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Abstract. In the present paper, we focus on multi-level nonlinear integer program-
ming problems (MLNLIPPs) in which there exist decision makers (DMs) with integer
decision variables at all levels. Various approaches for multi-level programming prob-
lems could exist according to situations which the DMs are placed in. Assuming the
cooperative relationship among the DMs at all levels, in this paper, an interactive fuzzy
programming technique through genetic algorithms for MLNLIPPs is proposed to ob-
tain a satisfactory solution for all DMs. Furthermore, the feasibility of the proposed
method is shown by applying it to an illustrative numerical example.

1 Introduction In the real world, we often encounter decision making situations in-
volving multiple decision makers (DMs). Especially in industrial or governmental decision
making situations, those DMs have different interest and decision priority. A multi-level
programming problem is one of mathematical optimization models for them. In this paper,
we focus on multi-level nonlinear integer programming problems (MLNLIPPs) in which
there exist a DM with integer decision variables at each level.

Various approaches for multi-level programming problems could exist according to sit-
uations which the DMs are placed in. Under the assumption that the DMs do not have
motivation to cooperate mutually, a Stackelberg solutions is adopted as a reasonable solu-
tion for the situation. It is assumed that the DM at the upper level (leader) and the DM
at the lower level (follower) completely know their objective functions and the constraints
of the problem and they do not have any motivation to cooperate with each other, and
the leader first makes a decision and then the follower specifies a decision so as to optimize
the objective function of itself with full knowledge of the decision of the leader. Under
this assumption, the leader also makes a decision such that the objective function of the
leader is optimized. Then, a solution defined as the above mentioned procedure is called
a Stackelberg (equilibrium) solutions, which has been employed as a solution concept for
two-level mathematical programming problems [4, 6, 8, 9, 16].

Bialas and Karwan [4] proposed four algorithms based on vertex enumeration and Kuhn-
Tucker approches to solve two-level linear programming problems for obtaining Stackelberg
solutions where two of them can provide local optimal solutions, and remaining two yield
global optima. It is known that finding Stackelberg solutions of the two-level programming
problems is strongly NP-hard [16], i.e., in proportion as scale of the problem, computa-
tional time exceedingly increases. To reduce computational time, Nishizaki et al. [8, 9]
proposed computational methods through genetic algorithms for obtaining Stackelberg so-
lutions to two-level zero-one and mixed zero-one linear programming problems. Jan et
al. [6] proposed a solution method for obtaining Stackelberg solutions to nonlinear integer
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bilevel programming problems. For obtaining Stackelberg solutions to multi-level linear
programming problems, Bard [2] and Wen and Bialas [17] proposed algorithms for three-
level programming problems. Bard [2] proposes a cutting plane algorithm employing a
vertex search procedure to solve three-level linear programming problems. Wen and Bialas
[17] develop a hybrid algorithm based on Kth best algorithm to solve three-level linear
programming problems.

On the other hand, under the assumption that the DMs have motivation to cooperate
mutually, a satisfactory solution for all the DMs is adopted as a reasonable solution for the
situation. For obtaining a satisfactory solution, Lai [7] and Shih, Lai and Lee [15] proposed
solution methods based on fuzzy concepts for multi-level linear programming problems such
that decisions of DMs in all levels are sequential and all of the DMs essentially cooperate
with each other. In their method, the DMs identify membership functions of fuzzy goals
for their objective functions, and especially, the DMs at the upper levels also specifies
those of fuzzy goals for decision variables. The DM at the lowest level solves a fuzzy
programming problem with constraints on fuzzy goals of the DMs at the upper levels.
Unfortunately, however, there is a possibility that their method leads a final solution to an
undesirable one because of inconsistency between the fuzzy goals of the objective function
and those of the decision variables. To overcome the problem in the method of Shih et al.,
eliminating the fuzzy goals for the decision variables, Sakawa et al. have proposed interactive
fuzzy programming for multi-level linear programming problems [12, 13, 14]. But they
considered only a linear case. For obtaining a satisfactory solution to two-level nonlinear
integer programming problems the authors [1] proposed an interactive fuzzy programming
technique through genetic algorithms with double strings using continuous relaxation based
on reference solution updating (GADSCRRSU) [10, 11].

