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ABSTRACT. In this paper, we introduce new properties of topological spaces defined by
stars of coverings, which are called strict star-Lindel6fness and strict starcompactness.
Following the fundamental studies on star covering properties by E.K.van Douwen,
G.M.Reed, A.W.Roscoe and I.J.Tree ([1]), there have been several related studies (see
M.V.Matveev [7], [8], [9], for survey). Star-Lindel6f spaces have many nice proper-
ties. However, star-Lindeléfness is not preserved by closed subspaces ([7]). We define
strict star-Lindel6fness to modify this defect and still so as to keep possible properties
of star-Lindel6fness. Furthermore, we investigate relationships among these covering
properties and give various examples.

1. Introduction and preliminaries. In this paper, all spaces are assumed to be T7.
For a cover U of a space X and a subset A of X,

St(A,U) = {U eU|UN A+ 0}

is called a star of A (with respect to U). Define St°(A,U) = A, St'(A,U) = St(A,U)
and St"t(A,U) = St(St"(A,U),U) for n € N. For a singleton A = {z}, we usually write
St(x,U) instead of St({z},U).

W.M.Fleischman [3] defined the following notion of starcompact spaces and studied its
properties.

Definition 1.1 ([3]). A space X is starcompact if for every open cover U of X, there exists
a finite subset F' of X such that St(F,U) = X.

He proved in [3] that starcompactness is equivalent to countable compactness in the class
of regular spaces. It was informed in [3] that R.S.Houston afterwards showed the equivalence
in the class of Hausdorff spaces.

The following notion of star-Lindel6f spaces is defined by S.Ikenaga [5] originally under
the name of w-star spaces, the present term was given by E.K.van Douwen, G.M.Reed,
A W . Roscoe and I.J.Tree [1].

Definition 1.2 ([1]). A space is star-Lindelof if for every open cover U of X, there exists
a countable subset A of X such that St(A,U) = X.

We call such notions of topological spaces defined by taking stars of coverings star
covering properties.

Later, E.K.van Douwen, G.M.Reed, A.W.Roscoe and I.J.Tree [1] established the funda-
mentals of star covering properties. Subsequently, there have been several related studies.
M.V.Matveev [7], [8], [9] presented a nice exposition of star covering properties which con-
tain many significant results. Among star covering properties, star-Lindelofness has so far
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most appeared in the related studies. Many covering properties are preserved by closed
subspaces, while star-Lindeldfness is not the case ([7]).

The aim of this paper is to introduce the following new notion of spaces, called strictly
star-Lindelof spaces, which will be shown to have possible properties of star-Lindelof spaces
so as to improve the above defect on closed heredity.

Definition 1.3. A space X is strictly star-Lindelof if for every open cover U of X and for
every subset A of X satisfying St(A,U) = X there exists a countable subset B of A such
that St(B,U) = X.

We also define the following notion, called strictly starcompact spaces, which is related
to starcompact spaces.

Definition 1.4. A space X is strictly starcompact if for every open cover U of X and for
every subset A of X satisfying St(A,U) = X there exists a finite subset F' of A such that
St(F,U) = X.

We investigate properties of strictly star-Lindel6f spaces in Section 2., and strictly star-
compact spaces in Section 3.. In Section 4. various examples on strictly star-Lindelof spaces
and other related spaces will be given. B

We denote N = {n + 1|n € NU{0}} and N=NU N1 U {0} following [7], and other

notations and terminology are as in [2].

2. Strictly star-Lindel6f spaces. In this section, we consider strict star-Lindelofness.
To begin with, we recall the definition of k-star-Lindelofness.

For k € NU {0}, a space X is k-star-Lindeldf if for every open cover U of X, there
exists a countable subset A of X such that Stk(A,L{) = X. A space X is k%-star-Lindeldf
if for every open cover U of X, there exists a countable subcollection V of U such that
St*(UV,U) = X. Moreover, a space X is w-star-Lindeldf if for every open cover U of X,
there exist an n € N and a countable subset A of X such that St"(A,U) = X. Note that
%—star—Lindeléfness and 1-star-Lindel6fness are precisely Lindel6fness and star-Lindel6fness,
respectively ([7]).

Just like k-star-Lindelofness, we define the following notions of spaces that are weaker

than strict star-Lindelofness.

Definition 2.1. Let X be a space and k € NU {0}.

