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MARGINAL MEASURE PROBLEMS ON THE RANKED SPACE S′
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Abstract. Let S be the set of all rapidly decreasing C∞-functions defined in Rk and
S′ its topological dual for the usual topology. S′ is definable as a ranked space. The
family of preneighbourhoods defines a topology for it. We denote the space equipped
with the topology by S′

R. Our aim in this note is to study Strassen’s marginal measure
problems for S′

R. Our results are that if we read continuous functions and open sets as
Borel measurable functions and Borel sets, respectively, in [8], Theorem 7 and Theorem
11, then the similalities of Strassen’s results hold still.

§1. Introduction
Let S, S′ and S′

R be the same as in the above. S′
R satisfies the second axiom of count-

ability and is metrizable for the topology (see [6], Paragraph II). Our aim in this note is to
study Strassen’s marginal measure problems (see [8], Theorem 7 and Theorem 11) for S′

R.
S′

R is not a Polish space. Hence our results differ a little from Strassen’s one, that is, we
have to read continuous functions and open sets as Borel measurable functions and Borel
sets, respectively, in [8], Theorem 7 and Theorem 11. However our conditions are equivalent
to Strassen’s one for Polish spaces.

To obtain our results the following facts play important roles;
(1) the Borel σ-algebra of S′

R coincides with it of the spaces S′
w equipped with the week

topology σ(S′, S) and it of the space S′
r topologized by the family of all r-open sets of the

ranked space S′ (see [6], p. 810, Theorem 11),
(2) the projection of any Borel set of the product space S′

R×S′
R is universally measurable

with respect to (S′
R, β(S′

R)).
For it the notion of r-convergence plays an important role.

§2. The ranked space S′ and measurability
Let S and S′ be the same as in §1 and N the set of all non-negative integers. For each

m in N, let ( , )m be an inner product on S defined by

(φ,ψ)m =
∑

q

∫
Rk

Dqφ(x)Dqψ(x)dx (Dq =
∂q1+···+qk

∂xq1
1 · · · ∂xqk

k

),

where q runs through all multi-indices q = (q1, · · · , qk) with 0 ≤ qi ≤ 3m for each i =
1, 2, · · · , k. Putting

‖φ‖m =
√

(φ, φ)m,

we have

‖φ‖0 ≤ ‖φ‖1 ≤ · · · (φ ∈ S).
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Put, for any f in S′,

‖f‖−m = sup{|f (φ)| : φ ∈ S and ‖φ‖m ≤ 1},

and

p(f) = min{m : ‖f‖−m < +∞}.

Let S′
m = {f ∈ S′ : p(f) ≤ m} for each m in N.

Proposition 2.1 ([6], p. 807). The followings hold.
(1) S′ = ∪∞

m=0S
′
m.

(2) m ≤ m′ iff S′
m ⊂ S′

m′ .
(3) For each m in N, ‖ ‖−m is a norm on S′

m and each normed space (S′
m, ‖ ‖−m) is

complete.

For each f in S′ put

V (f ; m, j) = f + {g ∈ S′
m : ‖g‖−m <

1
2j

} (j, m ∈ N),

U(f) = {V (f ; m, j); j = 0, 1, · · · , max(1, p(f)) ≤ m, m ∈ N}

and

Uj = {V (f ; m, j) : f ∈ S′, max(1, p(f)) ≤ m, m ∈ N}.

Then (S′, U(f), Uj) becomes a ranked space (see [5], §2). Since the family U(f) of preneigh-
bourhoods for each f in S′ satisfies the axioms (B) and (C) of Hausdorff, U(f) becomes a
fundamental system of neighbourhoods of f (see [5], §1, 1.6). O(S′) denotes this topology.
Furthermore the ranked space (S′, U(f), Uj) satisfies (r − T2) (see [6], P. 807, Theorem
7). Hence the topological space (S′, O(S′)) is a Hausdorff space. S. Nakanishi showed the
following theorem in [6], §7 and §8.

Theorem 2.2. The topological space (S′, O(S′)) satisfies the second axiom of count-
ability and is metrizable.

We denote the topological space (S′, O(S′)) and S′ equipped with the weak topol-
ogy σ(S′, S) by S′

R and S′
w, respectively. We, also, denote the topological space S′

topologized by the family of all r-open sets of the ranked space (S′, U(f), Uj) by S′
r.

β(S′
R), β(S′

r) and β(S′
w) denote the Borel σ-algebras of S′

R, S
′
r and S′

w, respectively.

Theorem 2.3 ([6], p. 810, Theorem 11). β(S′
R) = β(S′

r) = β(S′
w) hold.

Proposition 2.4. For each m in N a normed space (S′
m, ‖ ‖−m) is a separable Banach

spaces.
Proof. Since the topological space (S′, O(S′)) satisfies the second axiom of countability,

the topological subspace (S′
m, O(S′

m)) of (S′, O(S′)) satisfies the second axiom of count-
ability. The topology of (S′

m, O(S′
m)) is stronger than it of (S′

m, ‖ ‖−m). Therefore the
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normed space (S′
m, ‖ ‖−m) is separable. By Proposition 2.1 (S′

m, ‖ ‖−m) is a separable
Banach space.

