ON LATTICES OF RADICALS OF INVOLUTION RINGS

G.L. BOOTH

Received July 29, 2005

ABSTRACT. We continue the study of lattice of radicals of involution rings which commenced in [3]. In particular, we consider atoms in the lattice of invariant hereditary radicals, and the lattice of special radicals. We also introduce a generalised ADS property and study the lattice of radicals whose semisimple classes have this property.

1. INTRODUCTION

Let R be an associative ring. The notation $A \triangleleft R$ means that A is an ideal of R. We recall that an *involution* on R is an anti-isomorphism * of R onto itself (the image of r being denoted r^*) such that $(r^*)^* = r$ for all $r \in R$. An *involution ring* is a pair (R, *) such that R is a ring and * is an involution on R. If R is any ring and R^{op} is the anti-isomorphic image of R, then $(R \oplus R^{op}, e)$ is an involution ring where $(r, s)^e := (s, r)$ for all $(r, s) \in R \oplus R^{op}$. The involution e is called the *exchange involution*. The varieties of rings and involution rings will be denoted <u>Rng</u> and <u>IR</u>, respectively. Recall that if (R, *), $(S, *) \in \underline{IR}$, then f is a homomorphism in \underline{IR} if $f : R \to S$ is a ring homomorphism, and $f(r^*) = (f(r))^*$ for all $r \in R$. The ideals of (R, *) are the kernels of the homomorphisms. The notation $(A, *) \triangleleft (R, *)$ will mean that (A, *) is an ideal of the involution ring (R, *).

All subclasses of <u>Rng</u> and <u>IR</u> considered are *abstract*, i.e. closed under isomorphism. A class C is called *hereditary* if any ideal of an element of C is again an element of C.

In this paper, "radical" will mean a radical in the sense of Kurosh and Amitsur. If \mathcal{R} is a radical either in <u>Rng</u> or in <u>IR</u>, its semisimple class will be denoted \mathcal{SR} . If \mathcal{C} is a subclass of either <u>Rng</u> or <u>IR</u>, the lower radical determined by \mathcal{C} is the smallest radical in that variety which contains \mathcal{C} , and will be denoted by \mathcal{LC} . If \mathcal{C} is a hereditary subclass of either <u>Rng</u> or <u>IR</u>, the upper radical determined by \mathcal{C} is the largest radical in that variety such that $\mathcal{C} \subseteq \mathcal{SR}$, and will be denoted by \mathcal{UC} . We remark that \mathcal{UC} consists of those elements of the variety in question which have no nonzero homomorphic image in \mathcal{C} .

The radical theory in <u>IR</u> differs in certain ways from that in <u>Rng</u>. Radicals in <u>Rng</u> have the ADS property, i.e. if $I \triangleleft R$, then $\mathcal{R}(I) \triangleleft R$ for any radical \mathcal{R} . This is not true in general for radicals in <u>IR</u>. Radicals in <u>IR</u> which have this property are called ADS-radicals. Snider [11] showed that the class $\mathbb{L}^{\underline{Rng}}$ has a natural complete lattice structure (although it is not a set) with respect to inclusion, and this is in fact true for radicals in any universal class. The lattice $\mathbb{L}^{\underline{IR}}$ of radicals in <u>IR</u> was studied in [3]. For further details concerning general radical theory, we refer to any of the standard texts, for example [7].

²⁰⁰⁰ Mathematics Subject Classification. 16W10, 16N90.

Key words and phrases. Involution ring, radical class, semisimple class, lattice of radicals, atom, special radical, g-radical.

2. Atoms in sublattices of $\mathbb{L}^{\underline{IR}}$

In [3] it was shown that the classes \mathbb{L}_{h}^{IR} and \mathbb{L}_{i}^{IR} of hereditary and invariant radicals are complete sublattices of \mathbb{L}^{IR} . Hence the class \mathbb{L}_{ih}^{IR} of hereditary invariant radicals is also a complete sublattice of \mathbb{L}^{IR} . We will characterise the atoms of \mathbb{L}_{ih}^{IR} .

Let C be a hereditary, homomorphically closed class of rings. It is well known that $\mathcal{LC} = \{R \in \underline{Rng} | \text{every nonzero homomorphic image of } R \text{ has a nonzero accessible subring which is in } \overline{C}\}$. A similar characterization may be given for involution rings, that is, if C is a hereditary, homomorphically closed subclass of \underline{IR} , then $\mathcal{LC} = \{(R, *) \in \underline{IR} | \text{every nonzero homomorphic image of } (R, *) \text{ has a nonzero accessible sub-involution ring which is in } C\}$.

