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A CHARACTERIZATION OF THE HARMONIC OPERATOR MEAN
AS AN EXTENSION OF ANDO’S THEOREM
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ABSTRACT. We show that the (weighted) harmonic operator mean is characterized as
an operator mean m satisfying F(AmB) < F(A)mF (B) for every operator monotone
function F' on (0,00) based on the numerical means. We also show the non-affine
representing function f,(z) = 1 mx of an operator mean m is an extreme point of the
set of representing functions F' with F o f, £ fm o F.

1 Introduction. Let us consider the arithmetic operator mean AVB = (A + B)/2 for
a pair of positive (invertible) operators A and B acting on a Hilbert space H. Then a real
function F' is operator concave if

F(AVB)>F(A)VF(B)
holds. It is known that every operator monotone function f on (0, c0) satisfying
f(4) < f(B) whenever 0 < A< B

is operator concave. The harmonic operator mean ! is defined by

-1 —1\ 1
Al B= <A+B>

and T.Ando [1, Theorem II1.5] showed the contrastive result to the above:
Theorem (Ando)l. If F is positive operator monotone, then
F(A!B)<F(A)! F(B).
In this note, based on this inequality, we discuss when
F(Am B)<F(A) m F(B)

holds not only for numerical means but also operator means in the sense of Kubo and Ando
[5] which can be constructed as

(1) AmB = AY2f(A7V2BATY/2) A2

for a positive operator monotone function f on (0,00) with f(1) = 1.
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2 Numerical mean. Let M (a,b) be a positive homogeneous mean for positive numbers
a and b. According to the Kubo-Ando theory [5], the operations M°(a,b) = M (b,a) and
M*(a,b) = M(1/a,1/b)~! are called the transpose and adjoint for M respectively.

The symbols V., #. and !, denote the arithmetic, geometric and harmonic means
respectively for 0 < w < 1:

ab

Vu(a,b) = (1 —w)a+wb, #uy(a,b)=a'""b" and !,(a,b) = wat(l—w)p

Then
vru:!wa 'Z):vw and #Z):#w
and these means are all symmetric for w =1/2, i.e., M° = M.

These operations * and © are also applied to the representing function fy(x) = M(1, )
for M:

f*(x):ﬁ and fO(x)zfo).

Note that the normalized condition M (a,a) = a is equivalent to fis(1) = 1. By homogene-
ity, such means are reconstructed by the representing functions:

M(a,b) = afp(b/a) =bfy(a/b).

Here we assume that fjs is positive, monotone-increasing and concave. Then so is fj;.
In fact, it is clear that f}, is positive and monotone-increasing. The concavity follows from

a1 = e+ w) = (= )+ wn)fur (=i

1 —w)
(1-— w)x% + wyi
= ((1 —w)z +wy)fum ( (1 —w)z + wy )

2 (= wpafis (3 ) +wnfur (3) = (0= )i 0+ s ().

The adjoint f}, is also positive and monotone-increasing, but it is not always concave
as in the following example:

Example 1. Put F(z) = +/x Az. Then F(1/z) = (1/v/z) A (1/x) and hence
F*(2) = V3V a,
which is not concave in a neighborhood of 1.
Moreover the concavity of F™* is equivalent to Ando’s type theorem:

Lemma 2.1. Let F be a positive monotone-increasing concave function on (0,00). Then
F* is concave if and only if

F(lw(a,b)) = Lw(F(a), F(b))

for all a,b > 0.
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Proof. The concavity of F* is written by

;1 =F"((1-w)z+wy) 2 (1—w)F*(z)+wF*(y) = (1-w) L !

By putting a = 1/x and b = 1/y, it is equivalent to

F(a)F(b) -
(I —w)z + wy) S T-wF o) ek~ v F@ Fo).

Ftofa.t) = 7

Thus the equivalence is shown. [

Here we restrict ourselves to the homogeneous numerical means M with the representing
functions fs satisfying

(i) fm, fi; and f5; are positive monotone-increasing concave functions.

(i) far is normalized: far(1) =1 (i.e., M(a,a) = a).
Note that (i) implies that the above means do not include trivial means: My(a,b) = a and

M, (a,b) = b.
Next we consider when

(2) F(M(a,b)) = M(F(a), F(b))
holds. Note that it is equivalent to
(27) F*(M*(a,b)) 2 M*(F*(a), F"(b)).

In spite of the above situation, it holds for a special pair of a mean M # !, and a function
F. In fact, putting F(z) = /= and M (a,b) = Vab, the geometric mean. Then

F(M/(a,b)) = Vab = M(F(a), F(b)).

But, considering the case that F* is affine, we can characterize the harmonic mean in such
means, which is an extension of Ando’s theorem:

Theorem 2.2. A homogeneous mean M in the above sense is the harmonic one if and only
if

F(M(a,b)) = M(F(a), F(b))
for all positive monotone-increasing concave functions F on (0,00) with the concave adjoint
F* and positive numbers a and b.

