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NOTE ON THE BRONSHTEIN THEOREM CONCERNING HYPERBOLIC
POLYNOMIALS

SHIGEO TARAMA

Received January 18, 2006

ABSTRACT. Using the argument of Bronshtein, we give proofs of some inequalities
related to hyperbolic polynomials whose coefficients are not sufficiently smooth. We
give also the correction of previously announced estimates.

1 Introduction We call a polynomial which has only real roots a hyperbolic polynomial.
Consider a hyperbolic polynomial with parameter ¢

M
Pt,7)=1M + Z Ap(t)yT™M=",
h=1

We assume the multiplicity of roots is at most m. Bronshtein [2] showed Lipschitz continuity
of roots with respect to ¢ under the assumption that all the coefficients are C"™. Using this,
Bronshtein [1] drew the estimate

OcP(t,T)

=2 <O, 1> (97 >0
Pl | = ST, 1> (S

and showed the Gevrey wellposedness of Cauchy problem. Using the idea of [1], Ohya-
Tarama [3] considered Cauchy problem for a hyperbolic operator with coefficients that are
k-Holder continuous with respect to the time variable. In the case where 2 > k > 1, a
modified version of the estimate above under the assumption m > 2

atP(t7 T)

<OIS7|7%, 1>97] >0,
Pt | S |7 > |37

(for the precise statement see Theorem 1.1 and the remark after Corollary 1.3), is used.
Concerning the regularity of roots, we see that the roots are a-Holder continuous with
a = min{l, k/m} if the coefficients belong to C*. Although the proofs of these results have
already been given by Wakabayashi [5] with some extension, we give here our proofs directly
based on the idea of Bronshtein [2]. In the course of proof, we show also that the estimate
above and Holder continuity of roots are equivalent.

Theorem 1.1. Let T > 0, m and M positive integers with 2 < m < M, ry a positive
integer and v € (0,1]. Let

M
P(t,r) =7+ Au(t)yrM "
h=1
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be a hyperbolic polynomial with coefficients Ap(t) (h = 1,... , M) in C™V([-T,T]). We
assume that the multiplicity of roots of P(t,T) is at most m. Then for any S € (0,T) there
exists a positive constant C' such that for j =1,... ,min{m — 1,79}

oI P(t,T)
P(t,7)

< O3] et

(1.1)

when 7 € C with 7 € (0,1] and t € [-5,5].

Here the constant C may depend on S but it can be chosen uniformly when coefficients
A;(t) belong to a bounded set in CT™Y([-T,T]) as long as P(t,T) is hyperbolic and the
multiplicity of roots is at most m uniformly. That is to say, in the case of m < M, let
Py(t,7) = ™ + Zthl Ap o)™ =" be a hyperbolic polynomial with a parameter 6 € ©
where {Apo(t) | h=1,... , M, 6 € O} is a bounded set in C™7([-T,T]). Assume that,
using the factorization Py(t,T) = Hl]\il(T —A0(t)) with A p(t) < Aap(t) < -+ < Apro(t),
we have forl=1,... , M —m

(1.2) Nigm,o(t) —No(t) > D, [t|<T, 0€0O.

with some positive constant D. Then we have the uniform estimate (1.1) for Po(t,T) with

0 € 0O.

Here we denote by C*<([—T,T]) with a non-negative integer k£ and a € (0, 1] the space
of function f(t) on [T, T] that has continuous derivatives up to order k and whose k-th
derivative f(*)(t) is a-Holder continuous, that is to say,

1f®(s) = PO < Cls =%, s,t e [-T,T)

with some constant C.
Remark 1.1. When a hyperbolic polynomial P(t) = TM—l—ZhM:l Ay ()™ ~" with coefficients
Ap(t) in C™Y([-T,T]) have only roots with the multiplicity at most m with m < M, we
see, using the factorization P(t,7) = Hf\il(T — N(t) with A1 () < Ao(t) < -+ < An(2),
that
i Ai+m () — Ni(2)) > 0,

[t|<T, lglll,r.l..,M—m( tm(t) = Mi(t))

which follows from the continuity of roots X;(t) with respect to the variable t.

For the case where coefficients depend on two variables ¢t and x, we have the following.

Corollary 1.2. Let

M
P(t,z,7) ="+ Ap(t,z)rM "
h=1
be a hyperbolic polynomial with coefficients Ap(t,z) (h=1,..., M) in
C(ro0)s(ry) ([T, T| x [~L, L]). We assume that the multiplicity of roots of P(t,x,T) is
at most m. Then for any S € (0,T) and Lo € (0, L) there exists a positive constant C such
that for j =0,... ,min{m — 1,70} and k=0,... 71 satisfying 1l <j+k<m

0jokP(t,a,7T)
P(t,z,T)

< C|ST|_j max{l,#}—k max{1, TlI’Yl }

(1.3)

when T € C with ST € (0,1], t € [-S,S] and x € [—Lo, Lo).
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If we consider the case 72 — (t — T'), we cannot expect the estimate (1.1) near the
extremity of interval, t =T or t = —T'. In this case we have the following simple corollary.

Corollary 1.3. Under the assumption of Theorem 1.1 with ro = 1, we have

8,5P(t, T)
P(t,7)

(1.4) < C(|t+ Tt — T))" 7 ||~ mexibais)

when t € (=T,T) and 7 € C with 0 < |J7| < 1.

Here we remark, taking into account the singularity appearing in (1.4) at t = +7, that
the statement of Lemme 14.1 of [3] is not always valid unless the operator has an extension
to an open set keeping regularity of coefficients, hyperbolicity and the maximal multiplicity
of roots. Then we have to modify some arguments in [3] unless we consider Cauchy problem
in an open interval of the variable . The necessary modification is given in the forth coming
paper [4].

The Hélder continuity of roots are given in the following form.

Theorem 1.4. Under the assumption of Theorem 1.1, we see that the roots N\(t) I =

1,..., M are locally Hélder continuous with the index min{1, Tont”} on the open interval
(=T, T) that is to say, (1) € Nge(or)C™ L5073 ([=S, 9)).
Furthermore as Theorem 1.1, for a bounded family of coefficients A;(t) in CTY([-T,T1),

o+

the roots \j(t) j =1,..., M of P(t,T) form a bounded set in C™"{1, w3 ([=S, S]) for any
S € (0,T), as long as P(t,7) is hyperbolic and the multiplicity of roots is uniformly at most
m.

As mentioned above, the two theorems above have already been proven by Wakabayashi
[5] with some extension for Theorem 1.1.

Our interest is, in one hand, to show that the idea of Bronshtein [2] is applicable for
their proofs and in other hand, to show that Theorem 1.1 and Theorem 1.4 is equivalent.

In the next section we recall some properties of a hyperbolic polynomial. In the section
3, we prove the key proposition on the behavior of coefficients with a parameter. Using the
results in the section 3, we give the proof of Theorem 1.1 in the section 4. Two Corollaries
are proven in the section 5. Theorem 1.4 is proven in the section 6 where we give two proofs
of the key lemma, Lemma 6.2. One proof is based on the results in the section 3, while
another proof is based only Theorem 1.1. Finally in the section 7 we prove Theorem 1.1
only assuming that Theorem 1.4 is valid.

For a(t) € C™*([—tg, to]) we denote by [|a(-)||ck.a

ol gre = sup B0
N t<s<i<io |t — s|*

Then the norm of a(t) in C** is given by maxie(—777, j—o,.. & |69 (t)] + [|a(*)||¢r.. In the
following, we use C, D suffixed or not in order to denote constants that may be different
line by line. As mentioned in the section 3, there is a distinction of usage between C' and
D in the section 3.

2 Properties of hyperbolic polynomials In this section we collect some known prop-
erties of hyperbolic polynomials (see Bronshtein [2]). In this section we call a polynomial
in 7 with real coefficients
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that is not identically zero, hyperbolic when p(7) # 0 for any 7 € C\R, that is to say, all
the zeros of p(7) are real. We remark that nonzero real constant is also hyperbolic by the
definition.

Lemma 2.1. If p(1) = 37", a;7™ 7 is hyperbolic, then q(t) = Yoo a7 is also hyper-
bolic.

Proof. When p(7) is monomial, say, p(1) = a;7™ 7 with a; # 0, then ¢(7) = a;77 that is
clearly hyperbolic. In the case where p(7) is not monomial, we may assume that p(7) can
be written in the following way

p(r) = BTMII2, (7 — )

where k1 and ko are non negative integer satisfying k1 + ko2 < m and B and p; (1 < j < ko)
are non zero real numbers. Since ¢(7) = 7™p(7~ 1), we have

q(t) = Brm_kl_“ﬂfil(l — 5T,
which implies that ¢(7) is hyperbolic. O

Lemma 2.2. Let p(1) = Z;n:() a; 7™ be a hyperbolic polynomial with m > 1 and ag # 0.
Then we have the followings.

1). For0<k<m, %p(T) is also hyperbolic.
2).

(2.1) (ﬂ>2—29 >0

an ap
and
, . 0’

(2.2) 193] (3% max | 41] |22

|aol ao | |ao
forj > 1.

3). When ap # 0 with k € {1,... ,m — 2}, we have
2
(2‘3) <ak+1) _ Ok42 >0
ag Q.

and

| " 5’
(2.4) 951 < (39)% max 4| 2L | | B2

|ak| ak ak
form—k>j>1.
4). When ap # 0 with k € {2,... ,m}, we have
1NJ

. i 2

(2.5) (93] (3,3)% maxc § |25t | B2
|a| ak ak

fork>j>1.
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Proof. The assertion 1). may be evident. But for completeness, we give a proof. Let
p(T) = ao Hqul(T — €)™ where my > 1 and ¢4 < €441 for 1 < ¢ < @Q — 1. Then we have
P/ (1) = p1(7)p2(7) where p1 (1) = ag Hqul(T —€g)™e ! and pa(1) = Zqul Mg [1,2(T =€)
Since pa(eq)p2(€g+1) < 0 for 1 < g < @Q — 1, we see that pa(7) is hyperbolic, while p;(7) is
evidently hyperbolic. Then p’(7) is hyperbolic.