Lemma 2.1. Let S be a simple ring. Then $\lambda \mathcal{L}\{S, S^{op}\} = \mathcal{L}\{(S, *) | * is an involution on S\} \vee \mathcal{L}\{(S \oplus S^{op}, e)\}.$

Proof. If * is an involution on S, then by the definition of the operator λ , $(S, *) \in \lambda \mathcal{L}\{S, S^{op}\}$. Hence $\mathcal{L}\{(S, *) \mid *$ is an involution on $S\} \leq \lambda \mathcal{L}\{S, S^{op}\}$. Also, $S \oplus S^{op} \in \mathcal{L}\{S, S^{op}\}$ and so $(S \oplus S^{op}, e) \in \lambda \mathcal{L}\{S, S^{op}\}$, whence $\mathcal{L}\{(S \oplus S^{op}, e)\} \leq \lambda \mathcal{L}\{S, S^{op}\}$ and so $\mathcal{L}\{(S, *) \mid *$ is an involution on $S\} \vee \mathcal{L}\{(S \oplus S^{op}, e)\} \leq \lambda \mathcal{L}\{S, S^{op}\}$.

To prove the reverse inclusion, note that $\mathcal{L}\{(S,*) \mid * \text{ is an involution on } S\} \vee \mathcal{L}\{(S \oplus S^{op}, e)\} = \mathcal{LC}$, where $\mathcal{C} := \{(S,*) \mid * \text{ is an involution on } S\} \cup \{(S \oplus S^{op}, e)\}$. Since \mathcal{C} consists of simple involution rings, it is homomorphically closed and hereditary. Suppose that $(R,*) \in \lambda \mathcal{L}\{S, S^{op}\}$. Then $R \in \mathcal{L}\{S, S^{op}\}$, whence every nonzero homomorphic image of R has a nonzero accessible subring which is isomorphic either to S or to S^{op} . In particular, if (T,*) is a nonzero homomorphic image of (R,*), then T contains a nonzero accessible subring K which is isomorphic either to S or to S^{op} . It is easily seen that $(K+K^*,*)$ is an accessible sub-involution ring of (T,*). If $K = K^*$, then $(K + K^*,*) = (K,*) \in \{(S,*) \mid *$ is an involution on $S\} \subseteq C$. If $K \neq K^*$ then $(K+K^*,*) \cong (S \oplus S^{op}, e) \in C$ (cf. [1, Theorem 3.12], noting that the proof of this result does not make use of the existence of a unity in S). Thus in either case, (T,*) has a nonzero accessible sub-involution ring which is in C, so $(R,*) \in \mathcal{LC}$, and the proof is complete.

Proposition 2.2. The lattice \mathbb{L}_{ih}^{IR} is atomic, and the atoms of \mathbb{L}_{ih}^{IR} are those radicals \mathcal{A} of the form $\mathcal{A} = \mathcal{L}\{(S, *) \mid * \text{ is an involution on } S\} \vee \mathcal{L}\{(S \oplus S^{op}, e)\}$, where S is a simple ring.

Proof. In [3, Propositions 2.4 and 3.11] it is shown that the lattice \mathbb{L}_{sh}^{Rng} of symmetric hereditary radicals of rings is atomic, and the mapping $\mathcal{R} \to \lambda \mathcal{R}$ is a lattice isomorphism of \mathbb{L}_{sh}^{Rng} onto \mathbb{L}_{ih}^{IR} . Moreover the atoms of \mathbb{L}_{sh}^{Rng} are the radicals $\mathcal{L}\{S, S^{op}\}$ where S is a simple ring. Hence the atoms of \mathbb{L}_{ih}^{IR} are the radicals $\lambda \mathcal{L}\{S, S^{op}\}$ where S is a simple ring. The result now follows from Lemma 2.1.

Proposition 2.3. Let S be a simple ring with unity. Then $\mathcal{A} = \mathcal{L}\{(S, *) | * \text{ is an involu$ $tion on } S\} \lor \mathcal{L}\{(S \oplus S^{op}, e)\} \text{ is an atom of } \mathbb{L}_i^{\underline{IR}}.$

Proof. Let \mathcal{R} be a symmetric radical in <u>Rng</u> such that $0 < \mathcal{R} \leq \mathcal{L}\{S, S^{op}\}$ and let $0 \neq R \in \mathcal{R}$. Then R has a nonzero accessible subring I such that either $I \cong S$ or $I \cong S^{op}$. Assume the former. Since S has a unity, $I \triangleleft R$ and is a direct summand of R. Hence S is a homomorphic image of R and so is in \mathcal{R} . Since \mathcal{R} is symmetric, $S^{op} \in \mathcal{R}$, and so $\{S, S^{op}\} \subseteq \mathcal{R}$. Similarly, $I \cong S^{op}$ implies $\{S, S^{op}\} \subseteq \mathcal{R}$. Hence $\mathcal{L}\{S, S^{op}\} = \mathcal{R}$, and so $\mathcal{L}\{S, S^{op}\}$ is an atom of $\mathbb{L}_{s}^{\underline{Rng}}$. The desired result follows from the fact that the mapping $\mathcal{R} \to \lambda \mathcal{R}$ defines an isomorphism of $\mathbb{L}_s^{\underline{Rng}}$ onto $\mathbb{L}_i^{\underline{IR}}$ [3, Propositions 2.4 and 3.11] and Lemma 2.1.