Multi-level nonlinear integer programming problems (MLNLIPPs) can be formulated
as large-scale mathematical programming problems involving integer decision variables,
nonlinear objective functions and nonlinear constraint functions. Since a general solution
method does not exist for nonlinear integer programming problems like the branch and
bound method for linear ones, a solution method peculiar to each problem has been pro-
posed. As a general-purpose solution method for nonlinear integer programming problems,
we propose the usage of genetic algorithms with double strings using continuous relaxation
based on reference solution updating (GADSCRRSU) [10, 11].

Under these circumstances, in this paper, for obtaining a satisfactory solution in co-
operative relationship among the DMs, interactive fuzzy programming through proposed
GADSCRRSU is presented for MLNLIPPs. Furthermore, the feasibility of the proposed
method is shown through application of it to illustrative numerical example with different
numbers of variables.

2 Problem Formulation Multi-level nonlinear integer programming problems (MLNLIPPs)
with t levels are generally formulated as follows:

minimize
DM1

f1(x1, . . . , xt)

minimize
DM2

f2(x1, . . . , xt)

. . . . . . . . . . . .
minimize

DMl
fl(x1, . . . , xt)

. . . . . . . . . . . .
minimize

DMt
ft(x1, . . . , xt)

subject to gi(x1, . . . , xt) ≤ 0, i = 1, . . . , m
xlj ∈ {0, 1, . . . , νlj}, l = 1, . . . , t, j = 1, . . . , nl,

(1)
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where xl is an nl dimensional integer decision variable column vector for the decision maker
at each level, fl(x1, . . . , xt), l = 1, . . . , t and gi(x1, . . . , xt), i = 1, . . . , m may be linear or
nonlinear. For notational convenience, we use x = (xT

1 , . . . , xT
t )T and denote the feasible

region of problem (1) by X . Since the DMs have motivation to cooperate with each other,
we denote the solution vector as x without partition.

For example, consider a project selection problem in an administrative office at the
upper level and several autonomous divisions of a company. In this case, the situation that
all the DMs can cooperate with each other seems natural rather than one that all the DMs
do not have motivation to cooperate mutually.

Under the hypothesis of cooperation among all DMs, Sakawa et al. [12, 13, 14] proposed
interactive fuzzy programming for multi-level linear programming problems in order to
derive satisfactory solutions for the DMs through interactions with the DM at the upper
level by introducing fuzzy goals to consider the imprecise nature of DMs’ judgements for
objective functions.

In this paper, for MLNLIPPs, focusing on the case of cooperative relation among all
DMs, we present a new interactive fuzzy programming method through genetic algorithms
with double strings using continuous relaxation based on reference solution updating (GAD-
SCRRSU) in order to derive a satisfactory solution for the DMs.

3 Interactive Fuzzy Programming In this section, we describe a new interactive fuzzy
programming method through genetic algorithms based on literatures by Sakawa et al.
[12, 13, 14] is summarized as follows.

3.1 Interactive Fuzzy Programming Considering the ambiguity or fuzziness of the
decision makers’ judgements on each of the objective functions fl(x), l = 1, . . . , t in (1),
it seems natural to introduce such fuzzy goals for objective functions as “fl(x) should be
subjectively less than or equal to a certain value”. First, we solve problems to obtain the
individual minimum

fmin
l = min

x∈X
fl(x), l = 1, . . . , t(2)

and the individual maximum

fmax
l = max

x∈X
fl(x), l = 1, . . . , t(3)

of each of the objective functions which are referred to when the DMs elicit membership
functions prescribing the fuzzy goals for the objective functions fl(x), l = 1, . . . , t. Since
these problems are single-objective nonlinear integer programming problems and it is dif-
ficult to obtain optimal solutions to them, we use genetic algorithms with double strings
using continuous relaxation based on reference solution updating (GADSCRRSU) which is
an extension of genetic algorithms with double strings based on reference solution updating
(GADSRSU) for linear 0-1 programming problems [11].