Let

p(7) = aolliLy (T — ;)

with pu; € R. Since

a; .
(26) a_j = (_1)j Z oy Jag -0 i
0 0<li<la<...<l;<m
we have
i a 2 2a
2.7 2 _ (2L) _ 222
27) Sout-(2) -2
=1
and
. m
(2.8) p~ <O il
i=1

We see that (2.7) and u; € R imply (2.1). Noting that

2
(ﬂ> - 2@ < 3max{

ao ao

az

}

Y

ai
ao

ao

and that > || <m0 4?)t/? we obtain (2.2) from (2.7) and (2.8).
Let

Q(T) = Z a’jTja

j=0

that is hyperbolic thanks to Lemma 2.1. When ay, # 0 with & > 1, the assertion 1). implies
that g (1) = %q(ﬂ is hyperbolic. Hence Lemma 2.1 implies that r(7) = 7™ kg (771) is

also hyperbolic. Since

m .

J! _j

r(r) = Z - a; 7™,
Pl Al

we see from (2.1), if a # 0, that

(k+ Dargr \* o (k+2)(k+ Dareo
ag 2ay,

=0,
from which we obtain (2.3). While (2.2) implies that

(k+ 1Dagy1
ak

k'j'ak

2}> |

< (3m)% (mam{

} (k+2)(k+ 1)arto
’ 2ay
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Then noting that

1 1
2

(k + Dag+1
ak

(k4 2)(k+ 1)agto
2ap

Ak+1
Qg

Af+2
Qg

2
max < mmax
{ }

b

)

we obtain (2.4).
When ar, # 0 with k € {2,...,m}, the degree of ¢(7) is at least k. Then we see that
the estimate (2.4) applied to ¢(7) implies that (2.5) is valid. O

We see from the assertion 3). of Lemma 2.2 that the following lemma is valid.
Lemma 2.3. Let p(7) = Y7 a; 7™ be hyperbolic with ag # 0. If aj, =0, ajo+1 =0 for
some jo, then a; =0 for any j satisfying jo < j < m.

Proof. Indeed, let ko be the largest integer j satisfying a; # 0 and j < jo. The assumption
aj, =0, ajo+1 = 0 implies ax,+1 = 0 and agy+2 = 0. Then the estimate (2.4) shows that
a; = 0 for any j satisfying kg < j < m. O

The following lemma is due to Bronshtein [2].

Lemma 2.4. Let p(7) = Z;nzo a; 7™ be hyperbolic with ag # 0. Let ko be the largest
integer j satisfying a; # 0. Then there exists a subset M of {0,1,... ,ko} satisfying the
followings.

1). ,kpeM. IfjeMand 0< j<ky—1,thenj+1€Morj+2¢eM.

2). a; #0 forany j €M

3). Ifj,j+1 € M, then (%)2 > |a(’1—:“2| Ifj,j+2 € M and j+1 & M, then (a;—jl)Q < |%|
Here we consider a; = 0 for j > m if necessary.

Proof. We assume that kg > 0. We construct the sequence jo, j1, ... in {0,1,... ko}
inductively. Let jo = 0. If a3\, > l|aj,ajo12|, we put j1 = jo + 1. Otherwise we put
J1 = jo+2. We note that, if j1 < ko, a;, # 0. Indeed when j; = jo+ 1, we see a;, 7# 0 from
the definition of j;. Consider the case where j; = jo + 2. Then we have a?oﬂ < ajo@jo+2|-
Thus if a;, = 0, we have aj,+1 = 0. Hence aj,+1 = aj,+2 = 0 from which and Lemma 2.3
follows that ay = 0 for k > jg + 1. That is not consistent with the assumption j; < kg and
ar, 7 0. Hence in the case where ji; = jo + 2 also, we have a;, # 0. If j; < ko, we put

D EI if a3 1 > laj aj, 42|
j1+2 otherwise.

Noting ar, # 0 and ag,+1 = 0, we see that aio > |ary—10ko+1], where we put a; = 0 for
j > m if necessary. Then we see that jo < ko. Hence we see that a;, # 0 by the same way

as for a;, # 0. We repeat this procedure of the construction of a sequence jo, ji,... until
we have j; = ko with some s. Now we define the subset M by M = {jo,j1,...,Jjs}. From
the construction of a sequence jg, j1, ... ,Js we see that the subset M satisfies the desired
properties. O

For an element [ < kg in M, we denote by [ the smallest element in M N {l+1,... ,ko}.

We see from the property 1) of M in Lemma 2.4 that I —1is 1 or 2. Similarly for € M

with [ > 0, we denote by [ the largest element in M N {0, ...,/ —1}. Then we have () = [.
Using this notation we have the following lemma.
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Lemma 2.5. Under the assumption of Lemma 2.4, there exist a constant K depending only
on the degree of the polynomial p(T) such that we have the following estimates, where M 1is
a set given in Lemma 2.4;

— l
(2.9) max{ @i fair2 )t = al for anyl € M with ko > 1,
ap
1
I
(2.10) max{E,GZQ }<Ka— foranyl e M with 2 <1,
a; a; a;
(2.11) laz" < K|al|7|a0|l_z foranyl € M with 0 <1 < ko ,
and
loalyits < ge(ladys ~
(2.12) (|a|) SK(|a|) foranyl,h € M withl < h <k .
h !

Proof. In this proof , we denote by K an arbitrary constant depending only on the degree
of p(7).

Noting the property 3) of M in Lemma 2.4 and the definition of I, we see that (2.9) is
valid.

Let I > 2 be in M. If [ = — 2, then we see from the property 3) of M in Lemma 2.4 that

M)1/2 —lal‘l‘}isequ:amlto(‘C”‘)l/2 (la’-l)ﬁli.

la] > Jail la| lar]

Then if [ = [ — 2, we have (2.10). Assume now [ =1 — 1. Then (|a;|/|a:|)"t = |ai—1|/|au.
When [ — 2 € M, then we have [ — 2,1 — 1 € M which and the property 3) of M in Lemma
2.4 imply (|az||a;—2])/? < |a;_1|. Hence max{(lalla—*llﬂ)lp, |a‘;|1‘} is equal to ‘Cil 1l We have
(2.10). On the other hand, when I —2 ¢ M, it follows from [ > 2 and the property 1) of M in
Lemma 2.4 that [ —3 € M. Noting that [ —3,l—1 € Mandl—2¢ M, thatisl —3=1-1,
we see from (2.9) with [ = [ — 3 that max{(lal ;})1/2, IZi 2‘} is equal to (Ej—:;})l/Q' Then

the estimate (2.4) with k =1—3 and j =3 1mplies

(Jaz||ar])*/? > |a;—1| which implies that max{(

|ai lai—1]\ 2
< K( )
lai—s3] lai—3]
from which and
ar—2 aj—1|\ =
lai—2| <| |)é
a—s a—s
|lai—3] |ai—3|
we obtain
|Cll—2| < K|a171|
|au
Hence
lai—2|\ 3 |ai—1] |au
<K
max ()™ T S K

Therefore if [ =1 — 1, we have also (2.10).
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For [ € M with 0 < [ < kg, we have [ > 2. Then from (2.10) we obtain

lag_|\ 1 laz_,| |aa] |
ax{ g P E(——)T
RN R AT
Then we see from (2.5) with k = j = [,
oul _ el
|ag] |ag]

Then we obtain (2.11). .
In order to show (2.12) we have only to consider the case h = [. We note that

lais1] (|al+2|)%} _ (@)ﬁ

max
Sal al al

Then we see from (2.4) with k = [ that

Hence

Then we get

O

3 Properties of coefficients of hyperbolic polynomials In this section, we show the
properties of coeflicients of a hyperbolic polynomial p(¢,7) with a parameter t.
Let

m
p(t,7)=7"+ ZAj (t)yr™ 7,
j=1

where m > 2 and A;(t) € C™7([~to,t0]) (1 < j < m) with a positive integer ro and
0<y <1
i,

In the following we put a; = A4;(0), ay) = ddﬁ-’ (0) with ag = Ag(t) = 1. Let ko be the
largest integer satisfying a; # 0. Let the subset M of {0,1,...,ko} be the subset given in
Lemma 2.2 applied to the hyperbolic polynomial p(0,7) = Z;n:() a; 777, As in the section
2, for | € M with [ < ko we denote by [ the smallest integer in MN{l +1,... , ko}.

Then we have the following proposition which is due to Bronshtein [2] in the case m <
ro + .
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Proposition 3.1. Under the setting above, assuming that kg > 1, we see that for anyl € M
with | < ko there exists a positive constant C; € (0, 1] satisfying

1 h
_(p) max{l, -5}

Cile, <ty for h=1+1,...,m
l
such that we have, when [t| < Cl|%—|(7 I)Illax{lyro+,y};
Ai(t) 1
1 1<
- S
Aq(t) 1
2 i <1
(32) ‘ . ‘ <!
and when |t| < C |a,‘ ) max{1, 2}
[Aip1 ()] Aig2(t)]\ 3 ag =
3.3 7 by oy |U
. Faor Gan ) =1

where we put Apq1(t) = am+1 = 0 if necessary. Furthermore we have

-t Z (+2,) max{1, "}
<K|Z| T, y<ols
ap

(3.9 28]

ai

when m > h > 1+ 1 with a constant K depending only on the degree of polynomial m.

Here the positive constants above C; can be chosen uniformly for the coefficients A;(t)
belonging to a bounded set in C™7([—to,t0]) as long as P(t,T) is hyperbolic. That is to
say for any M > 0 there exist the positive constants 61 and d2, that are independent of kg
and M, such that we have §; < Cy < d2 when the C™7-norm of all the coefficients of a
hyperbolic polynomial P(t,T) are equal or inferior to M.

For the proof of Proposition 3.1 we prepare two lemmas.