3. Special Radicals

It is well known [11] that the class $\mathbb{L}_{sp}^{\underline{Rng}}$ of special radicals in \underline{Rng} is a lattice which is not a sublattice of $\mathbb{L}_{\underline{Rng}}^{\underline{Rng}}$. Special radicals for involution rings were defined by Salavová [10]. Recall that an involution ring (R, *) is called *prime* if $(A, *), (B, *) \triangleleft (R, *), AB = 0$ implies A = 0 or B = 0. A class \mathcal{M} of involution rings is called a *special class* if (i) \mathcal{M} consists of prime involution rings, (ii) \mathcal{M} is hereditary and (iii) if $(A, *) \triangleleft (R, *), (R, *)$ prime and $(A, *) \in \mathcal{M}$ implies that $(R, *) \in \mathcal{M}$. If \mathcal{R} is a radical in \underline{IR} such that $\mathcal{R} = \mathcal{U}\mathcal{M}$ for some special class \mathcal{M} , then \mathcal{R} is called a *special radical*. It was shown in [3] that the class $\mathbb{L}_{sp}^{\underline{IR}}$ of all special radicals in \underline{IR} is a lattice, but not a sublattice of $\mathbb{L}_{sp}^{\underline{IR}}$

The prime (Baer) radical in <u>Rng</u> will be denoted β and the prime radical in <u>IR</u> will be denoted β_* . Nore that $\beta_* = \lambda \overline{\beta}$. If C is a class of rings or involution rings, the smallest special radical containing C will be denoted $\mathcal{L}_s C$. Whether $\mathcal{L}_s C$ is a radical of rings or involution rings will be clear from the context.

A ring R is called a *-ring ([8], [5]) if R is a prime ring and all non-isomorphic homomorphic images of R are β -radical rings. In view of the association of the symbol * with the involution operation, we will refer to such rings as s-rings in the sequel. Similarly an involution ring (R, *) which is prime, and whose non-isomorphic homomorphic images are β_* -radical rings will be called an s-involution ring. The smallest special radical containing a class C of rings or involution rings will be denoted \mathcal{LC} . H. France-Jackson (formerly H. Korulczuk) [8] has given a partial characterisation of atoms in \mathbb{L}_{sp}^{Rng} .

Proposition 3.1. Let R be an s-ring. Then $\mathcal{L}_s\{R\}$ is an atom of $\mathbb{L}_{sp}^{\underline{Rng}}$.

Let π denote the class of all prime rings, and if A is any prime ring let π_A be the smallest special class containing A. Then

Proposition 3.2. [5, Theorem 3] If R is an s-ring, then $\mathcal{L}_s\{R\} = \mathcal{U}(\pi \setminus \pi_R)$.

Let Π denote the class of all prime involution rings and if (A, *) is a prime involution ring, let $\Pi_{(A,*)}$ be the smallest special class containing (A, *). We can prove analogies for involution rings of the preceding two results using proofs vitrtually identical to those in [8] and [5], that is:

Proposition 3.3. Let R be an s-*-ring. Then $\mathcal{L}_s\{(R,*)\}$ is an atom of \mathbb{L}_{sp}^{IR} .

Proposition 3.4. If (R, *) is an s-involution ring, then $\mathcal{L}_s\{(R, *)\} = \mathcal{U}(\Pi \setminus \Pi_A)$.

Proposition 3.5. Let (R, *) be an s-involution ring. Then $\mathcal{L}_s\{(R, *)\} = \mathcal{L}_s\{(S, *)\}$ for some simple idempotent involution ring (S, *) if and only if (R, *) contains a minimal ideal.

Proof. Suppose that (R, *) contains a minimal ideal (K, *). Then (K, *) is a simple involution ring ring. For suppose that $0 \neq (J, *) \lhd (K, *)$. Then $J \lhd K \lhd R$, whence, by the Andrunakievich Lemma, $(\overline{J})^3 \subseteq J \subseteq K$, where \overline{J} denotes the ideal of R generated by J. Now $(\overline{J}, *)$ is an ideal of (R, *), so $(\overline{J}^3, *) = (\overline{J}, *)^3$ is an ideal of (R, *). Since (R, *) is a prime involution ring, $(\overline{J}, *)^3 \neq 0$. By the minimality of (K, *), this implies that $(\overline{J}, *)^3 = (K, *)$. But $(\overline{J}, *)^3 \subseteq (J, *) \subseteq (K, *)$, so (J, *) = (K, *). Hence (K, *) is a simple involution ring. It follows from the hereditariness of $\mathcal{L}_s\{(R, *)\}$ that $(K, *) \in \mathcal{L}_s\{(R, *)\}$, whence $\mathcal{L}_s\{(R, *)\} \subseteq \mathcal{L}_s\{(R, *)\}$. Since $\beta_* \subset \mathcal{L}_s\{(K, *)\}$ and $\mathcal{L}_s\{(R, *)\}$ is an atom of $\mathbb{L}_{sp}^{\underline{IR}}$, we have that $\mathcal{L}_s\{(R, *)\} = \mathcal{L}_s\{(K, *)\}$.