The DMs determine the membership functions µl(fl(x)), l = 1, . . . , t which are strictly
monotone decreasing for fl(x), consulting the variation ratio of degree of satisfaction in
the interval between the individual minimum of problem (2) and the individual maximum
of problem (3). The domain of the membership functions is in the interval [fmin

l , fmax
l ],

l = 1, . . . , t and the DM specifies the value f0
l of the objective function for which the

degree of satisfaction is 0 and the value f1
l of the objective function for which the degree of

satisfaction is 1. For the value undesired (larger) than f0
l , it is defined that µl(fl(x)) = 0,

and for the value desired (smaller) than f1
l , it is defined that µl(fl(x)) = 1. Here a linear
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membership function in Fig. 1 is considered, which characterizes the fuzzy goal of the DM
at each level. The corresponding linear membership function µl(fl(x)) is defined as:

µl(fl(x)) =

⎧⎪⎪⎨
⎪⎪⎩

1 fl(x) < f1
l

fl(x) − f0
l

f1
l − f0

l

f1
l ≤ fl(x) < f0

l

0 fl(x) ≥ f0
l

(4)

It is assumed that the DMs subjectively specify f0
l and f1

l .

Figure 1: Linear Membership Function

Zimmermann [18] proposed a method for determining the parameters f0
l and f1

l of the
linear membership function in the following way. That is, using the individual minimum,
they are defined as

f1
l = fmin

l = fl(xl0) = min
x∈X

fl(x), l = 1, . . . , t(5)

together with

f0
l = max

(
fl(x10), . . . , fl(x(l−1)0), fl(x(l+1)0), . . . , fl(xt0)

)
.(6)

Having elicited membership functions µl(fl(x)) for fl(x), l = 1, . . . , t by the DM at
each level, then the original multi-level nonlinear integer programming problems (1) can be
interpreted as a multi-level membership maximization problem defined by:

maximize
DM1

µ1(f1(x))

maximize
DM2

µ2(f2(x))

. . . . . . . . . . . .
maximize

DMl
µl(fl(x))

. . . . . . . . . . . .
maximize

DMt
µt(ft(x))

subject to gi(x) ≤ 0, i = 1, . . . , m
xlj ∈ {0, 1, . . . , νlj}, l = 1, . . . , t, j = 1, . . . , nl.

(7)

Since (7) is a multi-level membership maximization problem, in general, a complete optimal
solution that simultaneously maximizes all the DMs’ degree of satisfaction of their objective
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functions does not always exist when the objective functions conflict with each other. Thus,
a satisfactory solution is expected to be obtained from among M-Pareto optimal solution
set which is defined for multiobjective programming problems [10, 11].

For deriving an overall satisfactory solution to the formulated problem (7), first the max-
imizing decision of the fuzzy decision proposed by Bellman and Zadeh [3] is found. Namely,
the following problem is solved for obtaining a solution which maximizes the smallest degree
of satisfaction among the t DMs:

maximize min
l=1,... ,t

µl(fl(x))

subject to gi(x) ≤ 0, i = 1, . . . , m
xlj ∈ {0, 1, . . . , νlj}, l = 1, . . . , t, j = 1, . . . , nl.

(8)

In order to guarantee the M-Pareto optimality of the obtained solution, the following
augmented maximin problem (9) instead of the maximin problem (8) is solved.

maximize
x∈X

min
l=1,... ,t

{
µl(fl(x)) + ρ

t∑
q=1

µq(fq(x))

}
.(9)

The term augmented is adopted here because the term ρ
∑t

q=1 µq(fq(x)) is added to the
standard maximin problem (8), where ρ is a sufficiently small positive number. By solving
problem (9), we can obtain a solution which maximizes the smallest degree of satisfaction
among all of the t DMs. This problem can also be solved by GADSCRRSU. Let us denote
an optimal solution to the problem (9) by x∗. Then, we define the satisfactory degree of
the t DMs under the constraints as

λ = min {µ1(f1(x∗)), . . . , µt(ft(x∗))}(10)

and the ratio of satisfactory degrees between adjacent two levels as

∆l =
µl+1(fl+1(x))

µl(fl(x))
, l = 1, . . . , t − 1.(11)

If the optimal solution x∗ to problem (9) cannot satisfy the DMs, problems concerning a
part of the DMs are solved one after another from the last two levels in order to coordinate
the satisfactory degrees of the DMs and finally obtain a satisfactory solution of all the DMs.

