MARGINAL MEASURE PROBLEMS ON THE RANKED SPACE S'

RATAKA TAHATA

Received August 24, 2006

ABSTRACT. Let S be the set of all rapidly decreasing C^{∞} -functions defined in \mathbb{R}^k and S' its topological dual for the usual topology. S' is definable as a ranked space. The family of preneighbourhoods defines a topology for it. We denote the space equipped with the topology by S'_R . Our aim in this note is to study Strassen's marginal measure problems for S'_R . Our results are that if we read continuous functions and open sets as Borel measurable functions and Borel sets, respectively, in [8], Theorem 7 and Theorem 11, then the similalities of Strassen's results hold still.

§1. Introduction

Let S, S' and S'_R be the same as in the above. S'_R satisfies the second axiom of countability and is metrizable for the topology (see [6], Paragraph II). Our aim in this note is to study Strassen's marginal measure problems (see [8], Theorem 7 and Theorem 11) for S'_R . S'_R is not a Polish space. Hence our results differ a little from Strassen's one, that is, we have to read continuous functions and open sets as Borel measurable functions and Borel sets, respectively, in [8], Theorem 7 and Theorem 11. However our conditions are equivalent to Strassen's one for Polish spaces.

To obtain our results the following facts play important roles;

(1) the Borel σ -algebra of S'_R coincides with it of the spaces S'_w equipped with the week topology $\sigma(S', S)$ and it of the space S'_r topologized by the family of all *r*-open sets of the ranked space S' (see [6], p. 810, Theorem 11),

(2) the projection of any Borel set of the product space $S'_R \times S'_R$ is universally measurable with respect to $(S'_R, \beta(S'_R))$.

For it the notion of *r*-convergence plays an important role.

§2. The ranked space S' and measurability

Let S and S' be the same as in §1 and **N** the set of all non-negative integers. For each m in **N**, let $(,)_m$ be an inner product on S defined by

$$(\phi,\psi)_m = \sum_q \int_{R^k} D^q \phi(x) \overline{D^q \psi(x)} dx \ (D^q = \frac{\partial^{q_1 + \dots + q_k}}{\partial x_1^{q_1} \cdots \partial x_k^{q_k}}),$$

where q runs through all multi-indices $q = (q_1, \dots, q_k)$ with $0 \le q_i \le 3m$ for each $i = 1, 2, \dots, k$. Putting

$$\|\phi\|_m = \sqrt{(\phi, \phi)_m},$$

we have

$$\|\phi\|_0 \le \|\phi\|_1 \le \cdots \ (\phi \in S).$$

²⁰⁰⁰ Mathematics Subject Classification. 46A19, 60B05.

Key words and phrases. Marginal measures, ranked spaces.

Put, for any f in S',

$$||f||_{-m} = \sup\{|f(\phi)|: \phi \in S \text{ and } ||\phi||_m \le 1\},\$$

and

$$p(f) = \min\{m : \|f\|_{-m} < +\infty\}.$$

Let $S'_m = \{f \in S' : p(f) \le m\}$ for each m in **N**.

Proposition 2.1 ([6], p. 807). The followings hold.

(1)
$$S' = \bigcup_{m=0}^{\infty} S'_m$$
.

(2)
$$m \le m'$$
 iff $S'_m \subset S'_{m'}$.

(3) For each m in N, $\|\|_{-m}$ is a norm on S'_m and each normed space $(S'_m, \|\|_{-m})$ is complete.

For each f in S' put

$$V(f; m, j) = f + \{g \in S'_m : \|g\|_{-m} < \frac{1}{2^j}\} (j, m \in \mathbf{N}),$$
$$\mathcal{U}(f) = \{V(f; m, j); j = 0, 1, \cdots, \max(1, p(f)) \le m, m \in \mathbf{N}\}$$

and

$$\mathcal{U}_{i} = \{ V(f; m, j) : f \in S', \max(1, p(f)) \le m, m \in \mathbf{N} \}.$$

Then $(S', \mathcal{U}(f), \mathcal{U}_j)$ becomes a ranked space (see [5], §2). Since the family $\mathcal{U}(f)$ of preneighbourhoods for each f in S' satisfies the axioms (B) and (C) of Hausdorff, $\mathcal{U}(f)$ becomes a fundamental system of neighbourhoods of f (see [5], §1, 1.6). $\mathcal{O}(S')$ denotes this topology. Furthermore the ranked space $(S', \mathcal{U}(f), \mathcal{U}_j)$ satisfies $(r - T_2)$ (see [6], P. 807, Theorem 7). Hence the topological space $(S', \mathcal{O}(S'))$ is a Hausdorff space. S. Nakanishi showed the following theorem in [6], §7 and §8.