G.L. BOOTH

Conversely, suppose that $\mathcal{L}_s\{(R,*)\} = \mathcal{L}_s\{(S,*)\}$, where (S,*) is a simple involution ring. Then $\mathcal{L}_s\{(S,*)\} = \mathcal{U}(\Pi \setminus \Pi_{(S,*)})$. Since $(R,*) \in \mathcal{L}_s\{(S,*)\}$, (R,*) has no nonzero homomorphic image in $\Pi \setminus \Pi_{(S,*)}$. But (R,*) is prime, and hence $(R,*) \in \Pi_{(S,*)}$. It follows from that (R,*) has an accessible subring which is isomorphic to an accessible subring of (S,*). Since (S,*) is a simple idempotent involution ring, this implies that (R,*) has an ideal (K,*) which is isomorphic to (S,*). Again since (S,*) is simple, (K,*) is a minimal ideal of (R,*).

Proposition 3.6. Let R be an s-ring. Then $(R \oplus R^{op}, e)$ is an s-involution ring.

Proof. Clearly $(R \oplus R^{op}, e)$ is a prime involution ring. Let $f : (R \oplus R^{op}, e) \to (S, *)$ be a surjective homomorphism with nonzero kernel. Suppose that ker $f \cap R = 0$. Let $(x, y) \in \ker f$. If $r \in R$, then $(x, y)(r, 0)(x, y) = (xrx, 0) \in \ker f \cap R$. Hence xRx = 0. Since R is a prime ring, x = 0. Since ker $f \cap R = 0$ and f is an involution ring homomorphism, it is easily verified that ker $f \cap R^{op} = 0$. By similar reasoning to that employed above, we may deduce that y = 0. This contradicts our assumption that ker f is nonzero. Hence ker $f \cap R \neq 0$, from which it is easily deduced that ker $f \cap R^{op} \neq 0$. Since R is an s-ring, so is R^{op} , and so f(R) and $f(R^{op})$ are β -radical rings. Hence S is a β -radical ring and so (S, *) is a β_* -radical ring. Thus $(R \oplus R^{op}, e)$ is an s-involution ring.

Proposition 3.7. Let R be an s-ring which does not have minimal ideals. Then $(R \oplus R^{op}, e)$ is an s-involution ring which does not have minimal ideals.

Proof. It follows from Proposition 3.6 that $(R \oplus R^{op}, e)$ is an s-involution ring. Suppose that (I, e) is a minimal ideal of $(R \oplus R^{op}, e)$. Using arguments similar to those employed in the proof of Proposition 3.6 it may be shown that $I \cap R \neq 0$ and $I \cap R^{op} \neq 0$. Since R does not have minimal ideals, there exists an ideal J of R with $0 \subset J \subset I$. But then $(J \oplus J^{op}, e)$ is a nonzero ideal of $(R \oplus R^{op}, e)$ which is properly contained in $(I \oplus I^{op}, e)$, which contradicts our assumption that $(I \oplus I^{op}, e)$ is a minimal ideal of $(R \oplus R^{op}, e)$ has no minimal ideals.

France-Jackson [6] has given an example of an s-ring R which has no minimal ideals. Consequently, the radical $\mathcal{L}_s\{R\}$ is an atom of $\mathbb{L}_{sp}^{\underline{R}ng}$ which cannot be generated by a simple ring. It follows from Propositions 3.6 and 3.7 that $\mathcal{L}_s\{(R \oplus R^{op}, e)\}$ is an atom in $\mathbb{L}_{sp}^{\underline{IR}}$ which cannot be generated by a simple involution ring.

4. G-RADICALS

It may be shown that for a Plotkin radical \mathcal{R} in any universal class \mathcal{C} the ADS property is equivalent to the statement:

G1 $I \triangleleft J \triangleleft R \in \mathcal{C}, I \in \mathcal{R} \Longrightarrow \exists X \triangleleft R \text{ such that } I \subseteq X \subseteq J \text{ and } J \in \mathcal{R}.$

Clearly, this condition may be satisfied by a class which is not a radical class. In the case that C is hereditary, condition G1 is equivalent to:

G2 $I \triangleleft J \triangleleft R, I \in \mathcal{R} \Longrightarrow \langle I \rangle \in \mathcal{R}$, where $\langle I \rangle$ denotes the ideal of R which is generated by I.