At an interaction k, let µl(fk
l ) and λk denote a satisfactory degree of DMl, l = 1, . . . , t

and a satisfactory degree of all the levels, respectively, and let ∆k
l = µl+1(fk

l+1)/µl(fk
l )

denote a ratio of satisfactory degrees of the lth and the (l + 1)th levels. Let xk denote a
solution at the interaction k. For all l = 1, . . . , t, DMl is proposed a solution by DM(l + 1).
Then the DMs at all the levels except for the tth level obtain the satisfactory solutions and
the interactive process terminates if the following two conditions are satisfied.

Termination conditions of the interactive process:

Condition 1: For all l = 1, . . . , t− 1, DMl’s satisfactory degree is larger than or equal
to the minimal satisfactory level δ̂l specified by DMl, i.e., µl(fk

l ) ≥ δ̂l, l = 1, . . . , t − 1.
Condition 2: For all l = 1, . . . , t − 1 the ratio of ∆k

l of satisfactory degrees lies in the
interval between the lower and the upper bounds specified by DMl, i.e., ∆k

l ∈ [∆min
l , ∆max

l ].
Condition 1 is DMl’s required condition for solutions proposed by DM(l + 1), and con-

dition 2 is provided in order to keep overall satisfactory balance among all the levels.
Unless the conditions are satisfied simultaneously, some of DMl, l = 1, . . . , t − 1 needs

to update his minimal satisfactory level δ̂l. Suppose that the DMs from at the (p + 1)th



228 M.A.K. AZAD, M. SAKAWA, K. KATO AND H. KATAGIRI

level to at the (t − 1)th level, i.e., DM(p + 1), DM(p + 2), . . . , DM(t − 1) are satisfied with
the proposed solution but DMp is not satisfied with it. Then DMp, DM(p + 1), . . . , and
DM(t−1) need to update their minimal satisfactory levels δ̂l, l = p, p+1, . . . , t−1. For any
two levels adjacent to each other, giving the DM at an upper level serious consideration,
the DM at a lower level should update his minamal satisfatory level.

Procedure for updating minimal satisfactory level δ̂l:

Case 1: If the condition 1 with respect to a DM at a level is not satisfied, then the DM
decreases the minimal satisfactory level δ̂l.

Case 2: If the ratio ∆k
l exceeds its upper bound, then DMl increases the minimal satisfac-

tory level δ̂l. Conversely, if ∆k
l is less than its lower bound, then DMl decreases the

minimal satisfactory level δ̂l.

Case 3: Although conditions 1 and 2 are satisfied, if a DM at a level is not satisfied with
the obtained solution and judges that it is desirable to increase the satisfactory degree
of the DM at the expense of the satisfactory degree of the DM at his lower level, then
the first DM increases the minimal satisfactory level δ̂l and vice versa.

Let δ̂′l, l = p, . . . , t−1, denote the updated minimal satisfactory level, then the following
problem (12) is solved which maximizes the smallest degree of satisfaction among the DMs
from 1 to p − 1 and tth levels.

maximize min
l=1,... ,p,t

{
µl(fl(x)) + ρ

∑
q=1,... ,p, t

µq(fq(x))

}

subject to gi(x) ≤ 0, i = 1, . . . , m

µl(fl(x)) ≥ δ̂′l, l = p, . . . , t − 1
xlj ∈ {0, 1, . . . , νlj}, l = 1, . . . , t, j = 1, . . . , nl

(12)

It should be noted that GADSCRRSU is applicable to (12).

3.2 Algorithm of the Interactive Fuzzy Programming through GADSCRRSU
We are now ready to present an interactive algorithm for deriving an overall satisfactory
solution to multi-level nonlinear integer programming problems (1) through genetic algo-
rithms with double strings using continuous relaxation based on reference solution updating
(GADSCRRSU), which is summarized in the following.