Theorem 2.2. The topological space $(S', \mathcal{O}(S'))$ satisfies the second axiom of countability and is metrizable.

We denote the topological space $(S', \mathcal{O}(S'))$ and S' equipped with the weak topology $\sigma(S', S)$ by S'_R and S'_w , respectively. We, also, denote the topological space S' topologized by the family of all *r*-open sets of the ranked space $(S', \mathcal{U}(f), \mathcal{U}_j)$ by S'_r . $\beta(S'_R), \beta(S'_r)$ and $\beta(S'_w)$ denote the Borel σ -algebras of S'_R, S'_r and S'_w , respectively.

Theorem 2.3 ([6], p. 810, Theorem 11). $\beta(S'_R) = \beta(S'_r) = \beta(S'_w)$ hold.

Proposition 2.4. For each m in N a normed space $(S'_m, || ||_{-m})$ is a separable Banach spaces.

Proof. Since the topological space $(S', \mathcal{O}(S'))$ satisfies the second axiom of countability, the topological subspace $(S'_m, \mathcal{O}(S'_m))$ of $(S', \mathcal{O}(S'))$ satisfies the second axiom of countability. The topology of $(S'_m, \mathcal{O}(S'_m))$ is stronger than it of $(S'_m, \| \|_{-m})$. Therefore the normed space $(S'_m, \| \|_{-m})$ is separable. By Proposition 2.1 $(S'_m, \| \|_{-m})$ is a separable Banach space.

Theorem 2.5. Let $\beta((S'_m, || ||_{-m}))$ denote the Borel σ -algebra of the normed space $(S'_m, || ||_{-m})$ for each m in \mathbb{N} . Then S'_m belongs to $\beta(S'_r)$ and $\beta(S'_r) \cap S'_m = \beta((S'_m, || ||_{-m}))$ holds.

Proof. For any positive integer n we have

$$\{f \in S'_m : \|f\|_{-m} \le n\} = \{f \in S' : \|f\|_{-m} \le n\}$$

By [6], p. 809, Lemma 18 the right hand is r-closed (see [4], p. 180 for the definition of r-closed sets). Hence S'_m belongs to $\beta(S'_r)$. Next we shall show the second assertion. Since the topology of the topological subspace $(S_m, \mathcal{O}(S_m))$ is stronger than it of the normed space $(S_m, \| \|_{-m})$, it is obvious that $\beta(S'_r) \cap S'_m \supset \beta((S'_m, \| \|_{-m}))$ holds. We shall show the converse inclusion. Let F be an r-closed subset of S'_r . Put, for each m in \mathbf{N} , $F_m = F \cap S'_m$. Then F_m is a closed subset of the normed space $(S'_m, \| \|_{-m})$. Indeed, let $\{f_n\}$ be a sequence of F_m converging to an f in S' with respect to the norm $\| \|_{-m}$. Since S'_m is a Banach space, f belong to S'_m . This convergence, by [6], p. 807, Proposition 17, implies that $\{f_n\}$ r-converges to the f in S'. Since F is r-closed, the f belongs to F. Since it has been proved that F_m is closed in $(S'_m, \| \|_{-m})$, F_m belongs to $\beta((S'_m, \| \|_{-m}))$. Accordingly it is easily seen that $\beta(S'_r) \cap S'_m = \beta((S'_m, \| \|_{-m}))$ holds.

Remark. By Theorem 2.3 it is seen that, for each m in N, S'_m belongs to $\beta(S'_R)$ and $\beta(S'_w)$, and $\beta(S'_R) \cap S'_m = \beta(S'_w) \cap S'_m = \beta((S'_m, || ||_{-m}))$ hold.

Definition 2.6 ([2], p. 280). Let (X, β) be an abstract measurable space. A subset of X is universally measurable with respect to (X, β) iff it is μ -measurable for every finite measure μ on (X, β) .

Theorem 2.7. ([3], p. 388). Let X and Y be Polish spaces. If B is a Borel subset of X and f is a continuous map from B to Y, then f(B) is an analytic set in Y.

Theorem 2.8 ([2], p. 281). Evry analytic subset of a Polish space is universally measurable.

 p_{r_1} and p_{r_2} denote the projections from the product space $S'_R \times S'_R$ onto the first component space and the second component space, respectively.

Theorem 2.9. Let F be a Borel subset of $S'_R \times S'_R$. Then for any Borel subset B of S'_R $p_{r_1}(F \cap (S'_R \times B))$ is universally measurable with respect to $(S'_R, \beta(S'_R))$.