(1) X is strictly k-star-Lindeldf if for every open cover U of X and every subset A of X
satisfying St*(A,U) = X, there exists a countable subset B of A such that St*(B,U) = X.

(2) X is strictly k%-star-Lindelb’f if for every open cover U of X and every subcollection
V of U satisfying St*(|J V,U) = X, there exists a countable subcollection W of V such that
stf(Uw,u) = X.

(3) X is strictly w-star-Lindelof if for every open cover U of X, there exists an n € N
such that for every subset A of X satisfying St"(A4,U) = X, there exists a countable subset
B of A such that St"(B,U) = X.

Obviously, strict %—star-Lindel'dfness and strict 1-star-Lindelofness are precisely Lin-
del6fness and strict star-Lindelofness, respectively.

By Definition 2.1, it is clear that every strictly k-star-Lindelof space is k-star-Lindelof
for every k € N, and every strictly w-star-Lindelof space is w-star-Lindelof.

Furthermore, for every k € N we have that every strictly k-star-Lindelof space is strictly
k%—star—Lindeléf, and every strictly k‘%—star—Lindelbf space is strictly (k + 1)-star-Lindelof
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(see Diagram 1 in Section 4.).

Now, recall that a space X satisfies the discrete countable chain condition (DCCC, for
short) if every discrete collection of non-empty open sets in X is countable ([1]).

Here, we consider properties of strictly k-star-Lindelof spaces. At first, similarly to
the case of k-star-Lindel6fness ([7]), we have the following relations between strict k-star-
Lindel6fness and the DCCC.

Theorem 2.2. For a reqular space X, the following are equivalent.
(a) X is strictly 2%-star-Lindeldf.
(b) X 1is strictly k-star-Lindelof for every k € N with k > 3.
(¢) X is strictly w-star-Lindelof.
(d) X satisfies the DCCC.

Proof. The implications (a) = (b) and (b) = (c) are trivial.

(¢) = (d) : This follows from the fact that every w-star-Lindelof regular space satisfies
the DCCC ([7]).

(d) = (a) : Suppose that X is regular but not strictly 23-star-Lindeldf. Then there
exist an open cover U of X and a subcollection V of U such that St*(JV,U) = X and
St*(J A,U) # X for any countable subcollection A of V.

Let o < wi. Suppose that a subset {zg| 8 < a} of X and a subcollection {Ug| 3 < a}
of V satisfying zg € X \ St2(U7<5 U,,U) are given for every 8 < «. By the assumption
above, we can take z, € X \ StQ(U5<a Ug,U). Then there exists a U, € V such that

To € St*(Uy,U). Set W = {Uy | < wi}. Then one can show that W is an uncountable
discrete collection consisting of non-empty open sets in X. Therefore X does not satisfy the

DCCC. O

Now, a space X is wi-compact if every uncountable subset of X has an accumulation
point. Every countably compact space and every Lindeldf space are wi-compact, and every
wi-compact space is star-Lindelof.

The following theorem shows that strictly star-Lindelof spaces are located between Lin-
delof spaces and wi-compact spaces.

Theorem 2.3. Every strictly star-Lindeldf space is wy-compact.

Proof. Suppose that X is not wi-compact. Then there exists an uncountable subset A of
X with no accumulation points. For each a € A, take a neighborhood U, of a so that
U, NA = {a}, and define Y = {Uy|a € A} U{X \ A}. Then U is an open cover of X.
Pick xp € X \ A arbitrarily. We have St(AU{zo},U) = X, but no countable subset B of A
satisfies St(B U {xo},U) = X. Thus X is not strictly star-Lindelof. O

The converse of Theorem 2.3 need not be true (see Example 4.2 below).
It is known that every separable space is star-Lindelof ([7]). Here we have the following
theorem in the case of strictly k-star-Lindelof spaces.

Theorem 2.4. Every separable space is strictly 1%-star-Lindel6f.

Proof. Let X be a separable space and D a countable dense subset of X. Let U be an
open cover of X and V a subcollection of U satisfying St(|JV,U) = X. For each z € X,
there exist a V, € V and a U, € U such that x € U, and V, N U, # 0. Then we can
take d, € DN (V, NU,) for every x € X. Put D’ = {d, |z € X}. Then D’ is a countable
subset of D satisfying St(D',U) = X. Denote D' = {d,, | n € N}. For each d,, € D', choose
aV, € {Vz|z € X} so that d,, € V,,. Define W = {V,,|n € N}. Then W is a countable
subcollection of V satisfying St(| W,U) = X. Therefore, X is strictly 1%—star—Lindelbf. O
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On the other hand, we cannot conclude that every separable space is strictly star-Lindel6f
(see Example 4.3).