Proof. Tt follows from the above lemma that (2) holds for M = !,,. Suppose M # !, and
(2) holds. Then M* # V,,, so that there exists « with

M*(1,1) + M*(1,z) 1+ fy(x) A e A . 1+
O LS (1) g (3120,

Applying F*(z) = (14 2)/2 to (2"), we have

71”;;4(”3) — F(M*(1,2)) >M<1, 1;”3) = fur (1;;«)

This contradiction shows M* = V,,, that is, M = 1,,. O
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3 Operator mean. Next we discuss the case of operators. The harmonic operator
mean with a weight w is defined by

AlyB=(1-w)A~ ' +wB™1)™!

and the arithmetic one with w is AV,,B = (1 —w)A + wB for positive invertible operators
A and B on a Hilbert space. In general, operator means here stand for the Kubo-Ando
operator means defined by (1). Note that the representing function f,,(z) = 1mx of a
nontrivial operator mean m is a positive monotone-increasing concave function and so are
fr and fr. Now we have a characterization of the harmonic operator mean !,:

Theorem 3.1. A nontrivial operator mean m is the (weighted) harmonic (resp. arithmetic)
one if and only if

(3) F(Am B) < F(A) m F(B) (resp. F(Am B)> F(A) m F(B))

for all positive operator monotone functions F' and positive operators A and B.

Finally we observe noncommutative examples. As we state above, for commuting oper-

ators A and B, we have
VA # B=VAB=VA#VB,

where # is the geometric operator mean

A# B=AY?\A-1/2BA-1/24Y/2,

But it does not hold in general and moreover we can give examples:

VA# B<VA#VB and +/C # B> VC#VB.

Recall the following formula in [2]:

C(r B\ (10} . _ fe P
S_(y Z),P—<O 0) imply S # P = . P.

(21 w2 (9 3 .
s=( ) oasi=(0 D) wa non

Then S1# B = P and S?# P = %P, and hence

«/A#B:,/S%#B:%PSP:&#P:\/Z#\/E.

(21 e (53 B
s-( omsi=(0 ) wa pon

Then we have Sy# P = \/gp and S2# P = /18P, so that

Put

Next, put

\/C#B:\/Sg#P:%Pz gP:SQ#P:\/E#\/E.

These examples show the difficulty to discuss the class of functions F satisfying (3). So
we discuss another related class in the next section.
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4 A class of functions. Finally we consider the set M F of all representing functions of
operator means, that is, positive operator monotone functions f,, on (0, c0) with f,,(1) = 1.
Note that !, and V,, belong to the boundary of M F' , which corresponds to [3, Theorem
8] and [5, Theorem 4.5]:

Theorem 4.1. The weighted arithmetic means V,, (resp. harmonic ones ) are the
largest (resp. smallest) operator means whose representing functions satisfy f), (1) = w.

Proof. Every representing function f,, is concave and differentiable, so we have
frm(@) = £, (W@ = 1) + fm(1) =1 = £,,(1) + f5,(Dz = fv,, ()

for all > 0, which shows m < V,,. Therefore !, = VI are the smallest since m < n
implies m* > n* for all operator means m and n. OJ

Let S(m) = S(fm) be the set of all F' € M F satisfying
(4) Fofp < fmolfF,
which is derived from the case A =1 in (3):
F(fu(B)) = F(lm B) < F(\)ym F(B) = Lm F(B) = fn(F(B)).

Then S(m) is a closed convex subset of M F' with the maximal extreme points V,, by the
above theorem. Since the equality in (4) holds, we have f,, itself belongs to S(m). This
suggests that m occupies an extremal position in S(m). The above argument shows that
S( 1) coincides with MF and S(Vy) = {fv,|0 < w < 1}. In other words, by Theorem
4, the smallest class of S( !,) and S(Vy,) is {f1,} and {fv, } respectively. In particular,
these means are extreme points of M F . Moreover it is valid in general, which is another
variation of Ando’s theorem:

Theorem 4.2. If f,, be the non-affine representing function for an operator mean m, then
it is an extreme point of S(m):
fm € ext S(m).

Proof. Let (Fy + F3)/2 = fp, for Fy, € S(m). Then, putting y = f,,(x) for each > 0, we
have

fnly) = DT () - T T g () = TulIml@D) £ FalUmf2)
 InlFa(e)) + Fu(Fole)

fm

<F1 () + Fa(z)
2

3 = ) = o)

Therefore, the equality holds and hence Fj(x) = Fy(x) by the strict concavity of fy,.
Consequently Fy = Fy = f,,,, which implies f,, € ext S(m). O

Moreover we conjecture that f,, is a minimal function for S(m), that is, for all totally
ordered path of representing functions f,. passing through f,,, (see [4])

fm = min{fm, | fm, € S(m)}.

Though it is valid for m =1, and V,,, it is an open problem in general.
Recall that for the power mean m, ,, for |r| < 1, the representing function

Frnp (@) = (1= w +wa”)"",
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is operator monotone and hence the representing one of an operator mean. For a fixed
weight w, it is monotone increasing for r (while the power operator mean Am,.,, B is not
always monotone increasing in the usual order for operators). For » — 0, we obtain the
geometric operator mean #,, with a weight w:

A #,B = AV? (A*1/2BA*1/2)M A2,

Now we can verify that the representing function fz (z) = 2™ is the smallest one in the
power ones in S(#,). In fact, the monotonicity of power means shows

(1-—w+ wm_r)_l/r S(l-w+ wx_wr)_l/(wr) < (1—w+wz*)Y ) < (1 —w+ wa)"
for all 0 < r £ 1. This is equivalent to
(1—w+ wxfr)fw/r S(1-w+ wx*wr)fl/r <(1-w+wz)Y" < (1 —w+ wz")"",

which shows fu, =min{fn, , | fim,. € S(#w)}-
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