Lemma 3.2. Let a(t) be a real valued function belonging to C*<([—to,to]) with a positive
integer k, 0 < a <1 and tyg > 0.
If we have with some 6y € (0,1o] and some constant Cy

la®) <Co (¢ € [=d0,0)),
then we have the estimate of the derivative a)(0) (1 < j < k); for 0 < < &y
(3.5) |a(0)] < T(Co + [lal-)llgn.a8+)5

where the constant T depends only on k and «.
If we have with some 6y € (0, to]

a(t) >0 (t € [—do,d0]),

then we have the following estimate ; for 0 < § < §g

(3-6) | ( )| < a(0)§™ 1 +Z |a |_ + Ha( )”Ck‘aékJrafl.
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Proof. From Taylor’s formula

5 a)(0) koot
(3.7) a(t)=>_ j!(o)t] + (kt_ 1)!/0 (1 =7 (W (tr) — a®(0)) dr,

=0
we see that for ¢ € [—4, J]

k
a «
IZ a(®)] < [la(-)]| a0

M

When |a(t)] < Co (Jt| < do), for 6 € (0, ] we get
|Z —a(]) 0)| < 2Co + [la()llgnad™  (t € [-0,0]).

a9 (0)67
gk

Hence by picking t = 16/k (1 =1,...,k), we see satisfy the following linear equa-

tions; for [ =1,... ,k

a(])

k
z_: 'kj :Dl7

where we have |D;| < 2Co + ||a(*)||gw.« 6%t Since k x k matrix whose (I,7) element is 1/
has its inverse whose (i, j) element we denote by d; ;, we have

'k:J nglDl

from which we obtain the estimates (3.5).
If a(t) > 0, we have from (3.7)

a(])

t tp—1
00 a0 + 3 OO a1 e
Jj=2
from which we obtain the estimate (3.6). O

Next we show the following lemma.

Lemma 3.3. Under the setting of Proposition 3.1, let | € M with 0 < | < ko and
he{l+1,... m} Assume that there exists a positive constant C; € (0,1] satisfying

Cz(|al|/|al|)| P max{l s} <ty such that we have
h—1
At ar |71 a | () max{l s )
(38) W<k meal

where A(t) € CT07([—to, to])) with a positive integer ro and 7.
Then we have

B (h l—j max{1, 70L+w})
(3.9) A9(0)] < Dial —l}

forj=1,... ,min{rg,h — 1}. Here the constant D depends only on C;, K, C™7-norm of
A(t) and the degree m of hyperbolic polynomial T™ + Z;n:l apT™ M.
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Proof. First we remark that we have
(3.10) |laz|" < Doolai|".

Indeed when 0 < I < ko, (2.11) and ap = 1 imply (3.10) with Doy = K, while in the
case where | = 0, we obtain (3.10) with Dgg = 1 from ap = 1. From (3.8) and (3.5)
applied to A(t) with & = min{h — 1,79} and @ = min{h,r9 + v} — k we obtain, noting
k+ o =min{h,rg+~}, for j=1,--- ;min{h — 1,70}

(311) ‘A(]) (0) ‘ < F(K ﬂ = 6—]’ + HAHC’C” 6min{h,ro+'y}—j)
ap a; |al|
R
with 6 = Cy |ZF . Since max{1, ﬁ} min{h,ro + v} = h, (3.10) implies

h—=1

-1

1
. in{h = ay
6nnn{h,7“o+’y} < Clmm{ 77“0-1")’}Déol |al| al

Then we obtain (3.9) with D given by

D =T(KC; 7 4 M throt =1 i Al ce.a)-
O

Proof of Proposition 3.1. In this proof we denote positive constants, that are not less than
1, depending only on the degree of p(t,7) by K and we use I' and T' with some suffix in
order to denote positives constants that depend only on rg + 7: the index of the regularity
of the coefficients A;(t) (1 < j < m). Furthermore C, C' with some suffix, D and D with
some suffix are used in order to denote positives constants that may depend also on the
C"7-norm of the coefficients A;(t) (1 < j <m). Here D or D with some suffix are used to
denote positive constants which are bounded by the C"Y norms of coefficients A;(¢), while
C or C with some suffix are used for positive constants that are inferior or equal to 1 and
whose inverses are bounded by the C™ 7 norms of coefficients A;(t).
Considering, if necessary, the linear change of the variable ¢, we assume that

to = 1.
Then A;(t) € C™7([—-1,1]). Recall
d'A
!
a; = A;(0) and ag) = dtlj (0)

Note ag = 1 and that we have |Z—§|1/6 = max{|%[,[22|1/2} from (2.9). Then from (2.12),
we have for any [ € M with [ < kg

(3.12) (ﬂ)” < Dy

where Dy = K max{|a1|, |as|*/?}.

First we consider the case Wherg [ =0.

When 0,1 € M, that is to say 0 = 1, we have |az| < |a1]|? and a1 # 0. Since A;(t) €
COY([~1,1]), we see that, with C11 = min{ ooy e ) 141(8) — a1] < 151 when
[t| < Ci.1]a1|. Here we remark that Cy 1]ai] < 1.
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Hence

1
(3.13) | —-1< 3 [t| < Cy1las-

Then A;(t)? < 4a? when [t| < Cy1|a;|. Since (2.1) implies 2A45(t) < A;(t)?, we see that
(3.14) 4a? —2A5(t) > 0, [t < Cy1las.

Note As(t) € C™7([—1,1]) and
(3.15) |4a% — 2A45(0)| = |4a? — 2az| < 6a:1>.

In the case where 2 > rg + 7, since 19 > 1 and 1 > v > 0, we have rp = 1. Taylor’s
formula (3.7) with £ = 1 and o = =, implies

(3.16) A (t) — a] < [a5" 1] + Ao ()| o[0T, < 1,

From (3.15) we see that the estimate (3.6) applied to 4a? —2A45(¢) with k = 1 and a = v
2
and 6 = (Cyfar|) 7% implies, with Dy 1 = (3 + CF 4[| A2()l| o )Cy T

ja$)| < Dy yfar P77

. . L )
Then we see that with Cy o = min{ TR O T 1,
|A2(t) - a2| < a% when |t| < 0172|a/1|7‘02+7

where we remark that (1 + |a1])2C12 <1 and # < 2 show that Cl}g|a1|Toiw < 1. Hence

we have
2
|42(t)| < 2af, [t| < Cizlar|o+.

If 2 < rg + v, we see from (3.6) applied to 4af — 2A45(t) with k = a =1 and 6 = Cy 1a1],
(3.14) and (3.15) that, with Dy 5 = (3C{ + Cr1[lA2(-)ll¢nn)

0”] < Dy sfas |
which and the following estimate drawn from Taylor’s formula (3.7) with k =a =1

(3.17) |Ag(t) — ag| < |Vt + Azl |t [t <1

. . . 1 1 .
imply with C; 3 = min{ 72D 372 A (Vo 1+\a1\} that satisfies C} 3la1| < 1,

|A2(t) — az| < af, t| < Cislaa].
Then
| Ao ()] < 2di, [t] < Cslail.

Therefore with
Oy = min{Cl,l(l + |Cl1|)_1, 01,2} (2 > 1o+ '7)
min{Cl,l, 01,3} (2 <rg+ 7)7
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we see that

)

(3.18) ‘ It] < Colag [ b1,

N~

and
max{|A1 ()|, |[A2(£)|2} < 2las], [t| < Colay| "> bms7,
The estimate above and (2.2) implies that for j =2,... ,m
[A;(t)] < Klaa | when [t]| < Colallmax{l’ro%'y}.
Putting

Co

Cop = ——
O W fai )™

; .
we see that Cp o < Cp and C0}0|a1|max{1’roﬂw} < C0|a1|max{1’ro+w} when 2 < j < m. Hence
we have Co7o|a1|max{1""oJ+w} <1 (1 <j<m) and following estimates;

Aq (%)

aj

[t] < Co,o|a1|max{1’”);+”}a

)

|~

_1‘§

max{|A1 (1)), [A2(t)| 7} < 2|aa|, 1] < Coolaa[™ 705
and
4,0 < Klarlf 1] < Colar "7,

when 1 < j < m.
On the other hand, when 0,2 € M and 1 ¢ M, that is to say, 0 = 2, we have la?| < |as]
and az # 0. Since Al( ) e CY% 1([ 1,1]), we have with C21 = min{ 5 ()Hco T 1+|a2|}a

which implies C'27l|a2|1/2 <1,

A1(t) = an| < faal [t < ColaafF.
Then
(3.19) Ai(t)? <dlas|,  |t] < Conlas|?.
Since (2.1) implies 2A45(t) < A;(t)?, we see that
(3.20) dlag] — 245(t) >0, |t| < Calasl?.
Note As(t) € C™7([—1,1]) and
(3.21) [4]az| — 2A42(0)| = |4|az| — 2a2] < 6|as].
In the case where 2 > 1 + v, the estimate (3.6) applied to 4|as| — 2A42(t) with k = ro = 1,

a =7 and § = (Ca,1las|'/2) 705 implies that with D1 = (3 + C2,[|42()[l¢ror)Ca G

ja$?| < Daylas|'~ 705
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from which and (3.16) we see that with C32 = min{ 1+4D21+4||1A2(~)\|~ - }, that
, cTosY

satisfies C2 2(1 + |az|) < 1,

1
’ 1+|az|

1 1
(3.22) |[A2(t) — az| < 5lazl, |t| < Ca2ag| ™% .

If 2 < rg + 7, the estimate (3.6) applied to 4|az| — 2A42(t) with k = a = 1 and § =
Cy.1]ag|?, (3.20) and (3.21) imply that with Dy o = (302*711 + Co1[|[A2()|l )

1
la$"| < Dy olas|?

from which and (3.17) we obtain with Cs 3 = min{ 5 2+41HA2(~)
C3laz| <1,

s Tlar] > that satisfies
ch

1 1
(3.23) |A2(t) — az| < §|a2|7 [t] < Ca3laz|?.
Therefore with

Co = min{Cy1(1 4 |ag|)~!, Ca2} (2> 710+7)
min{C51,C2 3} (2 <ro+7),

we see that, when [¢| < Co|a2|max{%,ﬁ}
max{|A1(t)], | A2(t)|2} < 2|as|?.

The estimates above and (2.2) show that for j =2,... ,m

|AJ(t)‘ SI{|G/2|%7 |t| §C0|a2|max{%’ﬁ}.
Putting
Co
C - - @
0,0 (1 T |a2|)m

we see that Coo < Cp and Co7o|a2|%max{1’m¢+w} < Co|a2|%max{1’7'o%w} when 2 < j < m.
Hence C’o,o|a2|% max{l, 5= } < 1when 1 < j < m. Then it follows from (3.19), (3.22), (3.23)
and the estimates above that we have following estimates;

‘Az(t)

az

t] < Co,o|a2|% max{l’”)%”}7

)

_1‘§

N =

max{‘A1(t)|, |A2(t)‘%} < 2‘a2|%7 |t| < CO,0|(12|% max{l’ro%v}
and
4;(1)] < Klaal*  [t] < Cplag|? ™),

when 1 < j < m.

Then we see that the assertion of Proposition 3.1 is valid when [ = 0.