It is known that every open Fy-set of a star-Lindeldf space is star-Lindelof ([7]). Con-
cerning strictly star-Lindel6f spaces, we have

Theorem 2.5. Every F,-set of a strictly star-Lindelof space is strictly star-Lindeldf.

Proof. Let X be a strictly star-Lindeldf space and Y =
is a closed set in X for every n € N.

Let U be an open cover of Y and A a subset of Y satisfying St(A,U) = Y. For each
U € U, take an open set Vi in X so that Vy NY =U. Set V={Vy |U e, UN A # 0}.

If UV = X, notice that St(A4,V) = X. Since X is strictly star-Lindelof, there exists a
countable subset B of A such that St(B,V) = X. Then, we have St(B,U) D St(B,V)NY =
Y.

Suppose [JV # X. Then, fix n € N. Note that V,, = VU{X \ H,} is an open cover of X.
Choose 29 € X \ |JV and put A’ = AU {xp}. Then A’ satisfies St(A’,V,,) = X. Since X is
strictly star-Lindelof, there exists a countable subset B;, of A’ such that St(B},,V,,) = X. Let
B,, = B}, \{z0}. Then B, is a countable subset of A satisfying St(B,,U) D St(B,,V)NY D

ne

Let us set B =J

nen Hn an Fo-set of X, where H,,

nen Bn- Then B is a countable subset of A, and we have
St(B,U) = | J St(Bn,u) > | | Hy =Y.

neN neN

Therefore Y is strictly star-Lindelof. O

As opposed to star-Lindelofness, we have

Corollary 2.6. Every closed subspace of a strictly star-Lindeldf space is also strictly star-
Lindelof.

On the other hand, strict k-star-Lindel6fness is not necessarily preserved by closed sub-
spaces for every k € N with k > 11 (see Section 4.).

A subset A of a space X is called a cozero-set if there is a continuous function f : X — R
such that A = {z € X | f(z) # 0}.

Corollary 2.7. Every cozero-set of a strictly star-Lindeldof space is also strictly star-Lindeldf.

It is also known that every continuous image of a star-Lindelof space is star-Lindelof
([5],][7]). Likewise, we have

Theorem 2.8. Every continuous image of a strictly star-Lindeldf space is also strictly star-
Lindelof.

Proof. Let X be a strictly star-Lindelof space, Y a space and f : X — Y a continuous
mapping from X onto Y.

Let U be an open cover of Y and A a subset of YV satisfying St(4,U) =Y. Put V =
{f~Y(U)|U € U}. Then V is an open cover of X satisfying St(f~*(4),V) = X. Since X
is strictly star-Lindelof, there is a countable subset B of f~!(A) such that St(B,V) = X.
Then f(B) is countable and f(B) C A. We have St(f(B),U) = Y. Thus Y is strictly
star-Lindelof. O
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3. Strictly starcompact spaces. Next, we consider properties of strictly starcompact
spaces. We recall the definition of k-starcompactness.
For k € NU {0}, a space X is k-starcompact if for each open cover U of X, there exists

a finite subset F of X such that St*(F, i) = X. A space X is k%-starcompact if for each
open cover U of X, there exists a finite subcollection V of U such that St*(JV,U) = X.
Moreover, a space X is w-starcompact if for every open cover U of X, there exist an n € N
and a finite subset A of X such that St"(A,U) = X. Note that }-starcompactness and
1-starcompactness are precisely compactness and starcompactness, respectively ([7])

Now, we define the following notions of spaces that are related to strict starcompactness.

Definition 3.1. Let X be a space and k € NU {0}.

(1) X is strictly k-starcompact if for every open cover U of X and every subset A of X
satisfying St¥(A,U) = X, there exists a finite subset F' of A such that St*(F,U) = X.

(2) X is strictly k%-starcompact if for every open cover U of X and every subcollection
V of U satisfying St*(|JV,U) = X, there exists a finite subcollection A of V such that
St*"(UAU) = X.

(3) X is strictly w-starcompact if for every open cover U of X, there exists an n € N
such that for every subset A of X satisfying St"(A,U) = X, there exists a finite subset F
of A such that St"(F,U) = X.