In particular, because the semisimple classes of radicals in <u>Rng</u> are always hereditary, conditions G1 and G2 are equivalent in such classes. In [4] a complete characterisation was given for radical classes in <u>Rng</u> whose semisimple classes satisfy the equivalent conditions G1 and G2. It turns out [4] that these are those radical classes \mathcal{R} such that either \mathcal{R} or \mathcal{SR} consists entirely of idempotent rings. Such radicals are called *g*-radicals. As the ADS property does not hold in general in <u>IR</u>, semisimple classes are not necessarily hereditary in this variety. As this appears to cause some difficulty in the development of the theory of g-radicals, we will define as follows:

A radical \mathcal{A} in <u>*IR*</u> is called a *g*-radical if \mathcal{A} satisfies ADS and $(I, *) \triangleleft (J, *) \triangleleft (R, *), (I, *) \in \mathcal{SA} \Longrightarrow \langle (I, *) \rangle \in \mathcal{SA}$, where $\langle (I, *) \rangle$ denotes the ideal of (R, *) which is generated by (I, *).

It is not known whether the requirement that \mathcal{A} satisfies ADS is redundant in this definition.

Proposition 4.1. Let \mathcal{A} be a radical in <u>IR</u> such that $\mathcal{A} \leq \mathcal{I}_*$, where \mathcal{I}_* denotes the radical class of idempotent involution rings. Then \mathcal{A} is a g-radical.

The proof is similar to that of the corresponding result for rings [4, Proposition 2.1], and will therefore be omitted.

Proposition 4.2. Let \mathcal{A} be a radical in <u>IR</u> such that $\mathcal{SA} \subseteq \mathcal{I}_*$. Then \mathcal{A} is a g-radical.

Proof. Let $(I, *) \triangleleft (J, *) \triangleleft (R, *), (I, *) \in SA$. Then I is idempotent and $I \triangleleft J \triangleleft R$. Hence $I \triangleleft R$, so $\langle I \rangle = I \in SA$. Hence A is a g-radical.

Lemma 4.3. Let \mathcal{R} be a symmetric radical. The $R \in S\mathcal{R}$ if and only if $(R \oplus R^{op}, e) \in S(\lambda \mathcal{R})$.

Proof. Since \mathcal{R} is symmetric,

$$\begin{split} \lambda \mathcal{R}(R \oplus R^{op}, e) &= (\mathcal{R}(R \oplus R^{op}), e) \\ &= (\mathcal{R}(R) \oplus \mathcal{R}(R^{op}), e) \\ &= (\mathcal{R}(R) \oplus \mathcal{R}(R)^{op}, e) \text{ (again since } \mathcal{R} \text{ is symmetric).} \end{split}$$

The result now follows easily.

Proposition 4.4. Let \mathcal{R} be a symmetric in <u>Rng</u>. Then $\lambda \mathcal{R}$ is a g-radical in <u>IR</u> if and only if \mathcal{R} is a g-radical in Rng.

Proof. Suppose that \mathcal{R} is a symmetric g-radical in <u>Rng</u>. Suppose that $(I, *) \triangleleft (J, *) \triangleleft (R, *)$, and that $(I, *) \in S\lambda \mathcal{R}$. Then $I \triangleleft J \triangleleft R$. Since \mathcal{R} is symmetric, $\mathcal{R}(I) = \lambda \mathcal{R}(I, *) = 0$, i.e. $I \in S\mathcal{R}$. Then $\langle I \rangle \in S\mathcal{R}$, since \mathcal{R} is a g-radical. But $\langle (I, *) \rangle = (\langle I \rangle, *)$ and hence $\langle (I, *) \rangle \in S\mathcal{R}$. Hence $\lambda \mathcal{R}$ is a g-radical in *Rng*.

Conversely, suppose that \mathcal{R} is a symmetric radical in <u>Rng</u> which is not a g-radical. Then there exists a ring R with $I \triangleleft J \triangleleft R$, $I \in S\mathcal{R}$ and $\langle I \rangle \notin S\mathcal{R}$. Then $(I \oplus I^{op}, e) \triangleleft (J \oplus J^{op}, e) \triangleleft (R \oplus R^{op}, e)$ and $(I \oplus I^{op}, e) \in S(\lambda \mathcal{R})$ by Lemma 4.3. Moreover $\langle (I \oplus I^{op}, e) \rangle = (\langle I \rangle \oplus \langle I \rangle^{op}, e) \notin S(\lambda \mathcal{R})$ by Lemma 4.3. Hence $\lambda \mathcal{R}$ is not a g-radical in <u>IR</u>.

In [4, Theorems 3.7 and 3.9] it was shown that $\mathbb{L}_{g}^{\underline{Rng}}$ and $\mathbb{L}_{gh}^{\underline{Rng}}$ are sublattices of $\mathbb{L}_{gh}^{\underline{Rng}}$. As an immediate consequence of [3, Proposition 3.12] and Proposition 4.4 we have:

Proposition 4.5. The mapping $\mathcal{R} \to \lambda \mathcal{R}$ is a lattice isomorphism of the lattice $\mathbb{L}_{g}^{\underline{Rng}}(\mathbb{L}_{gh}^{\underline{Rng}})$ of (hereditary) g-radicals in \underline{Rng} onto the lattice $\mathbb{L}_{g}^{\underline{IR}}(\mathbb{L}_{gh}^{\underline{IR}})$ of (hereditary) invariant g-radicals in \underline{IR} .