In the following , by the induction we show that the assertion for [ of Proposition 3.1 is
valid.
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Let lp € M with 0 < [y < kg. Assume that the assertion of Proposition 3.1 for [ € M
with 0 < [ < [y is valid. Then the assumption of Lemma 3.3 with ¢ty = 1 is satisfied for
leMwith 0 <l <lpand A(t) = Ap(t) with I+ 1< h <m.

We see from (2.9), (2.11) and (2.12)

a—|1g—1

(3.24) max{| oL %*2 }_ o

ai, alg
(3.25) laz] < Klag, |
and

1 To—1lg

Qa lg—1 —
(3.26) o) *7° < g | 2o

alo alo

Since (lg) = lo, we see from (3.9) with [ = ly, h = lo + 1 and A(t) = Aj,41(t) that

) ag, g (lo+1=lo= gmax{1, 720}

J

] < Dl | |22
lo

from which and (3.26) we see

—1_ (1—jmax{1,lo*!
(3.27) €) agy |Tote el gy )

o]

for j=1,... ,min{lp,ro}.
We see from Taylor’s formula (3.7) that, with k& = min{lp, 70} and o = min{ly + 1,7 +
7} - ka

|min{lo+l,r0 +’y})

k
(3.28) A1 (8) — argsa] < O a2 1117 + | Asg 41 ()l

when [¢t| < 1. Noting that (3.25) implies (|aE|/\alO|)(l0)/%_l°) < Klay,|, we see from (3.27)

max{l,%}

1
fo~lo with § > 0, the right hand side of (3.28) is not

ey

that, when [t| < 0|22
0

larger than

Cllo lo— lo

ZDK(SJ + ||Alo+1( )||Ck+a 5m1n{lo+1 ro+’)’})|al |
Jj=1

O

lo

which is not larger than 3|ay,| |- T if § <1 and

kDK + [ Aty (Vg KI5 < 1.

Noting (3.12) with | = Iy, we see that
1 ary Eilo
(3.29) [Aio+1(8) = ap+1] < Flase] |~

lo
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1 +1

when [¢]| < C’l(‘a'o‘) T ma{L 7555 ) with

lal

1 1
(15 Do) # ) 20DE + [ A1 (Vg )

C7 = min{

Here we note

1 lg+1
)t L) g

On the other hand, from (3.9) with h =1y + 2, [ = ly and A(t) = Aj,12(t), we have

) ay, | 5o (lo+2—lo—j max{1, 75 ])
j
o) al < Dlay, | |2

lo
from which and (3.26) we see

+2
a’l e ’0 (2—j max{1, TO+,Y H

(3.30) lai),| < DK |y, |

ai,

for j =2,... ,min{ly + 1,70}
Since we assume that the assertion of Proposition 3.1 for | = [ is valid, we have

Alo (t)

alo

(3:31) 20 ) <

N =

when [t] < Cl_0(|alo|/\al_0|)max{l’lo/(rﬁw}/(loflfo). Note that from (3.26) and (3.12) with [ =

c max{1,(lo+1)/(ro+)}/ (To—lo)
lop we see that, when |t| < W_(()LFDO)(|GE|/| L) 0 0 o—lo

(3.31) holds. Then by setting

, the estimate

Ciy
(1+ K)™(1+ Do)

Cy = min{C1, 1,

max{1,

1
we see that (3.29) and (3.31) hold when |t| < Cs (l (. ) 0—lo 0+”} We see from (3.31)

+
that A, (¢) # 0 when [t| < Cz(‘ o) ) max{l”oﬂ} which and (2.3) implies

35) () -2 =0

We see from (3.24) that |aj,+1| < |a10|(|aE|/\alO|)1/(E_l°). Then we see from (3.29), (3.31)
and (3.32) that we have

2
% o—lo B Alo+2(t)

alo

(3.33) >0

alo

. max
when [t| < CQ(‘ ’0:)? f maxtl, T0+W} Then, noting (3.24), it follows from (3.6) applied to

‘alo

(3.33) with k¥ = min{lo + 1,r0}, @ = min{ly + 2,70 + v} — k and

lg+2 —
5 = b1(lag /gy )" Tt
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that
(1) — () 7J max{1,0421
a o la;”’ 5| |a= |10 roFa )
2 - 2 —1

(3.34) |fZl < (9] K ot 4 § —ht2 | to i

ai, Al j=2 |alo | Qly

lg+2 _ 1 lo+2
i ap |~ ML)

To—lo 6min{lo+2,1“0+'y}—1)
1

1
—— A M ke | =2
+ MOl |7

0 ai,

where 81 = C2/(14 Dy). Here we note that the estimate (3 12) with [ = lp implies
o max{1, lo+2 Y/(lo—1lo) - . max{l, }/(lo lo) .
o1(lazl/lai, ) ot is less than Ca(lags|/|as,|) ot . Noting that

we have (\aE|/|alo|)10/(E’l0) < (K + 1)|ag,| from (3.25), we see from (3.30) that the right
hand side of (3.34) is not larger than

(3.35) D, | |FE et
. 2 a,
with
k . .
Dy = 951—1 + Z 6{71DK + ||Alo+2(')||(jk+w6§n1n{l°+2’m+’y}_l(K +1).
j=2

lo+2 —
Then we have |al +2| < Dalay,|(lag; |/|alo|)(27max{1"Pgﬂ})/(lrlo), Jfrom which and Taylor’s
formula (3.7), taklng account of (3 30), we see that, with & = min{lp + 1,7} and a =
min{ly + 2,79 + v} — k,

(3.36)  [Aig42(t) — aig42| <

o |7 =L (—jmax{1, 2022 })

L
. ZW

D )
3|alo| a_
j=1

lo lO

+ ||1410+2(.)||Cw+u|t|mil’l{lo-i-Qﬂ“o—i")’}7 |t| < 1

where
D3 =Dy + DK maX{O, k— 1}

Again we remark that min{ly + 2,70 + v} max{1, (lo +2)/(ro + )} is equal to ly + 2 and
(Jagg/las, )P/ o 10) < (K +1)|as,|. Then when [t < d2(lag]/|az, )t GoF2)/ron}/(o=to),
the right hand side of (3.36) is not larger than

. _2

. min{lo+2,r |al_| o

(D3 384+ Ao Oll g (€4 D550 ) o | ()™
j=1

Therefore we see that

1 |aE| lo—lo
(3.37) [Alg+2(t) — aig+2| < Sa
2 |alo|
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when |¢| < Cg(\ag|/|alo|)max{1’(lo+2)/(m+7)} where

1 1

Cs — mi , .
3= M T R 2Dak A el (K 1))

Here we note that C3 < 1 and that the estimate (3.12) with [ = [y implies that
Cs(|azz] /lag, |t Uot2)/ (o)) < 1. Furthermore we obtain for j > 1

1 <|alo| ) oy max{l s ) - <|alo| ) ot el )
(1+ Do) \lay,| = \ay,| '
Thus by setting
1
Ciy = ———=—— min{Cs, C'
T 1+ Do) min{Ce, Gz}

we see that

|a7| ﬁmax{l,m‘%w} |a7| ﬁmax{l,%}
(3.38) c%< “) <@< “) <1

|Cll0| |Cll0|
for j=1ly+1,...,m and

lap|\ oo Mg ) |\ Tt L)
(3.39) c%< “) <@< “) <1

|Cll0| |Cll0|

-1 max{l,m}
for j = lop+2,...,m. Then when [t| < C 97|} To~o 7 we have (3.29),(3.31)
J 0 s ) = Mo \Tag| ) )

and (3.37).
Taking account of (2.9), we see that max{|ai,+1/|as,|, (latg+2]/lai,])2 } is equal to
(\a5|/|alo|)1/(l0_l0). Thus we obtain from (3.29) and (3.37)

(3.40) ‘LO“@)‘ < 2(—|%|)Eizo
Qg |alo|

and

(3.41) ‘M‘ < 2(@)530
Qg |alo|

which and (3.31) imply that

‘0

o X{‘Aloﬂ(t)‘,‘flzﬁz(t)‘ < 4(|aﬁ|)gi,

Alo (t) Alo (t) |alo|
—L max{1 lot2 }
lar=|\ To—10 "V ToFy .
when [t| < () 0 . Therefore, taking account of (3.31), (3.38), (3.39),
0 ‘alo‘

(3.40) and (3.41), we obtain from (2.3)

h—lg

lo—lo

iy

ai,

<K

A
‘hw‘ . h=lo+1,...,m

a,
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. Finally we see from (3.29) and (3.37) that if Iy =

max{1, 2}
when |t| < Clo (‘CLLO‘) lo— lo 0+

laig |
lo + 1, we have

A t 1
‘ lo+1()_1‘g_
Alo+1 2
L max{1,705}
when [t| < Cj, (lgol) T " otherwise we have
0
A 1
lo+2(1) _ 1‘ < =
Alo+2 2
\ar\ ip—1o max{l,yoiw} . o .
when |t| < C), (‘alo‘) . Then we see that the assertion of Proposition 3.1 is
0
valid for [ = ly. Then the proof of Proposition 3.1 is completed. |

Next we show a lemma on the behavior of coefficients A;(t) for j > ko.

Lemma 3.4. Under the same setting as in Proposition 3.1, without the restriction ko > 0,
we assume kg < m — 2. Then we have

when j < 1o and h — jmax{1, %} > kg.

Proof. We use the same notations as in the proof of Proposition 3.1. By the definition of

ko, we have ay, # 0 and aj, = 0 for h > ko + 1. Then, from the continuity of Ay, (t) we see
that there exists C' > 0 such that

Ako (t)

.t <c.
ako

N =

_1‘§

Hence from (2.3), we get
2
(Ako+1(t)> Apgt2(t) >0 | <c.
Ak, (1) Ak, (1)
Since Ak,+1(0) = ax,+1 =0, we have |Ag,+1(t)| < DJt|. Then we have
4D?t? _ Aggr2(t)
aj,

>0 |t <C,

0 (ko

which and Ag,+2(0) = ag,+2 = 0 imply that agc )+2 = 0. Then, since Ag,4+2(t) belongs to

CToH ([—to, to]), we have |Ay, 12(t)] < DJt|™»{270+7} Hence we have

max{ AkoJrl(t) ‘ : ‘AkoJrQ(t) ‘ } p1Zkol ™ 2 |ak0| +1 |t|mm{1 O_M} |t| <C.