Theorem 2.5. Let β((S′
m, ‖ ‖−m)) denote the Borel σ-algebra of the normed space

(S′
m, ‖ ‖−m) for each m in N. Then S′

m belongs to β(S′
r) and β(S′

r)∩S′
m = β((S′

m, ‖ ‖−m))
holds.

Proof. For any positive integer n we have

{f ∈ S′
m : ‖f‖−m ≤ n} = {f ∈ S′ : ‖f‖−m ≤ n}

By [6], p. 809, Lemma 18 the right hand is r-closed (see [4], p. 180 for the definition of
r-closed sets). Hence S′

m belongs to β(S′
r). Next we shall show the second assertion. Since

the topology of the topological subspace (Sm, O(Sm)) is stronger than it of the normed
space (Sm, ‖ ‖−m), it is obvious that β(S′

r) ∩ S′
m ⊃ β((S′

m, ‖ ‖−m)) holds. We shall
show the converse inclusion. Let F be an r-closed subset of S′

r. Put, for each m in N,
Fm = F ∩ S′

m. Then Fm is a closed subset of the normed space (S′
m, ‖ ‖−m). Indeed, let

{fn} be a sequence of Fm converging to an f in S′ with respect to the norm ‖ ‖−m. Since S′
m

is a Banach space, f belong to S′
m. This convergence, by [6], p. 807, Proposition 17, implies

that {fn} r-converges to the f in S′. Since F is r-closed, the f belongs to F. Since it has
been proved that Fm is closed in (S′

m, ‖ ‖−m), Fm belongs to β((S′
m, ‖ ‖−m)). Accordingly

it is easily seen that β(S′
r) ∩ S′

m = β((S′
m, ‖ ‖−m)) holds.

Remark. By Theorem 2.3 it is seen that, for each m in N, S′
m belongs to β(S′

R) and
β(S′

w), and β(S′
R) ∩ S′

m = β(S′
w) ∩ S′

m = β((S′
m, ‖ ‖−m)) hold.

Definition 2.6 ([2], p. 280). Let (X, β) be an abstract measurable space. A subset
of X is universally measurable with respect to (X, β) iff it is µ-measurable for every finite
measure µ on (X, β).

Theorem 2.7. ([3], p. 388). Let X and Y be Polish spaces. If B is a Borel subset of
X and f is a continuous map from B to Y , then f(B) is an analytic set in Y.

Theorem 2.8 ([2], p. 281). Evry analytic subset of a Polish space is universally
measurable.

pr1 and pr2 denote the projections from the product space S′
R × S′

R onto the first com-
ponent space and the second component space, respectively.

Theorem 2.9. Let F be a Borel subset of S′
R × S′

R. Then for any Borel subset B of S′
R

pr1(F ∩ (S′
R ×B)) is universally measurable with respect to (S′

R, β(S′
R)).

Proof. Since S′
R is a metric space satisfying the second axiom of countability, we have

β(S′
R) ⊗ β(S′

R) = β(S′
R × S′

R),

where β(S′
R)⊗β(S′

R) denotes the product σ-algebra of two Borel σ-algebra β(S′
R)’s. Putting

Bm = S′
m ∩B for each m in N, by Theorem 2.5 and Theorem 2.3 F ∩ (S′

m × Bm) belongs
to β((S′

m, ‖ ‖−m)× (S′
m, ‖ ‖−m)). Put Em = pr1(F ∩ (S′

m ×Bm)) for every m in N. Since
(S′

m, ‖ ‖−m) is a separable Banach space, by Theorem 2.8 Em is universally measurable
in the normed space (S′

m, ‖ ‖−m). Let µ be a finite measure on S′
R. Since, by Remark,

β((S′
m, ‖ ‖−m)) = β(S′

R)∩S′
m and S′

m belong to β(S′
R), we can restrict µ to the measurable

space (S′
m, β((S′

m, ‖ ‖m))). We denote it by µm. Since Em is universally measurable in
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(S′
m, ‖ ‖m), there exist Borel sets Am and Cm in β((S′

m, ‖ ‖−m)) such that Am ⊂ Em ⊂ Cm

and µm(Am) = µm(Cm). Since

F ∩ (S′
R ×B) = F ∩ (∪∞

m=0(S
′
m ×Bm)) = ∪∞

m=0(F ∩ (S′
m ×Bm)),

we have

pr1(F ∩ (S′
R ×B)) = ∪∞

m=0Em.

Putting A = ∪∞
m=0Am and C = ∪∞

m=0Cm, A and B belong to β(S′
R) and we have

A ⊂ pr1(F ∩ (S′
R ×B)) ⊂ C and µ(C −A) ≤

∞∑
m=0

µm(Cm −Am) = 0.