Proposition 4.5 enables us to give a full characterization of invariant g-radicals in <u>IR</u>.

Proposition 4.6. Let \mathcal{A} be an invariant radical in <u>IR</u>. Then \mathcal{A} is a g-radical if and only if either $\mathcal{A} \leq \mathcal{I}_*$ or $\mathcal{SA} \subseteq \mathcal{I}_*$.

Proof. Let A be a symmetric g-radical. Then by Proposition 4.5 $\mathcal{A} = \lambda \mathcal{R}$ from some invariant g-radical \mathcal{R} in <u>Rng</u>. Then from [4], either $\mathcal{R} \leq \mathcal{I}$ or $\mathcal{SR} \subseteq \mathcal{I}$. In the former case if $(\mathcal{R}, *) \in \mathcal{A}$, then $\overline{\mathcal{R}} \in \mathcal{R}$, whence \mathcal{R} is idempotent. Hence $\mathcal{A} \leq \mathcal{I}_*$ in this case.

Suppose that $SR \subseteq I$, and let $(R, *) \in SA$. Then $A(R, *) = \lambda R(R, *) = R(R)$ (since R is symmetric) = 0. Hence R is idempotent, and so $(R, *) \in I_*$. Thus $SA \subseteq I_*$.

Conversely, suppose that $\mathcal{A} \leq \mathcal{I}_*$ or $\mathcal{SA} \subseteq \mathcal{I}_*$. If $\mathcal{A} \leq \mathcal{I}_*$, then \mathcal{A} is a g-radical by Proposition 4.1. If $\mathcal{SA} \subseteq \mathcal{I}_*$, it follows from Proposition 4.2 that \mathcal{A} is a g-radical.

In [4, Theorem 2.3] it is shown that a radical \mathcal{R} is a g-radical in <u>Rng</u> such that $\mathcal{SR} \subseteq \mathcal{I}$ if and only if \mathcal{SR} is contained in the subdirect closure of some set $\mathcal{K} := \{F_1, ..., F_n\}$ where each of the F_i is a finite field. It follows that the elements of \mathcal{SR} are all commutative rings, and hence that \mathcal{R} is symmetric in this case. Note that the class \mathcal{K} is special, and since $\mathcal{SR} \subseteq \overline{\mathcal{K}} := \mathcal{SUK}$, we have that $\mathcal{UK} \leq \mathcal{R}$. Hence $\lambda(\mathcal{UK}) \leq \lambda \mathcal{R}$. Since \mathcal{UK} is the upper radical determined by the special class \mathcal{K} it follows from [2, Proposition 3.2] that $\lambda \mathcal{UK} = \mathcal{UK}^*$, where $\mathcal{K}^* := \{(R, *) \in \underline{IR} \mid \exists I \lhd R$ such that $I \cap I^* = 0$ and $R/I \in \mathcal{K}\}$. Clearly $\mathcal{K}^* = \bigcup_{i=1}^n \mathcal{K}_i$, where $\mathcal{K}_i := \{(R, *) \in \underline{IR} \mid \exists I \lhd R$ such that $I \cap I^* = 0$ and $R/I \cong F_i\}$. Since F_i is a field, and hence a simple ring with unity, it may easily be verified that $\mathcal{K}_i := \{(F_i, *) \mid *$ is an involution on $F_i\} \cup \{(F_i \oplus F_i, e)\}$. We can now prove:

Proposition 4.7. Let \mathcal{A} be an invariant radical in <u>IR</u>. Then \mathcal{A} is a g-radical such that $\mathcal{SA} \subseteq \mathcal{I}_*$ if and only if \mathcal{SA} is contained in the subdirect closure of a class $\mathcal{K} := \bigcup_{i=1}^n \{(S_i, *) \mid either S_i \text{ is a finite field or } (S_i, *) \cong (F_i \oplus F_i, e) \text{ for some finite field } F_i\}.$

Proof. Suppose that \mathcal{A} is an invariant g-radical in <u>*IR*</u> such that $\mathcal{SA} \subseteq \mathcal{I}_*$. Then $\mathcal{A} = \lambda \mathcal{R}$ for some g-radical \mathcal{R} in <u>*Rng*</u> by Proposition 4.5. Clearly, $\mathcal{SR} \subseteq \mathcal{I}$. It follows from the preceding discussion that \mathcal{SA} is contained in a class of the form in the statement of this proposition.

