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Abstract. The purpose of this paper is to study the existence of fixed points for mul-
tivalued nonexpansive mappings in modular function spaces. We apply our main result
to obtain fixed point theorems for multivalued mappings in the Banach spaces L1 and
l1.

1. Introduction

The theory of modular spaces was initiated by Nakano [15] in 1950 in connection with
the theory of order spaces and redefined and generalized by Musielak and Orlicz [13] in
1959. Even though a metric is not defined, many problems in metric fixed point theory can
be reformulated and solved in modular spaces (see, for instance, [2, 3, 7, 8]). In particular,
some fixed point theorems for (singlevalued) nonexpansive mappings in modular function
spaces are given in [8]. In 1969, Nadler [14] established the multivalued version of Banach’s
contraction principle in metric spaces. Since then the metric fixed point theory for multival-
ued mappings has been rapidly developed and many of papers have appeared proving the
existence of fixed points for multivalued nonexpansive mappings in special classes of Banach
spaces (see, for instance, [4, 5, 9, 11]). In this paper, we study similar problems in the setting
of modular function spaces. Namely, we prove that every ρ−contraction T : C → Fρ(C) has
a fixed point where ρ is a convex function modular satisfying the ∆2−type condition and
C is a nonempty ρ−bounded ρ−closed subset of Lρ. By using this result, we can assert the
existence of fixed points for multivalued ρ−nonexpansive mappings. Finally, we apply our
main result to obtain fixed point theorems in the Banach space L1 (resp. l1) for multivalued
mappings whose domains are compact in the topology of the convergence locally in measure
(resp. w∗−topology).

2. Preliminaries

We start by recalling some basic concepts about modular function spaces. For more
details the reader is referred to [10, 12].

Let Ω be a nonempty set and Σ be a nontrivial σ−algebra of subsets of Ω. Let P be a
δ−ring of subsets of Ω, such that E ∩A ∈ P for any E ∈ P and A ∈ Σ. Let us assume that
there exists an increasing sequence of sets Kn ∈ P such that Ω =

⋃
Kn (for instance, P

can be the class of sets of finite measure in a σ−finite measure space). By E we denote the
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linear space of all simple functions with supports from P . By M we will denote the space
of all measurable functions, i.e., all functions f : Ω → R such that there exists a sequence
{gn} ∈ E , |gn| ≤ |f |, and gn(ω) → f(ω) for all ω ∈ Ω.

Let us recall that a set function µ : Σ → [0,∞] is called a σ−subadditive measure if
µ(∅) = 0, µ(A) ≤ µ(B) for any A ⊂ B and µ(

⋃
An) ≤ ∑

µ(An) for any sequence of sets
{An} ⊂ Σ. By 1A we denote the characteristic function of the set A.

Definition 2.1. A functional ρ : E × Σ → [0,∞] is called a function modular if :
(P1) ρ(0, E) = 0 for any E ∈ Σ,
(P2) ρ(f, E) ≤ ρ(g, E) whenever |f(ω)| ≤ |g(ω)| for any ω ∈ Ω, f, g ∈ E , and E ∈ Σ,
(P3) ρ(f, .) : Σ → [0,∞] is a σ−subadditive measure for every f ∈ E ,
(P4) ρ(α,A) → 0 as α decreases to 0 for every A ∈ P , where ρ(α,A) = ρ(α1A, A),
(P5) if there exists α > 0 such that ρ(α,A) = 0, then ρ(β,A) = 0 for every β > 0,
(P6) for any α > 0, ρ(α, .) is order continuous on P , that is, ρ(α,An) → 0 if {An} ⊂ P

and decreases to ∅.
A σ−subadditive measure ρ is said to be additive if ρ(f, A ∪ B) = ρ(f, A) + ρ(f, B)

whenever A,B ∈ Σ such that A ∩ B = ∅ and f ∈ M.
The definition of ρ is then extended to f ∈ M by

ρ(f, E) = sup
{
ρ(g, E) : g ∈ E , |g(ω)| ≤ |f(ω)| for every ω ∈ Ω

}
.

Definition 2.2. A set E is said to be ρ−null if ρ(α,E) = 0 for every α > 0. A property
p(ω) is said to hold ρ−almost everywhere (ρ−a.e.) if the set {ω ∈ Ω : p(ω) does not hold}
is ρ−null. For example, we will say frequently fn → f ρ−a.e.

Note that a countable union of ρ−null sets is still ρ−null. In the sequel we will iden-
tify sets A and B whose symmetric difference A∆B is ρ−null, similarly we will identify
measurable functions which differ only on a ρ−null set.