Ako (t) Ako (t) | ko |
Then from (2.4) we obtain for h=ko+1,... ,m

Ah(t)‘ < D(1+ |ak0|)h k0|t| (h—ko) min{1, TO'M} t| < C.
Qkq |ako

Hence we have A;Lj)(O) =0 when j <7 and j < (h — ko) min{1, 22}, Then

i 2
ag):o when j < rg andh—jmax{l,r ’y}>k0'
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4 Proof of Theorem 1.1 First we show the following lemma.

Lemma 4.1. Let m be a positive integer and T > 0. Let
m
pt,7)=7"+ Z Ap(tyrm=h
h=1

be a hyperbolic polynomial in T whose coefficients Ay (t) belong to CTY([-T,T]) with a
positive integer ro and < v < 1. For any S satisfying 0 < S < T, there exists a positive
constant C' such that we have for j =1,... ,min{m — 1,79}

olp(t,7)

< C|ST|7J‘ Inax{l’,,.g;iﬂ,}7
pt,7) |~

(4.1)

when |t| < S and T € C\R satisfies |S7| < 1.
Here the constant C, that may depend on S, can be chosen uniformly for a bounded
family of coefficients Ap(t) in CTV([=T,T)) as long as p(t,T) is hyperbolic.

Remark 4.1. Since p(t,7) is hyperbolic in 7, we have the factorization:
m
(4.2) p(t,7) =[] = M)
1=1
with A;(¢) € R. Hence |p(t,7)| > |S7|™. For j =1,...,7ry we have
0ip(t,7)| < D(I7|+ )™ [f < T.

Set Do = maxy <7 (A1 (t)? — 245(t)). Then we see from (2.7) that for j =1,... ,m
N <D | <T.

1
Then it follows from (4.2) that |p(¢,7)| > 27™|7|™ when |7| > 2D¢ and |t| < T. Therefore
we have for j =1,... 19

Olp(t, )

1
(4.3) < D|S7|™™  when 37 # 0, |1T| <2D¢ and |t| <T
p(t,7)

D|r|~! when |7| > 2D@ and |t| <T.

Proof of Lemma 4.1. When m =1, (4.3) implies (4.1). In the following we assume m > 2.
Taking account of the remark above, we have only consider the case |R7| < 2DZ. For
1 1
s€[=5,5] and 19 € [-2D},2D¢g| we set
Ds,ro (6, T) = p(s+t, 70+ 7).
Then ps -, (¢,7) is hyperbolic and we have
m
Ps,o (tv 7—) =7"+ Z Ah,sﬂ'o (t)Tmih
h=1

where . .
{Apnsr@) | h=1,...,m se[=5,5]and 79 € [-2D¢,2DZ|}
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is a bounded set in C"V([—tg,to]) with to =T — S.
Set

ap = Ap s+, (0) and aglj) A;Lj)s TO( ).

Since ps,r,(0,7) = 7™ + >, ap™ " is hyperbolic, we have p, -, (0,7) = [[;=, (7 — \)
with A; € R. Then we see from (2.6) that for real u

|p9 TO(O Z/’6 H |/’L‘ + |/\l|
(4.4) 227" (™ + Z |an][u™").
h=1
Now we show for j =1,... ,min{m — 1,r¢},

8gps,7'() (07 Zl’(’)

| < Dl 0 <l <1
ps,TD(O,Zﬂ)

(4.5)

In order to draw the estimate above, we consider the estimate of |a§f)um_h/psm(0, i)l

Let ko be the largest h satisfying ap # 0. Let M be a subset of {0, 1,...,ko} defined in
Lemma 2.4 applied to our p, -, (0,7) = 7™+ >, ap 7™ ", First we remark that it follows
from Lemma 3.4 that

G _ g

when j > 1 and h—ko > jmax{1, - JW} For we see that j > 1 and h— ko > j max{1, TOJW}
imply h > 2 and j < rg. On the other hand, when min{m — 1,7} > j > 1 and h —
Jjmax{l, #} <0, noting |p|™" < |u|™? max{l 45} for |u| <1, and (4.4), we obtain

(J), m—h

Qp " [ (7) —jmax{l,-2—1}
— | <2"a o+ <L
psn’o (O7 Z/J/) | h ||/j‘| ) |/j‘|
Finally in the case where min{m — 1,79} > j > 1 and ko > h — j max{1, —ro}iv} > 0, there

exists [ € M such that we have

(4.6) I < h—jmax{l, <1

To + 7y
Thanks to (3.4) of Proposition 3.1, we have

h—l
— |71
@

Ah,s,To (t) <K
ay -

a

max{1

h
when [t] < C" S ‘l ! 7o) From (3.5) applied to Ap s+ (t) with & = min{h — 1,7}
and a = mln{h ro +7} — k with

5= C|al‘ m'lx{17ro+'y}

we obtain

h—1

. as|1-1t .
i) < T(KJan] |71+ Al ™ 70520) 573
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Just as the proof of Proposition 3.1, we obtain from (2.11)

o |
- < K|al|l_l L
aj aj
Then
W) ar ﬁ(h—l—jmax{l,—ro’z_’y})
|ay”| < Dlau| |—
aj
with

_1 . .
D =T(K + KT || Ap s, ()| .o ™70+ 07,

Since (4.6) implies

(h — 1 — jmax{1,

} >0,

~iI
|
~—

To + 7y

we have
lat”| < Dlar|*=7|az|”

with

1
oc==——(h—1—jmax{l,

=1 7“0“"}/})'

Hence by Young’s inequality we have

lai? |||

_ < Dl |—h+(1—0)l+ai
m—1 m—1 H '
lag| ™= + |ag] |l

Since —h + (1 — o)l + ol = —jmax{1, #}, Jfrom the estimate above and (4.4) we obtain

_h

(4) m—h
|ah ||:u| : S D|M|7jmax{1""0;“f}7
|ps,‘ro (0,p)]
since h < 'm

< Dl ) <1

Then we have the desired estimate (4.5).
Since, according to Proposition 3.1, the constant above D can be chosen uniformly when

1
|s|] < S and || < 2D¢, we obtain from (4.5), for j =1,... ,min{m — 1,7},

olp(t,7)
p(t,7)

™m

< D|gr| I matlgis )

1
when |s| < S, |[R7| < 2D§ and 0 < |37| < 1. We remark that the constant D can be chosen
uniformly for a bounded family of coefficients A;(¢) in C™V([-T,TY]), for Proposition 3.1
claims that the constant C' appearing in the argument above has an estimate §; < C < 4

by using two positive constants ¢; and ds that can be chosen uniformly for a bounded family
of coefficients Ap(t) in C™7([—T,T]) although they may depend on S. O
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The following lemma is obvious.

Lemma 4.2. Let
M
P(t,r) =7+ " A(t)yrM "
h=1

be a hyperbolic polynomial in T whose coefficients Ap(t) € CT™Y([-T,T]) with a positive
integer o and v € (0,1]. We assume that the multiplicity of its roots is at most m with
m < M. That is to say, assuming that

=

Plt,7)= || —N(t)

I
-

where A\ (t) < A2(t) < -+ < Ap(t), we suppose that there exists a positive constant A such
that we have

(4.7) Am+i(t) = Mi(t) = A

forl=1,... M —m andt € [-T,T]. Then there exists a positive constant § such that for
any s € [T, T], we have a decomposition

MS
P(t,7) = [ prs(t.7) t€[-T.TIN[s—0,5+0]
k=1

where each polynomial py s(t,T) has coefficients in C™V([-T,T] N [s — 8,5 + 0]) and the
degree at most m. Furthermore for a bounded family of Ap(t) in C™Y([-T,T]), we have
uniform CT7 estimates of coefficients of pg s(t,T) if P(t,T) is hyperbolic and we have
uniform estimates (4.7).

Proof. For the completeness we give a proof. Since in the case where M = 1 the assertion of
1

Lemma 4.2 is evident, we assume M > 2,. Let Dy = maxy <7 (|A1(£)> —2A2(t)|2). Then we

have |A;(t)] < Dg. It follows we from (4.7) that for s € [T, T], there exist l1,1a,... ,ls,, =

M such that Iy <lo < - <, =M, 1 <m, ljp1 —lx <m (k=1,--- sy — 1) and
Aeri(s) = A () = 5285 (k=1,...,sa7 — 1). Let vy = 2P0 g gy 1),
Then we have |P(s, ;)| > (ﬁ)M. Since |P(t,7) — P(s,7)| < D|t — s|(|7| + DML we
see that
1 A M
P(t > (———— te[-T,TIN[s—0 1)
| (ayk)|—2(2(m+1)) ) E[ ) ] [S ;8 + ]

if § > 0 satisfies

' A
D(Do+ 1)M"16 < %(W)M

Hence

Ik

pst,m) = [ (r=n®)

I=lp_1+1



180 S. TARAMA

with {p = 0, satisfies desired properties. For Z;’;lkﬂ“ MO (r=1,.00 k= lg—1 — 1)
can be given by the contour integral of % along a closed curve, enclosing only A; (%)

(I =1lk-1,...,l), on which we have

P(t7)] > S (2 )M,

1
2 (Q(m +1)
Then we see that the coefficients of p s(, 7) belong to C™Y([-T,T]N[s—§d,s+4]). O

We see that Theorem 1.1 follows immediately from Lemma 4.1 and Lemma 4.2. Indeed,
according to Lemma 4.2, we see that 0] P(t,7)/P(t,7)) with j < min{m—1, ¢} is given by a
sum of products 07" py. s(t, 7)/pr,s(t,7) With D7) oy ji = j. Since the degree of py s(t,7)
is not larger than m, we see from Lemma 4.1 and (4.3) that |87 pg «(t,7)/pr.s(t, 7)| is not
larger than D|Jr|~7% max{l:m/(ro+9)} when 0 < |37| < 1. Then we have the estimate (1.1).

5 Proof of Corollaries 1.2 and 1.3 We prove Corollary 1.2 using Theorem 1.1. As the
proof of Theorem 1.1, we have only consider the case of |[R7| < 2Dy where

VM (A2 (t,2) — 24s(t, ).