Conversely, suppose that \mathcal{A} is an invariant radical in \underline{IR} such that \mathcal{SA} is contained in the subdirect closure of some class \mathcal{K} of the form $\mathcal{K} := \bigcup_{i=1}^{n} \{(S_i, *) \mid \text{either } S_i \text{ is a finite field} and <math>(F, *) \in \mathcal{K}\}$ and let $\mathcal{K}_2 := \{F \mid F \text{ is a finite field and } (F \oplus F, e) \in \mathcal{K}\}$. Suppose that $(R, *) \in \mathcal{SA}$. Then there exist elements $(S_i, *)$ of \mathcal{K} and surjective homomorphisms θ_i of (R, *) onto $(S_i, *), i \in I$, such that $\bigcap_{i \in I} \ker \theta_i = 0$. For each $i \in I$, either $S_i \in \mathcal{K}_1$ or $S_i = F_i \oplus F_i$, where $F_i \in \mathcal{K}_2$. In the first instance, θ_i is a ring homomorphism of R onto S_i . In the second instance, it is easily verified that $\varphi_{i1} := \pi_1 \circ \theta_i$ and $\varphi_{i2} := \pi_2 \circ \theta_i$ are ring homomorphisms of R onto F_i , where π_k denotes projection of $S_i = F_i \oplus F_i$ onto the k-th component. Moreover, $\ker \theta_i = \ker \varphi_{i1} \cap \ker \varphi_{i2}$. Furthermore, $0 = \bigcap_{i \in I} \ker \theta_i = \bigcap_{S_i \in \mathcal{K}_1} \ker \theta_i \cap \bigcap_{S_i \in \mathcal{K}_2} \ker \theta_i = \bigcap_{S_i \in \mathcal{K}_1} \ker \theta_i \cap \bigcap_{S_i \in \mathcal{K}_2} \ker \theta_i = \bigcap_{S_i \in \mathcal{K}_1} \ker \theta_i \cap \bigcap_{S_i \in \mathcal{K}_2} \ker \theta_i = \Im_{S_i \in \mathcal{K}_2}$. But the subdirect closure of $\mathcal{K}_1 \cup \mathcal{K}_2$ is the semisimple class of a g-radical \mathcal{R} in \underline{Rng} , and consists of idempotent rings [4, Theorem 2.3]. It follows that R is idempotent, and hence $\mathcal{SA} \subseteq I_*$. It follows from Proposition 4.1 that

 \mathcal{A} is a g-radical. In [4, Theorem 3.9] it is shown that the lattice $\mathbb{L}_{gh}^{\underline{Rng}}$ of hereditary g-radicals in \underline{Rng} is atomic and that its atoms are precisely the radicals $\mathcal{L}\{S\}$, where S is a simple idempotent ring. It is easily seen that the lattice $\mathbb{L}_{sgh}^{\underline{Rng}}$ is also atomic and that its atoms are the radicals

ring. It is easily seen that the lattice \mathbb{L}_{sgh}^{Rng} is also atomic and that its atoms are the radicals $\mathcal{L}\{S, S^{op}\}$, where S is a simple ring. It follows from Proposition 4.5 that the lattice \mathbb{L}_{ihg}^{IR} of invariant hereditary g-radicals in <u>IR</u> is atomic, and that its atoms are precisely the radicals $\lambda \mathcal{L}\{S, S^{op}\}$, where S is a simple idempotent ring. Hence from Lemma 2.1 we have:

Proposition 4.8. The lattice \mathbb{L}_{ihg}^{IR} is atomic, and its atoms are the radicals $\mathcal{L}\{(S,*) | * is$ an involution on $S\} \vee \mathcal{L}\{(S \oplus S^{op}, e)\}$, where S is a simple idempotent ring.

The question arises: are all g-radicals in IR invariant? The following two examples give a negative answer.

Example 4.9. Let \mathbb{C} be the field of complex numbers, and let $\mathcal{A} := \mathcal{L}\{(\mathbb{C}, id)\}$. It follows from Proposition 4.1 that A is a q-radical. Let c be the involution defined by $z^c := \overline{z}$ for all $z \in \mathbb{C}$. Then clearly $(\mathbb{C}, id) \in A$. Since (\mathbb{C}, c) is a simple involution ring, $(\mathbb{C}, id) \in A$ would imply $(\mathbb{C}, c) \cong (\mathbb{C}, id)$ which is false. Hence $(\mathbb{C}, c) \notin \mathcal{A}$, so \mathcal{A} is not invariant.

Lemma 4.10. Let (R, *) be a subdirect product of the involution rings $(R_i, id), i \in I$, where R_i is commutative for all *i*. Then (R, *) = (R, id).

Proof. Let $\theta_i : (R, *) \to (R_i, id)$ be involution ring homomorphisms such that $\bigcap \ker \theta_i = 0$. If $r \in R$, then $\theta_i(r^*) = (\theta_i(r))^{id} = \theta_i(r)$ for all $i \in I$. It follows that $r^* = r = r^{id}$ and so (R, *) = (R, id).