In particular, strict %—starcompactness and strict 1-starcompactness are precisely com-
pactness and strict starcompactness, respectively.

It follows from Definition 3.1 that every strictly k-starcompact space is k-starcompact
for every k € N, and every strictly w-starcompact space is w-starcompact.

In addition, every strictly k-starcompact space is clearly strictly k-star-Lindeldf, and
every strictly w-starcompact space is strictly w-star-Lindelof.

Furthermore, for every k € N we have that every strictly k-starcompact space is strictly
k%—starcompact, and every strictly k%—starcompact space is strictly (k+1)-starcompact (see
Diagram 2 in Section 4.).

Now, recall that a space X satisfies the discrete finite chain condition (DFCC, for short)
if every discrete collection of non-empty open sets in X is finite ([1]). Similarly to the case of

k-starcompact spaces ([7]), we have the following relations between strict k-starcompactness
and the DFCC.

Theorem 3.2. For a reqular space X, the following are equivalent.
(a) X is strictly 23-starcompact. B
(b) X 1is strictly k-starcompact for every k € N with k > 3.
(¢) X is strictly w-starcompact.
(d) X satisfies the DFCC.

It is known that every countably compact Lindel6f space is compact. The following result
seems to be interesting in itself; the proof are easy and omitted.

Theorem 3.3. A space X is strictly starcompact if and only if X is countably compact and
strictly star-Lindeldf.

Strictly starcompact spaces have the following properties similar to strictly star-Lindelof
spaces. Proofs are similar to the case of strictly star-Lindelof spaces.

Theorem 3.4. Every closed subspace of a strictly starcompact space is also strictly star-
compact.

Theorem 3.5. Every continuous image of a strictly starcompact space is also strictly star-
compact.
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4. Examples. In this section, we list various examples on strictly k-star-Lindelof spaces
and strictly k-starcompact spaces.

Let an infinite ordinal 7 have the order topology. The symbol X is the Stone-Cech
compactification of a completely regular space X.

To begin with, we give an example of a strictly star-Lindel6f space which is not Lindelof.

It shows the gap between strict %—star—Lindeléfness and strict 1-star-Lindelofness.

Example 4.1. The space w; is strictly starcompact (and hence strictly star-Lindeldf).

Proof. Let U be an open cover of w; and A a subset of wy satisfying St(A,U) = w;. For each
« € wy, there exist a U, € U and a v, < wy such that (vy,,a] C U,. If A is not cofinal in
w1, A itself is countable. Hence we can assume that A is cofinal in w;. By the pressing-down
lemma ([6]), there exist an ap < w; and a cofinal subset C' of wy such that v, < «g for
every o € C.

Because A is cofinal in wy, there is a £ € A with ag < £ such that 74 < ap < & for any
a € CN(&wr). Then for every § € (§,w1), we can take an n € C so that & < 8 < n. Thus
there exists a U € U such that 3,£ € (v,,n] C U. Hence § € St(§,U). Therefore, we have
St(&, U) D (& w1).

Moreover, for each v < £ thereis an a, € A such that v € St(ay,U). Then {St(a,,U) |7 <

£} is an open cover of [0, £]. Since [0, £] is compact, we can take finitely many v1,... , 7, <&
so that {St(a,,,U)|i=1,--- ,n} covers [0,£]. Let F = {a, |i=1,... ,n}U{{}. Then F is
a finite subset of A satisfying St(F,U) = w;. Hence wy is strictly starcompact. O

Therefore, the space w; is also an example of a non-compact strictly starcompact space.
Example 4.2. The space wy X (w1 + 1) is wi-compact but not strictly star-Lindelof.
Proof. Define

U=A{0,a] x (c,wi]|a <wi}U{wi x w1}
and
A={{a,) Ews X (w1 +1)]a< B <wi}

Then U is an open cover of wy X (wy + 1) and we have St(A,U) = wy x (w1 + 1).
Let C be an arbitrary countable subset of A. Define

ag = sup{a|{a, ) € C for some 8} and Gy = sup{3| (e, 8) € C for some a}.
Then oy < By < wq. If v > By, then we have
{UeU|(y,wr) €U} ={[0,a] x (a,wn]|er =}
For any £ >, [0,£] X (£, w1] contains no points of C. Hence (y,w1) & St(C,U). O

Hence, the space wy x (w1 + 1) is a countably compact but not strictly starcompact. In
addition, we also have that wy x (wy 4+ 1) is not strictly 2-star-Lindelof (see Remark 4.10
below).