Step 1: Solve (5) through GADSCRRSU for individual minimum and by using equation
(6) calculate f0

l for each objective function of all the DMs and ask the DMs to iden-
tify their membership functions µl(f.), l = 1, . . . , t of the fuzzy goals for their own
objective functions. Also ask the DMl, l = 1, . . . , t − 1 to specify subjectively the
lower and the upper bounds of the ratio of satisfactory degrees ∆l.

Step 2: Set interaction k := 1 and solve the problem (9) through GADSCRSSU, in which
the smallest degree among all the DMs is maximized. The solution is proposed to all
the DMs except the tth level.

Step 3: If the solution proposed to DMs at all the levels except for the tth level satisfies
the termination conditions, they conclude the solution as a satisfactory one and the
algorithm stops. Otherwise, let k := k + 1 and go to step 4.
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Step 4: If the DMs from at the (p + 1)th level to at the (t − 1)th level, i.e., DM(p + 1),
DM(p + 2), . . . , and DM(t − 1) is satisfied with the proposed solution but DMp is
not satisfied with it, DMl, l = p, . . . , t − 1 update the minimal satisfactory levels
δ̂l, l = p, . . . , t − 1 in according to the procedure of updating minimal satisfactory
level.

Step 5: Solve (12) through GADSCRRSU, in which smallest degree of satisfaction among
the DMs from 1 to p− 1 and tth levels is maximized and propose the solution to the
DMs from 1 to p − 1 levels. Return to step 3.

4 Genetic Algorithms with Double Strings using Continuous Relaxation based
on Reference Solution Updating (GADSCRRSU) In this section, we mention GAD-
SCRRSU proposed as a general solution method for nonlinear integer programming prob-
lems defined as

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . , m

xj ∈ {0, 1, . . . , νj}, j = 1, . . . , n.
(13)

In (13), x is an n dimensional integer decision variable vector, f(x), gi(x), i = 1, . . . , m
are nonlinear functions and νj , j = 1, . . . , n is the upper bound of each decision variable.

4.1 Individual Representation The individual representation [10, 11] by double strings
shown in Figure 2 is adopted in GADSCRRSU. In the figure, each of s(j), j = 1, . . . , n is

Figure 2: Double Strings Representation

the index of an element in a solution vector and each of ys(j) ∈ {0, 1, . . . , νj}, j = 1, . . . , n
is the value of the element, respectively.

4.2 Decoding Algorithm Let N be the total number of population (pop size). The
individuals s with the dimensions n are generated randomly. Unfortunately, however, the
direct mapping of the individual can generate infeasible solutions [10, 11]. To eliminate
such solutions, a decoding algorithm of double strings for nonlinear integer programming
problems (13) using a reference solution x0, which is a feasible solution and used as the
origin of decoding, is constructed as follows.

Decoding algorithm using reference solution:

In the algorithm, it is assumed that a feasible solution x0 is obtained in advance. Let n,
and N be the number of variables and number of individuals in the population, respectively.

Step 1: If the index of an individual to be decoded is in {1, . . . , �N/2�}, go to step 2.
Otherwise, go to step 8.

Step 2: Let j := 1, x := {0, . . . , 0}, l := 1.

Step 3: Let xs(j) := ys(j).



230 M.A.K. AZAD, M. SAKAWA, K. KATO AND H. KATAGIRI

Step 4: If gi(x) ≤ 0, i = 1, . . . , m, let l := j, j := j + 1, and go to step 5. Otherwise, let
j := j + 1, and go to step 5.

Step 5: If j ≤ n, go to step 3. Otherwise, go to step 6.

Step 6: If l > 0, go to step 7. Otherwise, go to step 8.

Step 7: By substituting xs(j) := ys(j), 1 ≤ j ≤ l and xs(j) := 0, l < j ≤ n, we obtain a
feasible solution x corresponding to the individual s and stop.

Step 8: Let j := 1, x := x0.

Step 9: Let xs(j) := ys(j). If ys(j) = x0
s(j), let j := j +1, and go to step 11. If ys(j) �= x0

s(j),
go to step 10.