In the above condition, we define the function ρ : M → [0,∞] by ρ(f) = ρ(f, Ω). We
know from [10] that ρ satisfies the following properties :

(i) ρ(f) = 0 if and only if f = 0 ρ−a.e.
(ii) ρ(αf) = ρ(f) for every scalar α with |α| = 1 and f ∈ M.
(iii) ρ(αf + βg) ≤ ρ(f) + ρ(g) if α + β = 1, α, β ≥ 0 and f, g ∈ M.

In addition, if the following property is satisfied
(iii)’ ρ(αf + βg) ≤ αρ(f) + βρ(g) if α + β = 1, α, β ≥ 0 and f, g ∈ M,

we say that ρ is a convex modular.
A function modular ρ is called σ−finite if there exists an increasing sequence of sets

Kn ∈ P such that 0 < ρ(1Kn) < ∞ and Ω =
⋃

Kn.
The modular ρ defines a corresponding modular space Lρ, which is given by

Lρ = {f ∈ M : ρ(λf) → 0 as λ → 0}.
In general the modular ρ is not subadditive and therefore does not behave as a norm

or a distance. But one can associate to a modular an F−norm. Recall that a functional
‖ · ‖ : X → [0,∞] defines an F−norm on a linear space X if and only if

(1) ‖x‖ = 0 if and only if x = 0,
(2) ‖αx‖ = ‖x‖ whenever |α| = 1,
(3) ‖x + y‖ ≤ ‖x‖ + ‖y‖,
(4) ‖αnxn − αx‖ → 0 if αn → α and ‖xn − x‖ → 0.

The modular space Lρ can be equipped with an F−norm defined by

‖f‖ρ = inf
{

α > 0 : ρ

(
f

α

)
≤ α

}
.
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We know from [10] that the linear space (Lρ, ‖ · ‖ρ) is a complete metric space.
If ρ is convex, the formula

‖f‖l = inf
{

α > 0 : ρ

(
f

α

)
≤ 1

}

defines a norm which is frequently called the Luxemburg norm. The formula

‖f‖a = inf
{

1
k

(1 + ρ(kf)) : k > 0
}

defines a different norm which is called the Amemiya norm. Moreover, ‖ · ‖l and ‖ · ‖a are
equivalent norms. We can also consider the space

Eρ = {f ∈ M : ρ(αf, ·) is order continuous for all α > 0}.
Definition 2.3. A function modular ρ is said to satisfy the ∆2−condition if

sup
n≥1

ρ(2fn, Dk) → 0 as k → ∞ whenever {fn} ⊂ M, Dk ∈ Σ

decreases to ∅ and sup
n≥1

ρ(fn, Dk) → 0 as k → ∞.

It is known that the ∆2−condition is equivalent to Eρ = Lρ.

Definition 2.4. A function modular ρ is said to satisfy the ∆2−type condition if there
exists K > 0 such that for any f ∈ Lρ we have ρ(2f) ≤ Kρ(f).

In general, the ∆2−type condition and ∆2−condition are not equivalent, even though it
is obvious that the ∆2− type condition implies the ∆2−condition.

Definition 2.5. Let Lρ be a modular space.
(1) The sequence {fn} ⊂ Lρ is said to be ρ−convergent to f ∈ Lρ if ρ(fn − f) → 0 as

n → ∞.
(2) The sequence {fn} ⊂ Lρ is said to be ρ−a.e. convergent to f ∈ Lρ if the set {ω ∈ Ω :

fn(ω) � f(ω)} is ρ−null.
(3) A subset C of Lρ is called ρ−closed if the ρ−limit of a ρ−convergent sequence of C

always belongs to C.
(4) A subset C of Lρ is called ρ−a.e. closed if the ρ−a.e. limit of a ρ−a.e. convergent

sequence of C always belongs to C.
(5) A subset C of Lρ is called ρ−compact if every sequence in C has a ρ−convergent

subsequence in C.
(6) A subset C of Lρ is called ρ−a.e. compact if every sequence in C has a ρ−a.e.

convergent subsequence in C.
(7) A subset C of Lρ is called ρ−bounded if

diamρ(C) = sup{ρ(f − g) : f, g ∈ C} < ∞.

We know by [10] that under the ∆2−condition the norm convergence and modular con-
vergence are equivalent, which implies that the norm and modular convergence are also the
same when we deal with the ∆2−type condition. In the sequel we will assume that the
modular function ρ is convex and satisfies the ∆2−type condition.