Moreover we obtain the following example.

Example 4.3. There exists a star-Lindelof completely regular space that is strictly 1%—
star-Lindelof but not wi-compact.
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Proof. Let w be a countable discrete space and A4 be a maximal almost disjoint family
(m.a.d.family, for short) of infinite subsets of w. Put ¥ = w U .A. Topologize ¥ by letting
w be an open subspace of ¥ and defining a local base N(z) at each z € A by N(z) =
{{z} U (z\ F) | F € [z]<¥}. This space is called a U-space ([4]). Then it is known that ¥
is a separable completely regular space which is 2-starcompact but neither 1%—starcompact
nor wi-compact ([1],[7]).

Since W is separable, ¥ is star-Lindel6f. Moreover, ¥ is strictly 1%—star—Linde16f by
Theorem 2.4. O

Now, we construct the following spaces so as to obtain a 1%—star—Linde16f space that is
not strictly 2-star-Lindelof.
For a completely regular space X and an infinite cardinal 7 with cf(7) > w, the space

N X = ((7+1) x X))\ ({7} x (BX \ X))

is called the Noble plank. By [7], N;X is 2-starcompact, and furthermore, N.X is 13-
starcompact if 7 > cf(7) > 4(X) > w.

Example 4.4. There exists a 1%-star-Lindel'('>f completely regular space that is neither
star-Lindelof nor strictly 2-star-Lindelof.

Proof. Let D be a discrete space of size wy. Then the Noble plank N, D is 1%-star-Linde16f
but not star-Lindel6f ([7]). We show that the Noble plank N,,D is not strictly 2-star-
Lindelof.

Define Y = {[0,a) x D | < wa} U {(wz + 1) x {d}|d € D} and A = {ws} x D. Then
U is an open cover of N,,, D and we have St?(A,U) = N, D. However, no countable subset
B of A satisfies St*(B,U) = N,,D. Hence N, D is not strictly 2-star-Lindelof. O

For later use, we also have the another example (see Remark 4.10).

Example 4.5. There exists a 1%-star-Lindel'('>f completely regular space that is not strictly
2-star-Lindelof.

Proof. Let ¥ = wUA be the U-space constructed form a m.a.d.family A = {ay | A < 2¢} of
infinite subsets of w. Let D be a discrete space of size 2. Denote D = {yx | A < 2¢}. Define
X =V x A(D), where A(D) is the one-point compactification of D.

At first, it is easy to see that X is 13-star-Lindeldf since w x A(D) is Lindelsf and dense
in X.

Next, we prove that X is not strictly 2-star-Lindelof. Define an open cover of X by

U={T x{yp}rA<2¢}u{{n} x A(D)|n € w}
U{({ax} Uax) x (A(D) \ {ma}) [A < 2¢}.

Put A = {{ax,yx) | A < 2¢}. We have that St*(A,U) = X. Let B be an arbitrary countable
subset of A. Take a \g < 2¥ such that (ay,,y»,) & B. Then we can show that (ax,,yx,) &
St?(B,U). Hence X is not strictly 2-star-Lindelof. O

Let R* be the real line R with the topology

T. ={U C R | R\ U is a countable subset of R}.

Then R* is not strictly starcompact because it is not countably compact. And clearly R*
is strictly 1%—starcompact. Note that R* is a Tj-space which is not Hausdorff. We cannot
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construct a strictly 1%—starcompact Hausdorff space which is not strictly starcompact yet.

It is known that the Tychonoff plank T' = (w1 +1) x (w+1)\ {{w1,w)} is 13-starcompact
([1],[7]), whereas we show it is not even strictly 2-starcompact.

Example 4.6. The Tychonoff plank T is 1%—starcompact but not strictly 2-starcompact.

Proof. Define i = {[0,a) X (w+1)|a <wi}U{(w1+1)x{n}|n <w}. Then U is an open
cover of T'. For every n < w, we have St((w1,n),U) = (w1+1) x{n} since (w1+1) x {n} is the
only element of U containing (wy,n). Then we have St?((w1, n),U) = (w1 x (w+1))U{(w1,n)}.
Hence, the subset A = {w1} X w of T satisfies St(A,U) =T.

