then, c1θ−ΛE2(v1θ) = c1θ−B2v1θ = B1θ. Hence, θ12(v2) is actually the unique solution of
the equation ΛA1(θ)+ΛE2(θ) = c1θ, which is identical to the equation (25) because l1 = v1

in the case A2 ≥ B2.

(ii) A2 < B2: The lower bound can be obtained by replacing v1 by 1 in the proof of
CASE1(ii). We omit it here. �

Remark 1. From the relation (32), we obtain that ΛBi(−θ) = −ciθ + ΛBj (viθ), i �= j.
Substituting it into the equation ΛAi(θ) + ΛBi(−θ) = 0 yields that δ∗i is the largest
solution of the equation ΛAi(θ) + ΛBj (viθ) = ciθ, i.e. αAi(θ) + viαBj (viθ) = ci. As
ΛEi(θ) ≤ ΛDi(θ) ≤ ΛBi(θ) for θ ≥ 0, we have that θ∗ij(vi) ≥ Θ∗

ij(vi) ≥ δ∗i , which means
that the roots of the equations (23) and (25) can not be obtained before δ∗i .

5. Conclusion

In this paper, we have analyzed a discrete-time polling system under the Bernoulli service
schedule and presented the large deviations upper and lower bounds of the buffer overflow
probabilities. These results can be used in traffic management of high-speed communication
networks such as call admission control and bandwidth allocation problems. For instance,
utilizing the relations obtained between the large deviations bounds and the parameters
pi, qi, we can guarantee the different QoS requirements for the two queues via controlling
the values of pi, qi.

As have been seen, the large deviations upper and lower bounds here do not match
exactly. The reason is that we used the effective bandwidths of the stationary departure
process in deducing the upper bound and the effective bandwidths of the transient depar-
ture process in deducing the lower bound. When the server allocates its service capacity to
a queueing system randomly, a large deviations in the departure from the stationary queue
may be encouraged. This results in the difference between the two rate functions of the
large deviations of the stationary departure process and the transient departure processes.
This phenomenon has been observed by Chang and Zajic [11] and it does not occur when
the service capacity is deterministic, e.g. GPS service policy in [27]. Therefore, developing
a method to give matched large deviations upper and lower bounds for the polling system
still is an open problem. We will take this as the further investigation subject.
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