0= max
(t,2)€[=T,T|x[-L,L]

Let

M
P(t,z,7) =™ + ZAh(t,J))TM_h
h=1

=

(t—Xi(t, z))
l

Il
i

where A\ (t,z) < ... < Ap(t,x). Since Ap(t, ) is continuous in [—T,7T] x [-L, L] and the
multiplicity of roots is at most m, we see that, if m < M,

(5.1) Cl - ()‘lJrWn(tvx) - Al(tvx))

min
I=1,...,M—m (t,z)€[-T,T]x[—L,L]

is positive. Then Theorem 1.1 shows that for any S € (0,7T) and Ly € (0, L) there exists a

positive constant C' such that for j = 1,... ,min{m — 1,rg}
I P(t » m
(5.2) AR < ofgr ) (1) € -5, x [-L. I
and for k =1,... ;min{m — 1,71}
agp(tvxﬂ—) —rkmax{l,—2—}
. 2 < CS S (¢ —~T,T)| x [-Lg, L
(53) | <clar T (t,2) € [+1,7] % [~ Lo, Lo

when 7 € C with S7 € [-1,1]. We note that the hyperbolicity of P(t,z,7) and the
assumption on the multiplicity of roots (5.1) imply

. C M—m m
(5.4) (P(ty, 7+ )| = (55" ul
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when 7 € R and ¢ € [-1,1]. For pp € [-(L — Lo),L — Lo| N [—1,1], 7 € [-2Dy, 2D¢] and
(t,z) € [-T,T] x [-Lo, Lo] we define a function f(y) on [—1, 1] by

J(y) = Pt 4+ yla™ T 74 i),

By Taylor ’s formula (3.7) with & = min{m — 1,7} and a = min{m,r +y} — k, we
have for y € [—1, 1]

IF ) < 1£(0 |+§]ﬂ” N+ 1Ol

Since (5.3) implies, for j =0,... ,m — 1,

f9(0)] < C|P(t, z, 7 +ip),

noting [ f ()l ga(—1,1p) < D|pmex{haispimintmritn} — plyim e obtain from (5.4)

(5.5) \P(t,x + ylp|™ 755 7 4ip)| < DIP(t 2, T+ i)

For (t,z) € [-S,S] x [—Lo, Lo, p € [—(L — Lo), L — Lo] N [-1,1], 7 € [-2Dy, 2Dy and
j=1,... ,min{m — 1,r} we define a function g;(y) on [—1,1] by

95(y) = &) P(t,x + y|p|™ ¥t r ).
Then from (5.2) and (5.5) we obtain
19;(y)| < Dlp| 7w T Pt 2, +ip)| Jyl < 1

Hence from (3.5) applied to g,(y) with & = min{m — 1,7}, @ = min{m,r; + 71} and
0 =1 we see that for k =1,... ,min{m — 1,7}

195 (0)] < D(D|u| 7 ™78 | P(t, 2, 7+ i) + 1197 ()l gene)-
Since k + o = min{m, 1 + 71}, we have

”g]()”Cka < D|ILL|InaX{1,—T1’_f,Yl}min{m,m-l-’)’l}
= Dlp[™
< D|P(t,z, T +ip)|

Then we have
050 P(t, 2,7+ ipr)| < Dlp| i (e thmise 40) Pt 2, + i),

Noting |u| < 1, we obtain the desired estimate when |p| < min{L — Lo,1}. In the cse of
L — Lo < 1, the estimate for L — Lo < || < 1 follows from (5.4). The proof of Corollary
1.2 is completed.

Proof of Corollary 1.3.

First note that for a(t) € C*7([0,27]) with T > 0, the function a(t) defined by

a(t) = a(|t|'*), |t < (27)75

belongs to C17([— (2T) v, (2T) ™+ ]) For we have [[t|]Y —|s]"| <[t —s]7if 0 <y <1.
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Near t = T', we consider the hyperbolic polynomial ]5(3, 7) defined by
P(s,m) = P(T — |s|'*7,7) |s| < (2T) 7.
Theorem 1.1 shows that
D5 P(s,T)

f S, < C|%T|—max{l,%}
P(s,7)

when [s| < T and 7 € C with |S7| < 1. Since we have
DsP(s,7) = —(14~)s"9,P(T — s'T7,7)

for s > 0, we see that

OP(t.7) = To=(T = 1) 70, P(s. )

with s = (T—t)ﬁ if T >t > 0. Then we get the estimate (1.4) when T > ¢ > 0. Similarly
we obtain the estimate (1.4) when 0 > ¢ > —T. The proof of Corollary 1.3 is completed. O

We remark that the proof of Corollary 1.3 can be applied to a hyperbolic polynomial
with several parameters as that considered in Corollary 1.2.

6 Proof of Theorem 1.4 According to Lemma 4.2, it is sufficient to prove the following
Proposition.

Proposition 6.1. Let m be a positive integer and T > 0. Let
m
p(t,7) ="+ Y Ap(t)r™
h=1

be a hyperbolic polynomial with coefficients Ay (t) € C™V([—T,T]) with a positive integer
ro and vy € (0,1].

Let \i(t) 1=1,...,m) be roots of p(t,7) numbered in increasing order \i(t) > N_1(t)
d=1,..., m—1).

Then for any S € (0,T), we see that \;(t) € C’O’mi“{l’r%w}([—S, S)) forj=1,...,m.

Here COmn{L"52 porm of the roots \i(t) in [—S, S] is uniformly bounded for a bounded
family of Ap(t) in C™Y([=T,T)) as long as p(t,T) is hyperbolic.

Proof. Since it is evident in the case of m = 1, in the following we assume m > 2. Set
to =T — S. For any s € [-5, S] and any root A\, (s) (lo =1,...,m) of p(s,7), set

m
Poto(t,7) =Pt + 5,7+ Nip(5) = 7™ + Y Ag g n(t)7™ 7.
h=1
Then we see that ps ,(0,0) = 0. We remark that {4, 1(t) | s € [-S, 5], lo,h=1,...,m}

is a bounded set in C"V([—tg, to]). Proposition 6.1 follows from the following lemma.

Lemma 6.2. Let m be a positive integer greater than 1 and ty > 0. Let

plt,m) ="+ > A ()T "
h=1
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be a hyperbolic polynomial with coefficients Ap(t) € CTY([—to,to]). with a positive integer
ro and v € (0,1]

Assume p(0,0) = 0. Then there exists a constant C € (0,to] such that for any o € (0,1]
we have some constant v € (0,1] so that

p(t,vo) #0 and p(t,—vo) #0 when |t| < Comax{l )

Here for a bounded family of A;(t) in C"°7([—to,t0]), the constant above C has the
estimate o1 < C' < g9 with some positive o1 and o2, as long as p(t,T) is hyperbolic.

Now assuming that Lemma 6.2 is valid, we continue the proof of Proposition 6.1. Indeed
applying Lemma 6.2 to ps j,(t,7) and noting ps j, (£, Aj, (t +5) — Ajy(s)) = 0, we see from
the continuity of \j, (¢) that there exists a positive constant C' € (0,%o] such that for any
o € (0,1], we have

o (t+8) = Njo(8)| < 0, |t] < Co™> izt

Then we have

I\ () = Ajo (5)] < DIt — s/™{L552Y when ¢, s € -8, S] satisfy |t — s| < C
with D = ¢~ {15~} Hence we see that Ao (t) € C0>min{1’mvﬁ}([—5, S]). According to
Lemma 6.2, the constant above D can be chosen uniformly for a bounded family of A;(t)
in C™Y([=T,T]). Then we are done. O

In the following we give two proofs of Lemma 6.2. First one uses Proposition 3.1. Second
one depends only on Theorem 1.1.

First proof of Lemma 6.2. Set ap, = Ap(0) and ag) = AZJ)(O) with ag = Ap(t) = 1. Let
ko be the largest h satisfying ajp # 0. Since p(0,0) = 0, we see that kg < m. Let M be
the subset of {0, ..., ko} satisfying the properties mentioned in Lemma 2.4 applied to our
polynomial 77 4+ >~} | ap™™~t. Recall that for the element [ in M satisfying | < ko, [ is
the smallest element of MN {l +1,... ,ko}, while for the element [ in M satisfying 0 < I,
L is the largest element of M N {0,...,l — 1}. We note that (I) = I. Using the constant
K appearing in Lemma 2.5 and Proposition 3.1 applied to p(0,7) and p(t, ) respectively,

where we assume K > (3m?)™ taking (2.5) of Lemma 2.2 into account, we set
(6.1) K; = (8K +2)(4°(K + 1)3)!

for [ € M. Then Ky = 8K + 2.
First we consider the case where kg > 0. For o € (0, 1], let [y be the smallest element
[ € M satisfying

1
ay -1 o
'} <

7Kl'

ai

If iy = 0, noting ap = 1 we have |a5|1/6 < 0/Kp. The estimate (3.4) of Proposition 3.1
implies, for j =1,...,m,

(6.2) | AR ()] < Klag %, It] < C|a6|% max{l, A=}
Lemma 3.3 with [ = 0 and A(¢t) = A, (t) implies

|a§Lj)| < D|a5|%(h_jmax{1’ro%}) for j=1,... ,min{h — 1,70}
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Noting h — jmax{1 }y>0forj=1,...,min{h —1,r0} and |a5|1/6 < o/Ko, we have

h
> ro+y
|a§Lj)| < Doth=imax{l,=4=))
Then by Taylor’s formula (3.7) with £ = min{h — 1,7} and o = min{h, ro +~} — k, noting
min{h, ro 4+ v} max{1, - +v} = h, we get
|An(t) — an| < Do"p
when [t| < o oMLY where 1 < min{1,t}. Note that (6.2) and |ag|'/? < /Ky imply
lan| < K. We see that with Co = mln{m, 1,%0}