Take a finite subset F' of A arbitrarily. Then St* (F,U) # T, and hence T is not strictly
2-starcompact. ([l

H.Ohta pointed out that the Tychonoff plank T is not strictly star-Lindelof. He proved
the fact by showing that the Tychonoff plank T contained the closed subspace ((wy + 1) x
{0}) U (w1 x {w}) which is not strictly star-Lindel6f. We apply the idea to the following
stronger result.

Example 4.7. The Tychonoff plank T is not strictly 2-star-Lindel6f.

Proof. For each o < wy, set Uy = ([0, o] X [2,w])U{(a+1,1}} and V,, = {{a+1,0), (a+1,1)}.
Let A= (w1 +1)x {0} and W = (w1 + 1) x [1,w). Define i = {Uy | < w1} U{Vy|a <
w1} U{A, W}. Then U is an open cover of T and we have that St*(A,U) = T.

Let B be a countable subset of A. Set By = sup{3|(5,0) € B\ {w1}}. Then we
have St*((Bo + 1,w),U) = WU (U{V5|Bo+1 < v < wi}) U (U{Ua | < wi}) because
St({Bo + 1,w),U) = U{U, | Bo + 1 <y < wi}. Hence St*((By + 1,w),U) N B = (). Therefore
T is not strictly 2-star-Lindelof. (|

Moreover, under 2t = 2¢  the Scott-type fat W-space is a 2%—star—Linde16f completely
regular space which is not 2-star-Lindeldf ([7]). Then this space is strictly 23-star-Lindelof
but not strictly 2-star-Lindelof. On the other hand, under CH, the Scott-type fat W-space
is a 2%—starc0mpact completely regular space which is not 2-starcompact ([1], [10]). Then
this space is a strictly 2%—starcompact space that is not strictly 2-starcompact.

Here, we give the following diagrams which illustrate relationships among star covering
properties discussed above.

In the diagrams, the symbols a — b and a - b mean that a implies b, and a does not
necessarily imply b, respectively. We list corresponding counterexamples by the side of the
symbols a - b.
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At the last of this section, we give remarks on examples which are given above.

Remark 4.8. As to subspaces, closed subspaces of strictly k-star-Lindelof spaces are not
necessarily strictly k-star-Lindelof for every k € N with k& > 1%. For, the W-space, con-
structed from a m.a.d.family A of uncountably many infinite subsets of w, is k-star-Lindelof
for every k > 1% by Example 4.3. However, the subspace A does not satisfy the DCCC
since A is uncountable discrete and closed in W. Therefore A is not strictly k-star-Lindelof
for every k € N with k& > 1%.

Remark 4.9. The idea in Ohta’s proof stated above also suggests that the topological sum
w1 @ (w1 + 1) is not strictly 1%—star—Lindelbf. Hence a topological sum of a strictly star-
Lindeldf space and a compact space is not even strictly 1%—star—Lindelbf. Furthermore, the
proof of Example 4.7 shows that w; @ (w; + 1) @ (w1 + 1) is not strictly 2-star-Lindelof.
Therefore a topological sum of a strictly star-Lindelof space and a compact space is not

even strictly 2-star-Lindelof.

Remark 4.10. Concerning product spaces, Example 4.2 shows that a product of a strictly
star-Lindelof (respectively, strictly starcompact) space and a compact space need not be
strictly star-Lindel6f (respectively, strictly starcompact). Moreover, Example 4.5 shows that
a product of a strictly 1%—star—Lindelbf (respectively, strictly 2-star-Lindelof) space and a
compact space need not be strictly 1%—star-Lindel'('>f (respectively, strictly 2-star-Lindelof).

Furthermore, by a similar argument in the proof of Example 4.7, we can show that
neither wy X (w =+ 1) nor wy X (wy + 1) are strictly 2-star-Lindeldf strictly 1%—star—Linde16f.
Therefore, a product of a strictly star-Lindelof space with a separable metric space is not
even strictly 2-star-Lindelof.

The following problems are not solved yet.

Problem 4.11. Does there exist a strictly 2-star-Lindeldf space which is not strictly 1%—
star-Lindelof?

Problem 4.12. Does there exist a strictly 2-starcompact space which is not strictly 1%—
starcompact?

5. Concluding remarks. As we mentioned above, strict star-Lindelofness is not neces-
sarily preserved by taking topological sums. Accordingly, we introduce the following notion
of spaces with possible properties of strictly star-Lindelof spaces so as to be preserved by
taking topological sums.