Step 10: If gi(x) ≤ 0, i = 1, . . . , m, let j := j + 1, and go to step 11. Otherwise, let
xs(j) := x0

s(j), j := j + 1, and go to step 11.

Step 11: If j ≤ n, go to step 9. Otherwise, we obtain a feasible solution x corresponding
to the individual s and stop.

This decoding algorithm enables us to decode each of the individuals represented by the
double strings to the corresponding feasible solution. However, the diversity of the solution
x greatly depends on the reference solution, because solutions obtained by the decoding
algorithm using reference solution tend to concentrate around the reference solution. To
overcome such situations, the reference solution updating procedure [10, 11] is adopted here.

4.3 Fitness Nature obeys the principle of Darwinian ”survival of the fittest”, the indi-
viduals with high fitness values will, on average, reproduce more often than those low fitness
values. For obtaining satisfactory solution for all the DMs to multi-level nonlinear integer
programming problems (1) through GADSCRRSU, the objective function value is used as
the fitness value f of an individual s. When the variance of fitness in a population is small,
it is often observed that the ordinary roulette wheel selection does not work well because
there is little difference between the probability of a good individual surviving and that of
a bad one surviving [10, 11]. In order to overcome this problem, the linear scaling [10, 11]
is adopted here. The new fitness f ′

l (s), l = 1, . . . , t of the DMl is obtained by using the
following linear scaling

f ′
l (s) := alfl(s) + bl(14)

where fl(s), l = 1, . . . , t are the fitness values of the DMs at all levels with respect to each
decoded individual s.

4.4 Genetic Operators For obtaining satisfactory solution for all the DMs to multi-level
nonlinear integer programming problems (1) through GADSCRRSU, four genetic operators
such as reproduction, partially matched crossover (PMX), bit reverse mutation and inversion
[10, 11] are adopted here.

4.5 Usage of Continuous Relaxation In order to find an approximate optimal solution
with high accuracy in reasonable time, we need some schemes such as the restriction of the
search space to a promising region, the generation of individuals near the optimal solution
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and so forth. From the point of view, the information about an optimal solution to the
corresponding continuous relaxation problem

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . , m

0 ≤ xj ≤ νj , j = 1, . . . , n
(15)

is used in the generation of the initial population and the bit reverse mutation. When
this problem is convex, we can obtain a global optimal solution by some convex program-
ming technique, e.g., the sequential quadratic programming. Otherwise, i.e., when it is
nonconvex, because it is difficult to find a global optimal solution, we search an approxi-
mate optimal solution by some approximate solution method such as genetic algorithms or
simulated annealing. Here GENOCOP V [5] is used to find the solution of corresponding
continuous relaxation problem (15).

4.6 Computational Procedures of GADSCRRSU Now the genetic algorithms with
double strings using continuous relaxation based on reference solution updating (GAD-
SCRRSU) for solving nonlinear integer programming problems (13) are summarized in the
following.

Step 0: Determine values of the parameters used in GADSCRRSU: the population size
N , the minimal search generation Imin, the maximal search generation Imax > Imin,
the convergence criterion ε, the degree of use of information about solutions to non-
linear programming relaxation problem R, the parameter for feasible solution θ, the
parameter for reference solution updating η, the parameter for augmented maxmin
problem ρ, the upper bound of each decision variable ν, the scaling constant cmult,
the probability of crossover pc, the generation gap G, the probability of mutation pm,
the probability of inversion pi and set the generation counter r at 0.

Step 1: Generate the initial population consisting of N individuals based on the informa-
tion of a solution to the continuous relaxation problem (15).

Step 2: Decode each individual (genotype) in the current population and calculate its
fitness based on the corresponding solution (phenotype).

Step 3: If the termination condition is fulfilled, stop. Otherwise, let r := r + 1 and go to
step 4.

Step 4: Apply the reproduction operator based on the elitist expected value selection, after
carrying out linear scaling.

Step 5: Apply the crossover operator, called PMX (Partially Matched Crossover) for dou-
ble strings.

Step 6: Apply the mutation operator based on the information of an optimal solution to
the continuous relaxation problem (15).