Kah max{1l
|Ah(t)‘§2 KSL ) |t|§C { "’0+’Y}

Hence it follows from Ky = 8K + 2 and o € (0, 1], we see that

m O'm
S lAn@llo™ < T

when [t| < Coo™ 70} Therefore we have

when 7 = +0 and [t| < Cooe™* T | from which we see
(6.3) p(t,o) #0 and p(t,—0o) #0

when |t| S C qu{l’ro-ﬂ}
Ifo<lip< lo < k‘o, then

1
a7~ [lo—lo o
6.4 Lo <
(6.4) a .,
1
[ g
6.5 - -
(6.5) o X

for I <lp in M. Then, since K; < K;;1 and ap = 1, we have from (6.5)

lo
g
. > .
(6:6) |%|<mj

We remark that from (3.1), (3.2), (3.3) and (3.4) with [ = [y and [ =l we obtain

A t A (t 1 — max
(6.7) max{‘—lO( ) —1‘, A5 (t) —1y <z, [t <C lo\zwo )
ag, ars 2’
A1 (B) | | Arg2(t ‘ 07 | =1~ max{1, 10423
6.8 max 0 , =2 t| < C|—2|lo—lo o
( ) {‘ Alo (t) Alo } | | |alo‘
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and
A h—lg
t a— | 79—t
(6.9) ‘ :l()‘SK‘a_io Y h=l+1,...,m
0 0
h T
when |¢] < C‘ iy |mm{1 7o}/ (to lo), and
A t A 1 max
(610) ma‘X{ l_o—() -1 ) lo—(t) -1 } S o |t| S C‘alo ‘10 0 {1’70+W}7
Gl [ 2 aly
1 1
A t A t 2 to-lo A 0+2
(6.11) max{ ;;H_Et()) , :+§t()) } <4 Yo < C‘alo ‘lo o {1,,0+W}
lo lo aly
and
nto
To—lo
(6.12) An®)| - | %o h=lg+1,...,m
al_o alo -
when |[¢] < C‘“A|max{l’m%v}/(10*@).
< Clag
Now we show
1 1
Al _1(t) Al _Q(t)‘ al, To—lo
6.13 max o 0 <16(K +1
( ) {‘ Alo (t) Alo (t) } ( ) ai,

when [¢| < C([g )max{l""#”}where A_1(t) = 0. Indeed if [y = 1, we see that (6.13) follows
0
from (6.6) and (6.10). Next consider the case where Iy > 1. If [y = lp — 2, we see from
(6.10) and (6.11) that
A (D) ] | Aiy—a(®) ]2 ay, |00
0—‘o
(6.14) max{‘ to-1( )}, W-2(t) %y ] G|
A, (t) Ai, (t) Al
ai, 7loil_0 max{1,70+w}

when [t| < C| & . Hence from £ <1 and (6.5) we obtain (6.13). Simi-
0

larly, in the case where lo=1p—1and lp —1=1p— 2, note that (3.1) with I = [y — 2 and
(6.10) imply

1
(615) |A10*2(t)| < 2‘0,10,2|, |Al071(t)| < 2|a10*1|7 §|alo| < |Alo(t)‘

when [¢| < Cmm{|a'° 1|max{1,70+w} | 2o |max{1’ro+w}} Since lp — 2,lp — 1 € M, the

alp—1
property 3) of M in Lemma 2.4 implies |a;,—2a;,| < a7, _;. Then we obtain (6.13) from (6.5)
and (6.15).
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In the case where lp =lp — 1 and lo —1 =1y — 3, (3.4) with [ =y —3 and h = Iy — 2
imply

1
aly—1|? Gly—1

Qaly—3

, tf<C

Qiy—3 Qaly—3

‘AIOQ(t)‘ <K

while we obtain ‘al(”ol| < K‘alo—’;‘% from (2.12). Then we see from (6.5) and (6.10) that
o

QApen—
(6.13) is valid. For we have ’

2
alo—lalo—S

2
alo

alo 1
alo

‘M‘SQ}( < 9K?

Alo (t)

from which we obtain

alo 1
alo

Alo—l(t)‘ ‘Alo 2( )
Alo (t) Alo( )

2 max{1,

Y < A(K + 1)

max{‘

7OJM{} max{1,—9—

)

alo 1 iy

when [t| < C'min{| " ) }. Thus we obtain (6.13).
o—
We note that it follows from (6.13) and (2.5) that for h =0,1,...,lp — 1 we have

‘ Ap(t) )lofh
Alo (t)

1
Qlg [fo~lo

‘ < K(16(K +1)

alo

from (6.5) with [ = [y

< K(16(K + 1)K )"

when [¢] < C(KL)maX{l’#}. Then with some v, € (0,1] that will be determined later,
lo—1 lo—1 . n

(6.16) S An@®) o™ < ZK (16(K + 1) Ky,m,) )| Aty (8)|[rigo| ™,
h=0 h=0

if 16(K +1)°Kj,v, < §
]‘ WL7I[)
(6.17) < 314w @)1, 0]

when |t| < C(%)max{l,—roﬁ_—y}.
0
On the other hand, applying Lemma 3.3 with I = I to (6.9)
we obtain, for h=10p+1,...,mand j=1,... ,min{h — 1,70},

1 . h
= ﬁ(h—lo—j max{l,ro—_*_,y})

)

(6.18)

0

while, applying Lemma 3.3 with [ = Iy to (6.12) we obtain, for h = lp + 1,... ,m and
j=1,... min{h — 1,r0},
lo N (h—lo—j max{1l,—— +W})

a
(6.19) 1o | < Dlay,| al

Lo
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where we used |a,| = |alo|(|alo|/|al_0|)(l—°_l°)/(l0_l—0). We remark that from (6.4) and (6.5)

1= 1
with [ = |y we see (\ag|/\alo|)5*lo < 0/Ki, and ([ag,|/|ag]) 70 < (6/K;,)"t. The
estimates above , (6.18) and (6.19) imply that, if h=1p+1,... ,mand j =1,... ,min{h —
1,70} we have

(6.20) la}"] < Dlagy|o" 1ot

Indeed if h — lp — jmax{1,h/(ro + v)} > 0, we obtain (6.20) from (6.4) and (6.18). If
h —1lp — jmax{1,h/(ro +7v)} <0, we obtain (6.20) from (6.19) and (6.5) with [ = lo.

Therefore Taylor’s formula (3.7) with k¥ = min{h — 1,79} and o = min{h,ro +~} — &,
(6.20) and (6.6) show

k
[41(8) = an] < Dlag,| | 3o 0"t ([tlo™ " g g lojginttiror)
j=1

when [t| < tp. Since min{h, o + v} max{1 } = h, we see

_h__
? ro+y

i 3 min{h,ro+
U—lo|t|nnn{h,ro+’v} — gh—lo (|t|0'_max{1’ro}1%—w}> {h,ro A/}.

i in{l X max{1, =} ; 145 (—1—r)max{l,-2_} .
Hence if [¢] < min{3, 8DK{g’t0}0 o*77, noting [¢[*""o 0+77 is less than
K

or equal to g =27 " for any x > 0, we have
lo

K _
|An(t) — an| < W|alo|ah fo.

lo

From (6.4) and (6.9) we obtain

jan] < Klai, | (z-)""".

lo
Then we have for h =10y +1,...,m

[AR(®)] < 2K]ag, | (7=)""

lo

when [t| < min{3, %,to}amax{l’#}. Since we see from (6.10), (6.5) with [ = [y and
lo —

Klo Z Kl_o Z 1 that

o max{l, 1—
|alO| < 2|Alo(t)‘7 |t| < C(K—) { TO+’Y}7

lo
we have for h=10p+1,...,m

g )h*lo

[An®] < 4K 14 Ol

, _ 1. _m 1. _m _
when [t| < min{3, $K{gat0, CKi, mat "'Oﬂ}}tfmax{ "70+7). Then we obtain

m

m— = 1 \h-t m—

> AR o™ <aK () (7=) DAL ®)llmyo] o,

h=lo+1 h=lp+1 1oVl
0 0
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. 1K +1 < l
VloKlo 4
1 m—Ilo
(6.21) < A Ol o]

— max{1,

when [¢| < min{%, SDK"UtO’ CK,, TOJ’”}}JmaX{l"'#W}. Noting that
K, = (8K +2)(4°(K + 1) )}, we see that by picking

1
43 (K+1) Klo

Vlo
we have
VloKlo = 42(K+ 1)7

which implies

4K +1 < 1
VloKlo 4

1
(K + 1)K, = 7 and

Therefore, since (6.10) implies A, (t) # 0 for [t| < CKl:max{l’W}gmax{l’#}, from
(6.17) and (6.21) we obtain

1
(6.22) Ip(t, £11,0) = 214w (Ollzreo|™ " >0

— max{1 }
S Tro+ + max 1,7
when [¢]| < mln{27 sDK"HtO’CK o o st

Next consider the case where lg = ko. In this case we have for [ < kg in M

1

ay |-t o
6.23 L —.
(6.23) K,

a

Then |ak,| > (zZ)* from (6.6). From (3.1), (3.2), (3.3) and (3.4) we obtain

70

Ao (¢ A, (1 _L Uy | ptpe mae(1, 20
Ay g,
3 —
A t A t)|° 0~k e 0+2
(625) ma‘X{ @Jrl( ) ; k_0+2( ) } < 4 aﬁ |t| < C|ak0 ‘ ko—ko k {1"0+7}
A, (1) Ao (1) ary
and
h—ko
Ap(t ko-ko
(6.26) ht)| ¢ | o h=ko+1,...,m
ak;_o ak_{) —

1
a — max{1,
when |t| < C‘%"‘O o { o+w}
ko
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Since the estimate (6.16) with [ = ko is derived from (6.24) and (6.25) as the case where
0 < ly < kg, we have for h =0,1,... kg — 1

1
ko—ko

An(t)
Ako (t)

ko

)k:[)fh7

} < K(16(K + 1)

Ak

(6.23) with [ = ko implies

< K(16(K + 1)KU )t

when [t| < C(& o )max{l’”;—i”}. Then with some vy, € (0, 1] that will be determined later,
0
ko—1 ko—1 o
D 1A Dlrkgo]™ " < (D K(16(K + 1) Kpgvig) )| Ak, (D)]l0™ ",
h=0 h=0

if 16(K + 1)2Kp vk, < &

(6.27) | Ay ()] [0 | ™

wl>—‘

when [t]| < C(ﬁ)max{l’”;—i”}.
0

Furthermore, as the derivation of the estimate (6.20), we obtain (6.19) with [y = ko for
h=ky+1,...,mand j =1,... ,min{h — 1,79} from Lemma 3.3 applied to (6.26) with
l=ko. Thenif h =ko+1,... ,m,j=1,... ,min{h—1,70} and h—ko—j max{1, #} <0,
we obtain from (6.23) with [ = kg
(6.28) laf’] < Dlay,|o" o mexttmst,
While Lemma 3.4 shows that agj) =0 when h > ko and h — ko > jmax{1, #} Hence