Definition 5.1. A space X satisfies the condition (x) if for each open cover U of X, there
exists an open refinement 1V of U such that every subset A of X satisfying St(A,V) = X
contains a countable subset B of A satisfying St(B,V) = X.

Then we easily have that every strictly star-Lindelof space satisfies the condition (x),
and every space satisfying the condition (*) is wi-compact.

We can show that the condition (x) is preserved by taking a topological sum of countably
many spaces satisfying the condition (x).

Proposition 5.2. If {X, |n € N} is a countable family of spaces satisfying the condition
(), then D, ey Xn also satisfies the condition ().

We conclude this paper with the following example.
Recall that the Tychonoff plank 7" is not even strictly 2-star-Lindeldf (see Example 4.7).

Example 5.3. The Tychonoff plank T satisfies the condition (x).
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Proof. Let U be an open cover of T. For every (a,n) € T\ ({w1} X w) U (w1 x {w})),
take a Uy, € U so that (a,n) € Uy, Then we can choose a 8, < « so that (a,n) €
(Ba, @] x {n} C Uy pn. Put Vi, = (Ba, ] x {n}.

For every n < w, pick a U, € U so that (w1,n) € U,. We can take an «,, < w; such
that (w1,n) € (an,wi1] X {n} C Uyp. Put V,, = (an,w1] x {n} for each n < w. Now, define
& =sup{ay, |n < w}. Then & < wy.

For every a < wq, pick a U, € U so that (o, w) € U,. Then there exist a §, < « and an
Ne < w such that (o, w) € (Ba, @] X (nq,w] C Uy. For each a < wr, set Vo, = (Ba, ] X (g, w].
By the pressing-down lemma ([6]), there exist an ap < w1, an my < w and a cofinal subset
C of wy such that 8, = ap and n, = mg for every a € C. Define

V=A{Vanla<w, n<w}U{Vy|n<w}U{Valae[0,a0]U(CN(ag,w1))}.

Then V is an open refinement of U. Let A be a subset of T such that St(A,V) = T. Note
that V, = (ao, 7] x (mo,w] for every v € C'N (ag,w1).

For every n < w, we have that V,, is the only member of V containing (wy,n). Hence for
every n < w there exists an a,, € A such that a,, € V,,. Set A; = {a,, |n < w}. We have that
St(A1,V) D (&, w1] x w for some & < wy.

Here, for the ag+1 there exist a 79 € CN(ap,w1) and an z¢ € A such that (ag+1,w) €
V., and x¢ € V,,. Then we have St(zo,V) D (ag,w1) X (mog,w].

Let n = max{ayp, £}. Then 1 < wy. Because [0, + 1] X (w4 1) is a compact subset of T,
there exists a finite subset Az of A such that St(Az,V) D [0,7+ 1] X (w+ 1).

Therefore we have St(A;UAsU{xo}, V) = T, and hence T satisfies the condition (x). O

REFERENCES

[1] E.K. van Douwen, G.M. Reed, A.W. Roscoe and 1.J. Tree, Star covering properties, Topology
Appl., 39 (1993), 71-103.

[2] R. Engelking, Genenral Topology, Heldermann Verlag, Berlin, (1989).
[3] W.M. Fleischman, A new extension of countable compactness, Fund. Math., 67 (1970), 1-9.
[4] L. Gillman and M. Jerison, Rings of continuous functions, New York, (1960).

]

[5] S. Ikenaga, A class which contains Lindelof spaces, separable spaces and countably compact
spaces, Memories of Numazu College Technology, 18 (1983), 105-108.

[6] K. Kunen, Set theory. An introduction to independence proofs, North-Holland, Amsterdam,
(1980).

[7] M.V. Matveev, A survey on star covering properties, Topology Atlas, preprint No.330, (1998).
[8] M.V. Matveev, More on star covering properties, Topology Atlas, preprint No.363, (1998).
[9] M.V. Matveev, More on star covering properties 11, Topology Atlas, preprint No.431, (2000).

[10] B.M. Scott, Pseudocompact, metacompact spaces are compact, Topology Proc., 4 (1979), 577—
587.

Nara Women’s University Secondary School,
Higashikidera, Nara 630-8305, Japan
E-mail: kawaguchi@cc.nara-wu.ac,jp



