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Abstract. If two positive operators A and B commute, then A �α B = A1−αBα for
all 0 ≤ α ≤ 1. In this note, we prove a norm inequality for the geometric mean A �α B
and its reverse inequality: Let A and B be positive operators on a Hilbert space such
that 0 < m ≤ A, B ≤ M for some scalars 0 < m < M and h = M

m
. Then for each

0 ≤ α ≤ 1

K(h2, α)‖A1−αBα‖ ≤ ‖A �α B‖ ≤ ‖A1−αBα‖,
where K(h, α) is a generalized Kantorovich constant.

1 Introduction. Let A and B be two positive operators on a Hilbert space. The
arithmetric-geometric mean inequality says that

(1 − α)A + αB ≥ A �α B for all 0 ≤ α ≤ 1,(1)

where the α-geometric mean A �α B is defined as follows:

A �α B = A
1
2

(
A− 1

2 BA− 1
2

)α

A
1
2 for all 0 ≤ α ≤ 1.(2)

On the other hand, Ando [1] proved the Matrix Young inequality: For positive semi-
definite matrices A, B and 1

p + 1
q = 1

1
p
Ap +

1
q
Bq ≥ U∗|AB|U(3)

for some unitary matrix U . By (3), for positive semi-definite matrices A,B

‖(1 − α)A + αB‖ ≥ ‖A1−αBα‖ for all 0 ≤ α ≤ 1(4)

and by (1) we have

‖(1 − α)A + αB‖ ≥ ‖A �α B‖ for 0 ≤ α ≤ 1 and A,B ≥ 0.

Here we remark that McIntosh [6] proved that (4) for α = 1/2 holds for positive opera-
tors.

In this note, we prove a norm inequality and its reverse on the geometric mean. In other
words, we estimate ‖A �α B‖ by ‖A1−αBα‖ as mentioned in the abstract. Moreover we
discuss it for the case α > 1. Our main tools are Araki’s inequality [2] and its reverse one
[4].
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2 Norm inequalities. First of all, we cite Araki’s inequality [2]:

Theorem A. If A and B are positive operators, then

‖BAB‖p ≤ ‖BpApBp‖ for all p > 1(5)

or equivalently

‖BpApBp‖ ≤ ‖BAB‖p for all 0 < p < 1.(6)

As seen in [3], it is equivalent to the Cordes inequality

‖ApBp‖ ≤ ‖AB‖p for all 0 < p < 1.

We show the following norm inequality, in which we use Theorem A twice:

Theorem 1. Let A and B be positive operators. Then for each 0 ≤ α ≤ 1

‖A �α B‖ ≤ ‖A1−αBα‖.(7)

Proof. It follows from (6) of Theorem A that

‖A 1
2

(
A− 1

2 BA− 1
2

)α

A
1
2 ‖ ≤ ‖A 1

2α A− 1
2 BA− 1

2 A
1
2α ‖α = ‖A 1−α

2α BA
1−α
2α ‖α

for 0 ≤ α ≤ 1.
Furtheremore, if α ≥ 1/2, then by (6) of Theorem A again

‖A 1−α
2α BA

1−α
2α ‖α ≤ ‖A1−αB2αA1−α‖ 1

2 = ‖A1−αBα‖.
Hence, if 1/2 ≤ α ≤ 1, then we have the desired inequality (7).

If α < 1/2, then by using A �α B = B �1−α A, it reduces the proof to the case α ≥ 1/2
and so the proof is complete.

We use also the notation � to distingush from the operator mean �;

A �α B = A
1
2

(
A− 1

2 BA− 1
2

)α

A
1
2 for all α �∈ [0, 1].(8)

Theorem 2. Let A and B be positive operators. If 3/2 ≤ α ≤ 2, then

‖A �α B‖ ≤ ‖A1−αBα‖.(9)

Proof. Put α = 1 + β and 1/2 ≤ β ≤ 1. Then we have

‖A �α B‖ = ‖B �−β A‖ = ‖B 1
2

(
B− 1

2 AB− 1
2

)−β

B
1
2 ‖

= ‖B 1
2

(
B

1
2 A−1B

1
2

)β

B
1
2 ‖

≤ ‖B 1
2β B

1
2 A−1B

1
2 B

1
2β ‖β by (6) and 1/2 ≤ β ≤ 1

= ‖B 1+β
2β A−1B

1+β
2β ‖β

≤ ‖B1+βA−2βB1+β‖ 1
2 by (6) and 0 < 1

2β ≤ 1

= ‖A−βB1+β‖ = ‖A1−αBα‖.
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Remark 3. In Theorem 2, the inequality ‖A �α B‖ ≤ ‖A1−αBα‖ does not always hold for