Proof. Since S'_R is a metric space satisfying the second axiom of countability, we have

$$\beta(S'_R) \otimes \beta(S'_R) = \beta(S'_R \times S'_R)$$

where $\beta(S'_R) \otimes \beta(S'_R)$ denotes the product σ -algebra of two Borel σ -algebra $\beta(S'_R)$'s. Putting $B_m = S'_m \cap B$ for each m in \mathbf{N} , by Theorem 2.5 and Theorem 2.3 $F \cap (S'_m \times B_m)$ belongs to $\beta((S'_m, \|\|_{-m}) \times (S'_m, \|\|_{-m}))$. Put $E_m = p_{r_1}(F \cap (S'_m \times B_m))$ for every m in \mathbf{N} . Since $(S'_m, \|\|_{-m})$ is a separable Banach space, by Theorem 2.8 E_m is universally measurable in the normed space $(S'_m, \|\|_{-m})$. Let μ be a finite measure on S'_R . Since, by Remark, $\beta((S'_m, \|\|_{-m})) = \beta(S'_R) \cap S'_m$ and S'_m belong to $\beta(S'_R)$, we can restrict μ to the measurable space $(S'_m, \|\|_{-m})$). We denote it by μ_m . Since E_m is universally measurable in

RATAKA TAHATA

 $(S'_m, || ||_m)$, there exist Borel sets A_m and C_m in $\beta((S'_m, || ||_{-m}))$ such that $A_m \subset E_m \subset C_m$ and $\mu_m(A_m) = \mu_m(C_m)$. Since

$$F \cap (S'_R \times B) = F \cap (\cup_{m=0}^{\infty} (S'_m \times B_m)) = \cup_{m=0}^{\infty} (F \cap (S'_m \times B_m)),$$

we have

$$p_{r_1}(F \cap (S'_R \times B)) = \cup_{m=0}^{\infty} E_m.$$

Putting $A = \bigcup_{m=0}^{\infty} A_m$ and $C = \bigcup_{m=0}^{\infty} C_m$, A and B belong to $\beta(S'_R)$ and we have

$$A \subset p_{r_1}(F \cap (S'_R \times B)) \subset C$$
 and $\mu(C - A) \leq \sum_{m=0}^{\infty} \mu_m(C_m - A_m) = 0.$

Hence $p_{r_1}(F \cap (S'_R \times B))$ is μ -measurable. Thus Theorem 2.9 has been proved.

§3. Strassen's Theorem

Let X be a topological space and let $\beta(X)$ denote the Borel σ -algebra of X.

 $B^b(X)$ (resp. $C^b(X)$) denotes the set of all bounded real valued Borel measurable (resp. continuous) functions on X. P(X) denotes the set of all probability Borel measures on X. Put $Z = S'_R \times S'_R$. S'_w is a Lusin space (see [7], p. 115, (C)). Let $\mathcal{K}(S'_w)$ be the set of all compact subsets of S'_w and $\mathcal{K}_0(S'_w \times S'_w)$ the set of all finite disjoint unions of compact rectangles in $S'_w \times S'_w$. $\beta_0(Z)$ denotes the set of all finite disjoint unions of Borel measurable rectangles of Z. Put

$$B_0^b(Z) = \{ f \circ p_{r_1} + g \circ p_{r_2} : f, g \in B^b(S'_R) \}.$$

Theorem 3.1. Let μ and ν be probability Borel measures on S'_R and Λ a non-void weakly closed convex subset of P(Z). Then the following conditions are mutually equivalent:

(1) There exists a θ in Λ having μ and ν as marginals.

(2) For any functions f and g in $B^b(S'_R)$ one has

$$\int_{S'_R} f d\mu + \int_{S'_R} g d\nu \leq \sup \{ \int_Z (f \circ p_{r_1} + g \circ p_{r_2}) d\theta : \ \theta \in \Lambda \}.$$

Proof. The implication $(1) \to (2)$ is easy. We shall prove the converse assertion. Put, for any f and g in $B^b(S'_R)$,

$$W_0(f \circ p_{r_1} + g \circ p_{r_2}) = \int_{S'_R} f d\mu + \int_{S'_R} g d\nu.$$