Definition 2.6. Let ρ be as above. We define a growth function ω by

ω(t) = sup
{ρ(tf)

ρ(f)
: f ∈ Lρ, 0 < ρ(f) < ∞

}
for all 0 ≤ t < ∞.

The following properties of the growth function can be found in [3].
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Lemma 2.7. Let ρ be as above. Then the growth function ω has the following properties :
(1) ω(t) < ∞, ∀t ∈ [0,∞).
(2) ω : [0,∞) → [0,∞) is a convex, strictly increasing function. So, it is continuous.
(3) ω(αβ) ≤ ω(α)ω(β);∀α, β ∈ [0,∞).
(4) ω−1(α)ω−1(β) ≤ ω−1(αβ);∀α, β ∈ [0,∞), where ω−1 is the function inverse of ω.

The following lemma shows that the growth function can be used to give an upper bound
for the norm of a function.

Lemma 2.8 (T. Domı́nguez Benavides et al. [3]). Let ρ be as above. Then

‖f‖ρ ≤ 1
ω−1(1/ρ(f ))

whenever f ∈ Lρ\{0}.

The following lemma is a technical lemma which will be need because of lack of the
triangular inequality.

Lemma 2.9 (T. Domı́nguez Benavides et al. [3]). Let ρ be as above, {fn} and {gn} be two
sequences in Lρ. Then

lim
n→∞ ρ(gn) = 0 =⇒ lim sup

n→∞
ρ(fn + gn) = lim sup

n→∞
ρ(fn)

and

lim
n→∞ ρ(gn) = 0 =⇒ lim inf

n→∞ ρ(fn + gn) = lim inf
n→∞ ρ(fn).

In the same way as the Hausdorff distance defined on the family of bounded closed
subsets of a metric space, we can define the analogue to the Hausdorff distance for modular
function spaces. We will call ρ−Hausdorff distance even though it is not a metric.

Definition 2.10. Let C be a nonempty subset of Lρ. We shall denote by Fρ(C) the family
of nonempty ρ−closed subsets of C and by Kρ(C) the family of nonempty ρ−compact
subsets of C. Let Hρ(·, ·) be the ρ−Hausdorff distance on Fρ(Lρ), i.e.,

Hρ(A,B) = max
{

sup
f∈A

distρ(f, B), sup
g∈B

distρ(g, A)
}
, A,B ∈ Fρ(Lρ),

where distρ(f, B) = inf{ρ(f−g) : g ∈ B} is the ρ−distance between f and B. A multivalued
mapping T : C → Fρ(Lρ) is said to be a ρ−contraction if there exists a constant k ∈ [0, 1)
such that

Hρ(Tf, T g) ≤ kρ(f − g), f, g ∈ C.(2.1)

If (2.1) is valid when k = 1, then T is called ρ−nonexpansive. A function f ∈ C is called a
fixed point for a multivalued mapping T if f ∈ Tf.

3. Main results

We begin stating the Banach Contraction Principle for multivalued mappings in modular
function spaces.

Theorem 3.1. Let ρ be a convex function modular satisfying the ∆2−type condition, C a
nonempty ρ−bounded ρ−closed subset of Lρ, and T : C → Fρ(C) a ρ−contraction mapping,
i.e., there exists a constant k ∈ [0, 1) such that

Hρ(Tf, T g) ≤ kρ(f − g), f, g ∈ C.(3.1)

Then T has a fixed point.
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Proof. Let f0 ∈ C and α ∈ (k, 1). Since Tf0 is nonempty, there exists f1 ∈ Tf0 such that
ρ(f0 − f1) > 0 (otherwise f0 is a fixed point of T ). In view of (3.1), we have

distρ(f1, T f1) ≤ Hρ(Tf0, T f1) ≤ kρ(f0 − f1) < αρ(f0 − f1).

Since distρ(f1, T f1) = inf{ρ(f1 − g) : g ∈ Tf1}, it follows that there exists f2 ∈ Tf1 such
that

ρ(f1 − f2) < αρ(f0 − f1).

Similarly, there exists f3 ∈ Tf2 such that

ρ(f2 − f3) < αρ(f1 − f2).

Continuing in this way, there exists a sequence {fn} in C satisfying fn+1 ∈ Tfn and

ρ(fn − fn+1) < αρ(fn−1 − fn)

< α2(ρ(fn−2 − fn−1))
< ...

< αn−1(ρ(f1 − f2))

< αn(ρ(f0 − f1))

≤ αndiamρ(C).

Let M = diamρ(C), then
1

αnM
<

1
ρ(fn − fn+1)

.