1 < α < 3/2. In fact, Let A =
(

2 1
1 1

)
and B =

(
2 1
1 2

)
. Then we have ‖A � 4

3
B‖ =

3.38526 > ‖A− 1
3 B

4
3 ‖ = 3.3759. Also, ‖A � 7

5
B‖ = 3.49615 < ‖A− 2

5 B
7
5 ‖ = 3.50464.

3 Reverse type inequalities. In this section, we show reverse inequalities of the results
obtained in the previous section. In order to prove our results, we need some preliminaries.
For h > 0, a generalized Kantorovich constant K(h, p) is defined by

K(h, p) =
hp − h

(p − 1)(h − 1)

(
p − 1

p

hp − 1
hp − h

)p

(10)

for any real numbers p ∈ R. We state some properties of K(h, p) (see [5, Theorem 2.54]):

Lemma 4. Let h > 0 be given. Then a generalized Kantorovich constant K(h, p) has the
following properties.
(i) K(h, p) = K(h−1, p) for all p ∈ R.
(ii) K(h, p) = K(h, 1 − p) for all p ∈ R.
(iii) K(h, 0) = K(h, 1) = 1 and K(1, p) = 1 for all p ∈ R.

(iv) K(hr, p
r )

1
p = K(hp, r

p )−
1
r for pr �= 0.

The following theorem is reverse inequalities of Araki’s inequality [4].

Theorem B. If A and B are positive operators such that 0 < m ≤ A ≤ M for some scalars
0 < m < M , then

‖BpApBp‖ ≤ K(h, p) ‖BAB‖p for all p > 1(11)

or equivalently

K(h, p) ‖BAB‖p ≤ ‖BpApBp‖ for all 0 < p < 1,(12)

where a generalized Kantorovich constant K(h, p) is defined by (10) and h = M
m is a gener-

alized condition number of A in the sense of Turing [7].

We show the following reverse inequality for Theorem 1:

Theorem 5. If A and B are positive operators such that 0 < m ≤ A,B ≤ M for some
scalars 0 < m < M and h = M

m , then for each 0 ≤ α ≤ 1

K(h2, α)‖A1−αBα‖ ≤ ‖A �α B‖.(13)

Proof. Suppose that 0 ≤ α ≤ 1
2 . Since m

M ≤ A− 1
2 BA− 1

2 ≤ M
m , it follows that a generalized

condition number of A− 1
2 BA− 1

2 is M
m / m

M = h2 and we have

‖A �α B‖ = ‖(A 1
2α )α

(
A− 1

2 BA− 1
2

)α

(A
1
2α )α‖

≥ K(h2, α)‖A 1
2α A− 1

2 BA− 1
2 A

1
2α ‖α by (12) and 0 ≤ α ≤ 1

2

= K(h2, α)‖A 1−α
2α BA

1−α
2α ‖α

≥ K(h2, α)‖A1−αB2αA1−α‖ 1
2 by (5) and 1

2α ≥ 1

= K(h2, α)‖A1−αBα‖.
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Suppose that 1
2 ≤ α ≤ 1. Since 0 ≤ 1 − α ≤ 1

2 , we have

‖A �α B‖ = ‖B �1−α A‖
≥ K(h2, 1 − α)‖B1−(1−α)A1−α‖
= K(h2, α)‖A1−αBα‖ by (ii) of Lemma 4

and so the proof is complete.

We show the following reverse inequality for Theorem 2:

Theorem 6. If A and B are positive operators such that 0 < m ≤ A,B ≤ M for some
scalars 0 < m < M and h = M

m , then for each 3
2 ≤ α ≤ 2

K(h2, α − 1)K(h, 2(α − 1))−
1
2 ‖A1−αBα‖ ≤ ‖A �α B‖.

Proof. Put α = 1 + β and 1/2 ≤ β ≤ 1. Then we have

‖A �α B‖ = ‖B �−β A‖
= ‖B 1

2

(
B

1
2 A−1B

1
2

)β

B
1
2 ‖

≥ K(h2, β)‖B 1
2β B

1
2 A−1B

1
2 B

1
2β ‖β by (12) of Theorem B and 1/2 ≤ β ≤ 1

= K(h2, β)‖B 1+β
2β A− 2β

2β B
1+β
2β ‖β

≥ K(h2, β)
(

K(h−2β,
1
2β

)‖B1+βA−2βB1+β‖ 1
2β

)β

by (12) and 0 < 1
2β ≤ 1

= K(h2, β)K(h−2β ,
1
2β

)β‖A−βB1+β‖

= K(h2, β)K(h, 2β)−
1
2 ‖A1−αBα‖.