Hence pr1(F ∩ (S′
R ×B)) is µ-measurable. Thus Theorem 2.9 has been proved.

§3. Strassen’s Theorem
Let X be a topological space and let β(X) denote the Borel σ-algebra of X .

Bb(X) (resp. Cb(X)) denotes the set of all bounded real valued Borel measurable (resp.
continuous) functions on X. P (X) denotes the set of all probability Borel measures on X.
Put Z = S′

R × S′
R. S

′
w is a Lusin space (see [7], p. 115, (C)). Let K(S′

w) be the set of
all compact subsets of S′

w and K0(S′
w × S′

w) the set of all finite disjoint unions of compact
rectangles in S′

w ×S′
w. β0(Z) denotes the set of all finite disjoint unions of Borel measurable

rectangles of Z. Put

Bb
0(Z) = {f ◦ pr1 + g ◦ pr2 : f, g ∈ Bb(S′

R)}.

Theorem 3.1. Let µ and ν be probability Borel measures on S′
R and Λ a non-void

weakly closed convex subset of P (Z). Then the following conditions are mutually equivalent:
(1) There exists a θ in Λ having µ and ν as marginals.
(2) For any functions f and g in Bb(S′

R) one has
∫

S′
R

fdµ+
∫

S′
R

gdν ≤ sup{
∫

Z

(f ◦ pr1 + g ◦ pr2)dθ : θ ∈ Λ}.

Proof. The implication (1) → (2) is easy. We shall prove the converse assertion. Put, for
any f and g in Bb(S′

R),

W0(f ◦ pr1 + g ◦ pr2) =
∫

S′
R

fdµ+
∫

S′
R

gdν.

W0 is a linear functional on Bb
0(Z). Put, for any h in Bb(Z),

P (h) = sup{
∫

Z

hdθ : θ ∈ Λ}.

P is positively homogeneous and subadditive on Bb(Z) and satisfies W0 ≤ P on Bb
0(Z). By

the Hahn-Banach theorem W0 is extended to a linear functional W on Bb(Z) with W ≤ P.
Put, for any set E in β0(Z), θ0(E) = W (χE), where χE denotes the characteristic function
of E. θ0 is a finitely additive probability measure on β0(Z) having µ and ν as marginals.
Since S′

w is a Lusin space and β(S′
w) = β(S′

R), for any positive number ε and any set E in
β0(Z) there exists a compact set K in K0(S′

w × S′
w) such that K ⊂ E and θ0(E −K) < ε.
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Therefore by [7], p. 51, Theorem 16 θ0 is extended to probability Radon measure θ on
S′

w × S′
w having µ and ν as marginals. Since

β(S′
w × S′

w) = β(S′
w) ⊗ β(S′

w) = β(S′
R) ⊗ β(S′

R) = β(Z),

θ is a probability Borel measure on Z. Since Λ is a weakly closed convex subset of P (Z),

in order to show that θ belongs to Λ it is sufficient to show that
∫

Z

hdθ ≤ P (h) for any

h in Cb(Z). By adding positive constants we may assume that h is positive. Since h is a
bounded continuous function, by [1], Chapitre 9, §2, n◦6, Lemma 3, for any positive number
ε there exists a linear combination h0 of the characteristic functions of open subsets of Z
with positive coefficients such that 0 ≤ h(z) − h0(z) < ε for all z in Z. Let

h0(z) =
n∑

i=1

αiχOi(z),

where each αi is positive and each Oi is open. Since Z satisfies the second axiom of
countability, for each i there exists an open set Ui in β0(Z) such that Ui ⊂ Oi and θ(Oi −
Ui) <

ε

Mn
, where M = max{αi : i = 1, 2, · · · , n}. Putting l(z) =

n∑
i=1

αiχUi(z), we have

∫
Z

hdθ − 2ε <
∫

Z

h0dθ − ε <

∫
Z

ldθ =
∫

Z

ldθ0 ≤ P (l) ≤ P (h).

Since ε is arbitrary, we have
∫

Z

hdθ ≤ P (h).

Thus Theorem 3.1 has been proved.

Corollary 3.2. Let F be a non-void closed subset of Z and ε ≥ 0. Given the probability
Borel measures µ and ν on S′

R, there exists a probability Borel measure λ on Z with the
marginals µ and ν such that λ(F ) ≥ 1 − ε iff, for any Borel set B of S′

R, one has

ν(B) ≤ µ(pr1(F ∩ (S′
R ×B)) + ε.

Proof. By Theorem 2.9 pr1(F ∩ (S′
R × B)) is universally measurable with respect to

(S′
R, β(S′

R)). Accordingly reading open sets (resp. continuous functions) as Borel sets
(resp. Borel measurable functions) in [8], Theorem 11, Corollary 3.2 is proved similarly to
the proof of [8], Theorem 11.
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