By Lemma 2.7, we have(
ω−1

( 1
α

))n

ω−1
( 1

M

)
< ω−1

( 1
ρ(fn − fn+1)

)
.

It follows that
1

ω−1
(

1
ρ(fn−fn+1)

) <
1(

ω−1
(

1
α

))n

ω−1
(

1
M

) .

By Lemma 2.8, we obtain

‖fn − fn+1‖ρ <
( 1

ω−1
(

1
α

))n

· 1

ω−1
(

1
M

) .

Since ω−1 is strictly increasing, we have 1

ω−1
(

1
α

) < 1. This implies that {fn} is a Cauchy

sequence in (Lρ, ‖ ·‖ρ). Since (Lρ, ‖ ·‖ρ) is a complete metric space, there exists f ∈ Lρ such
that {fn} is ‖ · ‖ρ−convergent to f . Since under the ∆2−type condition, norm convergence
and modular convergence are identical, {fn} is ρ−convergent to f and f ∈ C because C is
ρ−closed. Since fn ∈ Tfn−1, we have

distρ(fn, T f) ≤ Hρ(Tfn−1, T f) ≤ kρ(fn−1 − f) −→ 0.(3.2)

We observe that, for each n, there exists gn ∈ Tf such that

ρ(fn − gn) ≤ distρ(fn, T f) +
1
n

.(3.3)

Thus, (3.2) and (3.3) imply that lim
n→∞ ρ(fn − gn) = 0. By Lemma 2.9,

lim sup
n→∞

ρ(gn − f) = lim sup
n→∞

ρ(gn − fn + fn − f) = lim sup
n→∞

ρ(fn − f) = 0.

Since Tf is ρ−closed, we can conclude that f ∈ Tf.
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The following results will be very useful in the proof of our main theorem.

Theorem 3.2 (M. A. Khamsi [7]). Let {fn} ⊂ Lρ be ρ−a.e. convergent to 0. Assume there
exists k > 1 such that

sup
n≥1

ρ(kfn) = M < ∞.

Let g ∈ Eρ, then we have

lim inf
n→∞ ρ(fn + g) = lim inf

n→∞ ρ(fn) + ρ(g).

The following lemma guarantees that every nonempty ρ−compact subset of Lρ attains a
nearest point.

Lemma 3.3. Let ρ be a convex function modular satisfying the ∆2−type condition, f ∈ Lρ,
and K a nonempty ρ−compact subset of Lρ. Then there exists g0 ∈ K such that

ρ(f − g0) = distρ(f, K).

Proof. Let m = distρ(f, K). For each n ∈ N, there exists gn ∈ K such that

m − 1
n
≤ ρ(f − gn) ≤ m +

1
n

.

By the ρ−compactness of K, we can assume, by passing through a subsequence, that gn
ρ−→

g0 ∈ K. By Lemma 2.9, we obtain

m = lim sup
n→∞

ρ(gn − f) = lim sup
n→∞

ρ(gn − g0 + g0 − f)

= lim sup
n→∞

ρ(g0 − f)

= ρ(g0 − f).

We can now state our main theorem.

Theorem 3.4. Let ρ be a convex function modular satisfying the ∆2−type condition, C
a nonempty ρ−a.e. compact ρ−bounded convex subset of Lρ, and T : C → Kρ(C) a
ρ−nonexpansive mapping. Then T has a fixed point.

Proof. Fix f0 ∈ C. For each n ∈ N, the ρ−contraction Tn : C → Fρ(C) is defined by

Tn(f) =
1
n

f0 + (1 − 1
n

)Tf, f ∈ C.

By Theorem 3.1, we can conclude that Tn has a fixed point, say fn. It is easy to see that

distρ(fn, T fn) ≤ 1
n

diamρ(C) −→ 0.

Because of ρ−a.e. compactness of C, we can assume, by passing through a subsequence,
that fn

ρ−a.e.−→ f for some f ∈ C. By Lemma 3.3, for each n ∈ N, there exists gn ∈ Tfn and
hn ∈ Tf such that

ρ(fn − gn) = distρ(fn, T fn)

and

ρ(gn − hn) = distρ(gn, T f) ≤ Hρ(Tfn, T f) ≤ ρ(fn − f).

Because of ρ−compactness of Tf, we can assume, by passing through a subsequence, that
hn

ρ−→ h ∈ Tf. Since ρ satisfies the ∆2−type condition, there exists K > 0 such that
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ρ(2(fn − f)) ≤ Kρ(fn − f) for all n ∈ N.
This implies that

sup
n≥1

ρ(2(fn − f)) ≤ K sup
n≥1

ρ(fn − f) < ∞.