 W_0 is a linear functional on $B_0^b(Z)$. Put, for any h in $B^b(Z)$,

$$P(h) = \sup\{\int_Z hd\theta: \ \theta \in \Lambda\}.$$

P is positively homogeneous and subadditive on $B^b(Z)$ and satisfies $W_0 \leq P$ on $B_0^b(Z)$. By the Hahn-Banach theorem W_0 is extended to a linear functional *W* on $B^b(Z)$ with $W \leq P$. Put, for any set *E* in $\beta_0(Z)$, $\theta_0(E) = W(\chi_E)$, where χ_E denotes the characteristic function of *E*. θ_0 is a finitely additive probability measure on $\beta_0(Z)$ having μ and ν as marginals. Since S'_w is a Lusin space and $\beta(S'_w) = \beta(S'_R)$, for any positive number ϵ and any set *E* in $\beta_0(Z)$ there exists a compact set *K* in $\mathcal{K}_0(S'_w \times S'_w)$ such that $K \subset E$ and $\theta_0(E - K) < \epsilon$. Therefore by [7], p. 51, Theorem 16 θ_0 is extended to probability Radon measure θ on $S'_w \times S'_w$ having μ and ν as marginals. Since

$$\beta(S'_w \times S'_w) = \beta(S'_w) \otimes \beta(S'_w) = \beta(S'_R) \otimes \beta(S'_R) = \beta(Z),$$

 θ is a probability Borel measure on Z. Since Λ is a weakly closed convex subset of P(Z), in order to show that θ belongs to Λ it is sufficient to show that $\int_Z hd\theta \leq P(h)$ for any h in $C^b(Z)$. By adding positive constants we may assume that h is positive. Since h is a bounded continuous function, by [1], Chapitre 9, §2, $n^\circ 6$, Lemma 3, for any positive number ϵ there exists a linear combination h_0 of the characteristic functions of open subsets of Z with positive coefficients such that $0 \leq h(z) - h_0(z) < \epsilon$ for all z in Z. Let

$$h_0(z) = \sum_{i=1}^n \alpha_i \chi_{O_i}(z),$$

where each α_i is positive and each O_i is open. Since Z satisfies the second axiom of countability, for each *i* there exists an open set U_i in $\beta_0(Z)$ such that $U_i \subset O_i$ and $\theta(O_i - U_i) < \frac{\epsilon}{Mn}$, where $M = \max\{\alpha_i : i = 1, 2, \cdots, n\}$. Putting $l(z) = \sum_{i=1}^n \alpha_i \chi_{U_i}(z)$, we have

$$\int_{Z} h d\theta - 2\epsilon < \int_{Z} h_0 d\theta - \epsilon < \int_{Z} l d\theta = \int_{Z} l d\theta_0 \le P(l) \le P(h).$$

Since ϵ is arbitrary, we have

$$\int_Z h d\theta \le P(h).$$

Thus Theorem 3.1 has been proved.

Corollary 3.2. Let F be a non-void closed subset of Z and $\epsilon \geq 0$. Given the probability Borel measures μ and ν on S'_R , there exists a probability Borel measure λ on Z with the marginals μ and ν such that $\lambda(F) \geq 1 - \epsilon$ iff, for any Borel set B of S'_R , one has

$$\nu(B) \le \mu(p_{r_1}(F \cap (S'_R \times B)) + \epsilon.$$

Proof. By Theorem 2.9 $p_{r_1}(F \cap (S'_R \times B))$ is universally measurable with respect to $(S'_R, \beta(S'_R))$. Accordingly reading open sets (resp. continuous functions) as Borel sets (resp. Borel measurable functions) in [8], Theorem 11, Corollary 3.2 is proved similarly to the proof of [8], Theorem 11.

Acknowledgment: The author wishes to express his hearty thanks to Professor S. Nakanishi for her usefull advice.

References

[1] N. Bourbaki: *Integration*, Chapitre 9, Éléments de mathématique, Hermann, Paris, 1969.

[2] Donald L. Chon: Measure theory, Birkhäuser, 1980.

[3] R. M. Dudley: Real analysis and probability, Wadsworth & Brooks, 1989.

RATAKA TAHATA

[4] S. Nakanishi: Main spaces in distribution theory treated as ranked spaces and Borel sets, *Math. Japonica*, Vol.26, No. 2(1981), 179 - 201.

[5] ibid: On topological structures of the Space S' (in Japanese), Lecture manuscript, The twentieth symposium of topological space theory, Jyousai Univ., 1984.

[6] ibid: Some ranked vector spaces, Math. Japonica, **34**, No. 5(1989), 789 - 813.

[7] L. Schwartz: Radon measures on arbitrary topological spaces and cylindrical measures, *Tata. Inst. Fund. Res.*, Oxford Univ., 1973.

[8] V. Strassen: The existence of probability measures with given marginals, Ann. Math. Statistics, **36**(1965), 423 - 439.

DEPARTMENT OF MATHEMATICS COLLEGE OF SCIENCE AND TECHNOLOGY NIHON UNIVERSITY, 1-8, KANDA SURUGADAI, CHIYODA-KU, TOKYO, 101-8308 JAPAN. E-mail: tahata@math.cst.nihon-u.ac.jp