Step 7: Apply the inversion operator. Go to step 2.
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5 Numerical Example Here, we consider the following multiobjective two-level nonlin-
ear integer programming problem in order to test the proposed algorithm.

maximize
DM1

f1(x) =
n∏

j=1

[1 − (1 − rj)xj ]

minimize
DM2

f2(x) =
n∑

j=1

cj

[
xj + exp

(xj

4

)]

minimize
DM3

f3(x) =
n∑

j=1

qjxj exp
(xj

4

)

subject to g1(x) =
n∑

j=1

pjx
2
j − P ≤ 0

g2(x) =
n∑

j=1

wjxj exp
(xj

4

)
− W ≤ 0

xj ∈ {1, 2, . . . , 10}, j = 1, . . . , n

(16)

The numerical experiments were performed on a personal computer (processor: Intel
1 GHz, memory: 512 MB, OS: Windows 2000) using Visual C/C++ compiler (version
6.0). The parameter values used in GADSCRRSU for solving (16) were set as follows:
N = 100, Imin = 100, Imax = 1000, ε = 0.02, R = 0.9, θ = 5.0, η = 0.1, σ = 2.0, τ = 3.0,
ρ = 0.005, ν = 10, cmult = 1.8, pc = 0.9, G = 0.9, pm = 0.05, pi = 0.03, and P = 200.
Several problems with different numbers of variables were considered to test the proposed
algorithm for solving the problem (16). The data were generated randomly. In the following
section, the result has been discussed briefly when n = 15 and the data are shown in Table
1.

Table 1: Data for problem (16) with 15 variables

Co- Values
efficients

�

�

�

�

�

P
W

0.737 0.882 0.844 0.930 0.613 0.630 0.777 0.631 0.986 0.778 0.892 0.978 0.990 0.718 0.751
0.030 0.700 0.900 0.200 0.600 1.100 0.020 0.130 0.200 1.000 0.030 0.500 10.000 0.090 0.060
2.310 12.590 4.600 4.750 1.450 1.060 4.060 2.460 3.060 2.000 3.850 4.290 3.460 0.950 3.910
3.000 3.000 4.000 1.000 3.000 4.000 3.000 5.000 4.000 5.000 4.000 4.000 2.000 3.000 2.000
7.000 0.800 0.300 0.200 1.000 5.000 0.900 1.000 8.000 0.800 0.300 1.000 0.500 9.000 2.000

905.000
293.195

5.1 Result and Discussion First, in step 1, the individual minimum and maximum of
each objective function of all the DMs are calculated by using Zimmermann method and are
shown in Table 2. After calculating individual minimum and maximum of each objective
function of all the DMs, the corresponding membership functions are specified subjectively
by the DMs.

Since DM1’s objective function is a maximization type, the linear membership function
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Table 2: Calculated individual minimum and maximum

Objective fmin
l fmax

l Time (Sec.)
f1(x) 0.0345 0.9195
f2(x) 35.4394 63.1294 29.87
f3(x) 70.3646 546.8730

in equation (17) in Figure 3 is used to specify the fuzzy goal of the DM1.

µ1(f1(x)) =

⎧⎪⎪⎨
⎪⎪⎩

0 f1(x) < f0
1

f1(x) − f0
1

f1
1 − f0

1

f0
1 ≤ f1(x) < f1

1

1 f1(x) ≥ f1
1

(17)

Figure 3: Linear Membership Function for DM1

On the other hand, since DM2’s and DM3’s objective function are minimization type,
the linear membership function in equation (4) in Figure 1 is used to specify the fuzzy goal
of the DM2 and DM3. The corresponding linear membership functions of all the DMs are
shown in Table 3.

Table 3: DMs’ linear membership functions

Decision Maker f0
l f1

l

DM1 0.25 0.80
DM2 80.00 40.00
DM3 600.00 100.00
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After specifying the linear membership functions, in order to obtain a satisfactory solu-
tion to the multi-level nonlinear integer programming problem (16), we apply the proposed
interactive algorithm to it. The process of interaction is summarized in Table 4. In the
numerical experiment, at the third interaction, termination conditions were satisfied for
(16) with 15 variables.