The last equality follows from

K(h−2β ,
1
2β

)β = K(h2β,
1
2β

)β = K(h, 2β)−
β
2β = K(h, 2β)−

1
2

by (i) and (iv) of Lemma 4.

As mentioned in Remark 3, we have no relation between ‖A �α B‖ and ‖A1−αBα‖ for
1 ≤ α ≤ 3

2 . We have the following result:

Theorem 7. If A and B are positive operators such that 0 < m ≤ A,B ≤ M for some
scalars 0 < m < M and h = M

m , then for each 1 ≤ α ≤ 3
2

K(h2, α − 1)‖A1−αBα‖ ≤ ‖A �α B‖ ≤ K(h, 2(α − 1))−
1
2 ‖A1−αBα‖.
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Proof. Put α = 1 + β and 0 ≤ β ≤ 1
2 . Since a generalized condition number of A−2β is

h−2β, it follows that

‖A �α B‖ = ‖B �−β A‖ = ‖B 1
2

(
B− 1

2 AB− 1
2

)−β

B
1
2 ‖

= ‖B 1
2

(
B

1
2 A−1B

1
2

)β

B
1
2 ‖

≤ ‖B 1
2β B

1
2 A−1B

1
2 B

1
2β ‖β by (6) and 0 ≤ β ≤ 1

= ‖B 1+β
2β A−1B

1+β
2β ‖β

≤
(

K(h−2β,
1
2β

)‖B1+βA−2βB1+β‖ 1
2β

)β

by (11) and 1 ≤ 1
2β

= K(h, 2(α − 1))−
1
2 ‖A1−αBα‖ by (i) and (iv) of Lemma 4.

Also, we have

‖A �α B‖ = ‖B �−β A‖ = ‖B 1
2

(
B− 1

2 AB− 1
2

)−β

B
1
2 ‖

= ‖B 1
2

(
B

1
2 A−1B

1
2

)β

B
1
2 ‖

≥ K(h2, β)‖B 1
2β B

1
2 A−1B

1
2 B

1
2β ‖β by (12) and 0 ≤ β ≤ 1

= K(h2, β)‖B 1+β
2β A−1B

1+β
2β ‖β

≥ K(h2, β)‖B1+βA−2βB1+β‖ 1
2 by (5) and 1

2β ≥ 1

= K(h2, α − 1)‖A1−αBα‖

and so the proof is complete.

Finally, we consider the case of α ≥ 2:

Theorem 8. If A and B are positive operators such that 0 < m ≤ A,B ≤ M for some
scalars 0 < m < M and h = M

m , then for each α ≥ 2

K(h, 2(α − 1))−
1
2 ‖A1−αBα‖ ≤ ‖A �α B‖ ≤ K(h2, α − 1)‖A1−αBα‖.

Proof. Put α = 1 + β and β ≥ 1. Then we have

‖A �α B‖ = ‖B �−β A‖ = ‖B 1
2

(
B− 1

2 AB− 1
2

)−β

B
1
2 ‖

= ‖B 1
2

(
B

1
2 A−1B

1
2

)β

B
1
2 ‖

≤ K(h2, β)‖B 1
2β B

1
2 A−1B

1
2 B

1
2β ‖β by (11) and β ≥ 1

= K(h2, β)‖B 1+β
2β A−1B

1+β
2β ‖β

≤ K(h2, α − 1)‖A1−αBα‖ by (6) and 0 < 1
2β ≤ 1.
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Also, it follows that

‖A �α B‖ = ‖B �−β A‖ = ‖B 1
2

(
B− 1

2 AB− 1
2

)−β

B
1
2 ‖

= ‖B 1
2

(
B

1
2 A−1B

1
2

)β

B
1
2 ‖

≥ ‖B 1
2β B

1
2 A−1B

1
2 B

1
2β ‖β by (5) and β ≥ 1

= ‖B 1+β
2β A−1B

1+β
2β ‖β

≥ K(h−2β ,
1
2β

)β‖B1+βA−2βB1+β‖ 1
2 by (11) and 0 < 1

2β ≤ 1

= K(h, 2(α − 1))−
1
2 ‖A1−αBα‖ by (i) and (iv) of Lemma 4.
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