By Theorem 3.2 and Lemma 2.9, we obtain

lim inf
n→∞ ρ(fn − f) + ρ(f − h) = lim inf

n→∞ ρ(fn − f + f − h)

= lim inf
n→∞ ρ(fn − h)

= lim inf
n→∞ ρ(fn − gn + gn − hn + hn − h)

= lim inf
n→∞ ρ(gn − hn)

≤ lim inf
n→∞ ρ(fn − f).

It follows that ρ(f − h) = 0 and then we have f = h ∈ Tf.

Consider the space Lp(Ω, µ) for a σ−finite measure µ with the usual norm. Let C be
a bounded closed convex subset of Lp for 1 < p < ∞ and T : C → K(C) a multivalued
nonexpansive mapping. Because of uniform convexity of Lp, it is known that T has a
fixed point. For p = 1, T can fail to have a fixed point even in the singlevalued case for
a weakly compact convex set C (see [1]). However, since L1 is a modular space where
ρ(f) =

∫
Ω |f |dµ = ‖f‖ for all f ∈ L1, Theorem 3.4 implies the existence of a fixed point

when we define mappings on a ρ−a.e. compact ρ−bounded convex subset of L1. Thus we
can state :

Corollary 3.5. Let (Ω, µ) be as above, C ⊂ L1(Ω, µ) a nonempty bounded convex set which
is compact for the topology of the convergence locally in measure, and T : C → K(C) a
nonexpansive mapping. Then T has a fixed point.

Proof. Under the above hypothesis, ρ−a.e. compact sets and compact sets in the topology
of the convergence locally in measure are identical (see [2]). Consequently, Theorem 3.4 can
be applied to obtain a fixed point for T.

In the case of the space l1 we also can obtain a bounded closed convex set C and a
nonexpansive mapping T : C → C which is fixed point free. Indeed, consider the following
easy and well known example :
Let

C =
{
{xn} ∈ l1 : 0 ≤ xn ≤ 1 and

∞∑
n=1

xn = 1
}
.

Define a nonexpansive mapping T : C → C by

T (x) = (0, x1, x2, x3, ...) where x = {xn}.
Then T is a fixed point free. However, if we consider Lρ = l1 where ρ(x) = ‖x‖, ∀x ∈ l1.
Then ρ−a.e. convergence and w∗−convergence are identical on bounded subsets of l1 (see
[3]). This fact leads us to obtain the following corollary :

Corollary 3.6. Let C be a nonempty w∗−compact convex subset of l1 and T : C → K(C)
a nonexpansive mapping. Then T has a fixed point.

Proof. By the above argument, we know that ρ−a.e. compact bounded sets and w∗−compact
sets are identical. Then we can apply Theorem 3.4 to assert the existence of a fixed point
of T.
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In fact Corollary 3.5 and 3.6 are consequences of a general result: Assume that X is a
linear normed space and τ is a Hausdorff topology on X . We say that X satisfies the strict
τ -Opial property if

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖
for each sequence {xn} in X which converges to x for the topology τ and each y = x.
Following the same argument as in [11] it is easy to prove the following theorem:

Theorem 3.7. Let X be a Banach space, C a convex bounded sequentially τ-compact subset
of X, and T : C → K(C) a nonexpansive mapping. If X satisfies the strict τ-Opial property,
then T has a fixed point.

When X is a modular function space equipped with either Luxemburg or Amemiya norm,
we can consider the topology τ of convergence ρ-a.e. In this case, Theorem 3.7 yields to the
following:

Theorem 3.8. Let ρ be a convex additive σ−finite function modular satisfying the ∆2−type
condition. Assume that Lρ is equipped either with Luxemburg or Amemiya norm. Let C
be a nonempty ρ−a.e. compact ρ−bounded convex subset of Lρ, and T : C → K(C) a
nonexpansive mapping. Then T has a fixed point.

Proof. From [6] (Theorem 4.1 and 4.3), X satisfies the uniform Opial property with respect
to the topology of ρ-a.e. convergence. Since ρ-a.e. compact sets and ρ-a.e. sequentially
compact sets are identical for this topology (see [2]), we can deduce the result from Theorem
3.7

Remark. In the case of the space L1(Ω) we have

ρ(f) =
∫

Ω

|f |dµ = ‖f‖l = ‖f‖a

and we can deduce Corollary 3.5 and 3.6 from Theorem 3.8.
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