(6.28) holds for any j = 1,...,min{h — 1,79}. Then from Taylor’s formula (3.7) with
k = min{h — 1,79} and @ = min{h, 79 + v} and the estimate |ax,| > (ﬁ)ko, we get for
ko

h > ko

k
[4n(0)] < Dlag, o™~ (3 (Jtlo™ ™ 7050
j=1
+ (|t‘ max{1,70+w )min{h,ro+'y})’ |t| < to.
Here we note aj, = 0 for h > ko. When [t| < min{3, W,to}amax{l"oﬂ} we have
ko
1 _
[An (O] < o= lang 0" .
Since we see from (6.24), (6.5) with | = ko and Ky, > K, > 1 that

0 \max{l,-7—}
an| < 2/ A, (1)), |t < C(=2- et
lak | < 2[ Ak, ()], [¢] (Kko)
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Hence we have for h=ky+1,... ,m

[ AR(®)] < 2| Ak, ()] (

o )hfko
K,
. _ 1, —m 1,—m_
when [t| < min{3, ﬁ7cfﬁco maxtl g gL 555 Then we see that
0

m m

_ _ 1 h—k
D 1ARDro™ " < 2 Ak Ol )" R DT ()T
h=ko+1 h=ko-+1 Vo ko
1 1
lf VkOKIc Sg
1
(6.20) < 514k (O] (ro0)™ 0

. —max{1l, "~ ax{1l, " : s 10
when |t| < mm{%, ﬁ,to,CKko max{ ’To+'v}}0'm1x{ 77‘0+’Y}. Slnce, by plckmg
0

1
° T P(K + 1)Ky,

Uk
we have from Ky, = 4°(K +1)°Ky,

1
(K + 1), Kiy = 7 and v, Ky, > 42,

Hence from (6.27) and (6.29) we obtain
1
p(t, £vp,0)| = glAko(t)‘(VkoU)m_ko >0

When|t| S mil’l{%,ﬁ,to,CKkofmax{l’rpowjr“r}}gmax{lmg.giﬂ,}. Here we used Ako(t) # 0

when |t| < CKy, ™55 gL w55)  which follows from (6.24).
Thus , when ko > 0, we see from (6.3), (6.22) and (6) that the assertion of Lemma 6.2
is valid by choosing min{Cp, %, ﬁ, to, CKy, max{l’ro%v}} as the constant C.

Finally consider the case where k;oo = 0. In this case, we have ap, =0 for h=1,... ,m.
Hence |A1(t)] < D|t| when [t| < to. Furthermore Lemma 3.4 shows that a(j) = 0 when
h > jmax{l, - } Then we see that a(j) = 0 when h > 1 and j < min{h,ro +v}. For

Ap(t) with h 2 2 Taylor s formula (3.7) with & = min{h—1,r9} and o = min{h, ro+~} —k
implies
|Ah(t)| < D|t|Hlin{h,7“0+’Y}

when [t| < . Hence, when |7| < 1 and [t] < to,

(6.30) Z|Ah NIE i

<D™ >0 (" + (m = min{m, ro}) e mret 7).

1<h<min{rg,m}
Then when |7| < 1 and [t| < min{5(Dl+1),4m(TJr1 to}|T |max{1,70+w}’ we have |p(t,7) —
™| < &[7|™. Therefore for any o € (0,1] we see that p(t,0) # 0 and p(t,—0) # 0

when [t| < min{m, mio}amm{l’#}. Then in the case where kg = 0 also, the
assertion of Lemma 6.2 is valid. The proof is completed. O
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Next we give the proof of Lemma 6.2 using only the result of Theorem 1.1.

Second proof of Lemma 6.2. For o € (0,1], set

jo (j—1o (j—Do jo
L=(- - U
i=( m+1’ m—l—l) (m—l-l’m—l—l)

for j =1,...,m+1. Then since the degree of p(0, 7) is m, there exists a jo € {1,... ,m+1}
so that we have no root of p(0,7) in the set I;,. Then we see by setting 7o = 2jo—1)o that

2m—+2

31 — .
(6:31) pO.7) A0, I =ml < 50
and

(0,7) #0, |7 +70| < 5—

T T+ 7 i

pY, ) 0 2m+2

Set T— = To — o T+ = To+ o §- = T- +itan(m)ﬁ and & = 71 +

itan(mMn;’H.

Let T' be the line segment joining £ and &4 in the complex plane with the orientation
from &4 to £_. Then for each A € R we see that arg(r — A) increases when 7 moves from &
to £_ along I'. We denote this total change of argument by A()\) that is a positive number.

Then we have

A(N) {< prw A2 70+ 555 OT A S 70— 555
= /\:T().

Let

_ [ O-p(t,7T)
T(t) = \s/r ) dr..

Then if p(t, 79) = 0, we have T'(t) > % On the other hand we see from (6.31) that

T(0) < T~ Hence if p(t,70) = 0, then we have
(3m+2)m
6.32 Tt)—-T(0) > ———.
( ) ( ) ( ) - 4dm+4
Since

_g 8t p(t,7) Orp(t,7)  Oip(t, T) 8Tp(t,7')) dr
Orp(t,T) p(t,T) p(t, ) p(t,T)

From hyperbolicity of p(t, ), we have

O7p(t,7)
p(t,7)

m

for r eT.

B taﬂ(4<n§r+1>)4n§’+4

According to Theorem 1.1 applied to p(t, ) and 0,p(¢,7), we have

atp(tv 7—)
p(t, )

D

— o_max{l %}

D

—  _max{l
gmax{

at a‘rp(ta T)
O-p(t,T)

and

—1
’70+’Y
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m

Since the length of T' is we have |0,T(t)] < D/(c™*7%%5}). Hence when |t| <

g
2m+27

o_max{l, ’7'071"{ }
4(m+1)D ’
s
Tt —-T00) < —.
70~ TO0) < 0

Then we see from (6.32) that

max{l,#}

o
t 0, t|l<——m——

2)(57-())7é ) ||— 4(m+1)D

Similar argument can be applied to 7 = —7y. Then we have
7_(_O_max{l,,7,07—1“{}

+ <
p(ta TO) 7é Oa |t| = 4(m ¥ ].)D

Then for any o € (0, 1] there exists jo € {1,...,m + 1} such that we have

max{1l, 22—}

2jo+ 1 o+
t,+ 0, |t|<————"—
The proof of Lemma 6.2 is completed. O

7 Proof of Theorem 1.1 based on Theorem 1.4 In this section, we prove Theorem
1.1 assuming that Theorem 1.4 is valid. That is to say, assuming the Holder continuity of
roots, we show the estimate (1.1). From the argument of the section 4, we see that it is
sufficient to show Lemma 4.1 under the assumption that Theorem 1.4 is valid.

Let A(t) (I = 1,...,m) be roots of a polynomial p(t,7) = 7™ + >, Ap(t)r™ "
satisfying the assumptions of Lemma 4.1. Since the multiplicity of roots is at most m and
Ap(t) € C™([-T,T)), we see from Theorem 1.4 that roots A;(t) (I =1,...,m) are locally
Holder continuous of order min{1, 2} on (=7, T). Let § = min{1, 222} S € (£, T) and

d= TT_S Then we have

(7.1) A(t) = Au(s)| < Clt = sI°

forl=1,...,mand t,s € [-S —d,S+d]. Let x(s) be a real-valued C* function on R
satisfying

and

(7.2) /skx(s) ds = {1 k=0

0 k=1,...,r0.

According to Remark 4.1, we have only to show the estimate (4.1) when |R7| < D and
0 < |S7] < 1 with some constant D. We set

p= C’0|§7'|_‘r1

with some constant Cy > 1/d that will be chosen later.
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Let for t € [-S, 5]

ﬁ@ﬂz/m%*@b@ﬂw

and

M) = [ ool = )N ds 1=1m

We note that ¢ € [-S, 5] and x(p(t — s)) # 0 imply |s| < S+ d. Then we get from (7.1)

(7.3) IN(t) = Nt < Cp~?
and

7\ .
(7.4) d c)l\éj(t) <Cp i j>1
when ¢ € [-S, S].

Since Ap(t) € C™V([-T,T)), we see from (7.2) that

Anlt) = [ pxtolt = ) An(s)ds
satisfies

djjlh (t) _ deh (t)
dt dt

< Cp—(ro-i-’)')-i-j j=0,...,70

when ¢ € [—S, S]. Then we see that
m ~
plt,T) =7+ > Ay (et
h=1
and
[0p(t, ) — (e, )| < Cp I j =0,

when t € [=S, 5], |R7| < D and |S7| < 1. Since |p(¢,7)| > |S7]™ and §(rg +7) > m, we
see that

(7.5) 0p(t. ) = ofp(t 7)) < Clp(t Tl =0, imo.
Let
(7.6) pt.r) = T](r = 2.
=1

Then we have

(7.7) p(s,m) = p(t,7) + Co(s,t)pe (t, T)
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where

Co(sit)= [ u(®) —N(s)

le{1,..., mI\©

and

bo(t,m) = [T(r = Ni(®).

l€®

Noting that (7.1) and (7.3) imply

(7.8) |Co(s,t)] < C(|t — s° + p~2)™ 1€
and that

- 5 t, T
(9) ot )| < T

we see that

~ - p—6 p—é )
t —p(t < C|p(t — 1+ =)
plt,7) =5t < IR ) (4 )

6:

We see from p~% = C;°|37| that with a large Cy we have

= 1=
(710) |p(ta7—) _p(t77—)‘ < §|p(ta7-)|
By the definition of p(t, 7), we see from (7.7) that
(7.11) ) =pt,7)+ > Col(t)pel(t,T)
oc{1,...,m}

where

Colt) = [ px(olt = )Co(st)ds
We obtain from (7.4) and (7.8)

diCo(t)

(t)| o ji—bm—l0)
At P

(7.12)

From the definition of p(¢, 7) and (7.4) we see that for j > 1

ajp(t,r)= > De;(t)pe(tT)
oc{1,...,m}

where

|De,;(t)] < Cp=0m 19D,
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from which and (7.9) we have

(7.13) 07(t,7)| < C (7))
Similarly we have

(7.14) 10]Be (t,7)| < Cp’ Do (t,7)].

Noting that (7.9) implies p~°("=9)|pg (¢, 7)| < C|p(t, T)|, we see that it follows from (7.11),
(7.12), (7.13) and (7.14) that

07p(t,7)| < Cp[p(t, 7).

The estimate above, (7.5) and (7.10) imply the desired estimates

olp(t, )

< Ol
p(t,7)

when 0 < 5 < ro, |R7| < D, 0<|37] <1and [t| <S. Then Lemma 4.1 is proven under
the assumption that Theorem 1.4 is valid.
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