Table 4: Interactive results of problem (16) with 15 variables

Int. δ̂1 δ̂2 µ1(f1) µ2(f2) µ3(f3) f1(x) f2(x) f3(x) ∆1 ∆2 Time (S.)
1st . . . . . . 0.7706 0.7687 0.7637 0.6738 49.2528 218.1386 0.9976 0.9936 10.90
2nd . . . 0.78 0.7589 0.7804 0.7545 0.6674 48.7853 222.7474 1.0282 0.9669 21.57
3rd 0.80 0.78 0.8072 0.7850 0.7299 0.6939 48.5992 235.0590 0.9726 0.9298 15.96

Suppose that DM1 and DM2 subjectively specify the lower and upper bounds of ∆1 and
∆2 as [0.6, 1.0]. In step 2, the problem (8) for the numerical example (16) can be fomulated
as

maximize
x∈X

min
{

f1(x) − 0.25
0.80 − 0.25

,
f2(x) − 80.00
40.00 − 80.00

,
f3(x) − 600.00
100.00 − 600.00

}
,(18)

where X denotes the feasible area of problem (16) and (18) is solved through GADSCRRSU.
Result is shown in the second row of Table 4. At this interaction, the termination conditions
of the interactive process are not satisfied. In step 3 and 4, it needs to update the minimal
satisfactory levels of DM1 and DM2 one after another.

Suppose that DM2 specifies the minimal satisfactory level δ̂2 = 0.78. Then a problem
corresponding to (12) is formulated as

maximize min
{

f1(x) − 0.25
0.80 − 0.25

,
f3(x) − 600.00
100.00 − 600.00

}
subject to x ∈ X

f2(x) − 80.00
40.00 − 80.00

≥ 0.78.

(19)

In step 5, (19) is solved through GADSCRRSU. Result is shown in the third row of Table
4. At this interaction, the termination conditions of the interactive process for DM2 are
satisfied but are not satisfied for DM1. Again in step 3 and 4, it needs to update the
minimal satisfactory level of DM1.

Suppose that DM1 specifies the minimal satisfactory level δ̂1 = 0.80. Then a problem
corresponding to (12) is formulated as

maximize min
{

f3(x) − 600.00
100.00 − 600.00

}
subject to x ∈ X

f2(x) − 80.00
40.00 − 80.00

≥ 0.78
f1(x) − 0.25
0.80 − 0.25

≥ 0.80.

(20)

In step 5, (20) is solved through GADSCRRSU. Result is shown in the fourth row of
Table 4. At this interaction, the termination conditions of the interactive process for both



INTERACTIVE FUZZY MULTI-LEVEL NONLINEAR INTEGER PROGRAMMING 235

the DM1 and DM2 are satisfied because the degree of satisfaction µ3
1 = 0.8072 of DM1

is greater than his minimal satisfactory level δ̂1 = 0.80 and ∆3
1 = 0.9726 ∈ [0.60, 1.00].

Consequently, the degree of satisfaction µ3
2 = 0.7850 of DM2 is greater than his minimal

satisfactory level δ̂2 = 0.78 and ∆3
2 = 0.9298 ∈ [0.60, 1.00]. Therefore, the solution at

the third interaction satisfies the termination conditions of the interactive process and then
becomes a satisfactory solution for all the DMs.

Through the application of the proposed method to this test problem (16), we could
find one of satifactory solutions. Furthermore, we applied the proposed method to (16)
with different numbers of variables. In all applications, we could also find one of satifactory
solutions. Figure 4 shows the relation between the number of variables and the total compu-

Figure 4: Total Computational Time

tational time. From the figure, it seems that the computational time increases polynomially
as the number of variables increases. These results indicate the feasibility and efficiency of
the proposed interactive fuzzy programming for MLNLIPPs.

6 Conclusion In this paper, focusing on multi-level nonlinear integer programming prob-
lems, an interactive fuzzy programming procedure for them through genetic algorithms with
double strings using continuous relaxation based on reference solution updating (GAD-
SCRRSU) is presented. Furthermore, the feasibility of the proposed method is shown by
applying it to illustrative numerical examples and checking the total computational time
for various size problems.
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