Example 4.11. Let \mathbb{Z}_p be a prime field and let $\mathcal{R} := \mathcal{U}\{\mathbb{Z}_p\}$. Then \mathcal{R} is a g-radical in Rng by [4, Proposition 2.3.]. Let $\mathcal{A} := \mathcal{U}\{(\mathbb{Z}_p, id)\}$. Suppose that $(I, *) \lhd (J, *) \lhd (R, *)$, and that $(I,*) \in SA$. Then (I,*) is a subdirect product of copies of (\mathbb{Z}_p, id) . Hence I is a subdirect products of copies of \mathbb{Z}_p , so $I \in S\mathcal{R}$. Moreover, $I \triangleleft J \triangleleft R$, and since \mathcal{R} is a g-radical, $\langle I \rangle \in S\mathcal{R}$. It follows that $\langle I \rangle$ is a subdirect product of copies of \mathbb{Z}_p . Now $\langle (I,*) \rangle = (\langle I \rangle, *), \text{ whence by Lemma 4.10, } \langle (I,*) \rangle = (\langle I \rangle, *) = (\langle I \rangle, id).$ It follows that $\langle (I,*) \rangle$ is a subdirect product of copies of (\mathbb{Z}_p, id) and so $\langle (I,*) \rangle \in SA$. Hence A is a g-radical.

It is clear that $(\mathbb{Z}_p \oplus \mathbb{Z}_p, id) \in SA$ so $(\mathbb{Z}_p \oplus \mathbb{Z}_p, id) \notin A$. But $(\mathbb{Z}_p \oplus \mathbb{Z}_p, e)$ is a simple involution ring which is not a subdirect product of copies of (\mathbb{Z}_n, id) , and so is in \mathcal{A} . Hence \mathcal{A} is not an invariant radical.

Proposition 4.12. The class $\mathbb{L}_{q}^{\underline{IR}}$ of all *q*-radicals in \underline{IR} is a complete lattice.

Proof. Let $\{A_i \mid i \in I\}$ be a class of g-radicals in <u>IR</u>. Let $(I, *) \triangleleft (J, *) \triangleleft (R, *)$ such that $(I,*) \in \mathcal{S}\left(\bigvee_{i \in I} \mathcal{A}_i\right)$. Since the \mathcal{A}_i satisfy ADS, the semisimple classes $\mathcal{S}\mathcal{A}_i$ are hereditary, and so $\mathcal{S}\left(\bigvee_{i \in I} \mathcal{A}_i\right) = \bigcap_{i \in I} \mathcal{S}\mathcal{A}_i$. Hence $(I,*) \in \mathcal{S}\mathcal{A}_i$ for each $i \in I$. Since each \mathcal{A}_i is a

g-radical, $\langle (I,*)\rangle \in \mathcal{SA}_i$ for each $i \in I$, so $\langle (I,*)\rangle \in \bigcap_{i \in I} \mathcal{SA}_i = \mathcal{S}\left(\bigvee_{i \in I} \mathcal{A}_i\right)$. Hence $\bigvee_{i \in I} \mathcal{A}_i$ is a g-radical. It follows from a well-known lattice-theoretic result that \mathbb{L}_{g}^{IR} is a lattice with the join defined as in $\mathbb{L}_{g}^{\underline{IR}}$ and the meet \bigwedge_{s} defined by $\bigwedge_{s} \mathcal{A}_{i} := \bigvee \{\mathcal{B}_{i} \in \mathbb{L}_{g}^{\underline{IR}} \mid \mathcal{B}_{i} \leq \mathcal{A}_{i} \text{ for} \}$

References

- [1] G.L. Booth and N.J. Groenewald: Special radicals of rings with involution, Publ. Math. Debrecen 48 (1996), Nos. 3-4, 241-251.
- [2] G.L. Booth and N.J. Groenewald: Radicals of involution rings, Algebra Collog. 5 (1998), No. 3, 277-284.
- [3] G.L. Booth and N.J. Groenewald: Lattices of radicals of involution rings, Algebra Colloq. 7 (2000), No. 1. 17-26.
- [4] G.F. Birkenmeier, G.L. Booth and N.J. Groenewald: On radicals whose semisimple classes satisfy a generalised ADS condition, Acta Math. Hungar. 102 (2003), No.3, 239-248.
- H. France-Jackson: *-rings and their radicals, Quaestiones Math. 8 (1985), 231-239.

all $i \in I$.

[6] H. France-Jackson: On a nonsimple idempotent *-ring with zero centre, Acta Math. Hungar. 100 (2003), No. 4, 325-327.

- [7] B.J. Gardner and R. Wiegandt: *Radical theory of rings*, Pure and Applied Mathematics, Dekker, New York, 2004.
- [8] H. Korulczuk: A note on the lattice of special radicals, Bull. Acad. Polon. Sci. Math. 29 (1981), Nos. 3-4, 103-104.
- [9] N.V. Loi and R. Wiegandt: Involution algebras and the Anderson-Divinsky-Sulinski property, Acta Sci. Math. 50 (1986), 5-14.
- [10] K. Salavová: Radicals of rings with an involution, Comment Math. Univ. Carol. 16 (1977), 367-381.
- [11] R.L. Snider: Lattices of radicals, Pacific J. Math. 40 (1972), 207-219.

Nelson Mandela Metropolitan University, Port Elizabeth 6031, South Africa