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ON LATTICES OF RADICALS OF INVOLUTION RINGS

G.L. BOOTH
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Abstract. We continue the study of lattice of radicals of involution rings which com-
menced in [3]. In particular, we consider atoms in the lattice of invariant hereditary
radicals, and the lattice of special radicals. We also introduce a generalised ADS prop-
erty and study the lattice of radicals whose semisimple classes have this property.

1. Introduction

Let R be an associative ring. The notation A � R means that A is an ideal of R. We
recall that an involution on R is an anti-isomorphism ∗ of R onto itself (the image of r
being denoted r∗) such that (r∗)∗ = r for all r ∈ R. An involution ring is a pair (R, ∗)
such that R is a ring and ∗ is an involution on R. If R is any ring and Rop is the anti-
isomorphic image of R, then (R ⊕ Rop, e) is an involution ring where (r, s)e := (s, r) for
all (r, s) ∈ R ⊕ Rop. The involution e is called the exchange involution. The varieties of
rings and involution rings will be denoted Rng and IR, respectively. Recall that if (R, ∗),
(S, ∗) ∈IR, then f is a homomorphism in IR if f : R → S is a ring homomorphism, and
f(r∗) = (f(r))∗ for all r ∈ R. The ideals of (R, ∗) are the kernels of the homomorphisms.
The notation (A, ∗) � (R, ∗) will mean that (A, ∗) is an ideal of the involution ring (R, ∗).

All subclasses of Rng and IR considered are abstract, i.e. closed under isomorphism. A
class C is called hereditary if any ideal of an element of C is again an element of C.

In this paper, “radical” will mean a radical in the sense of Kurosh and Amitsur. If R is
a radical either in Rng or in IR, its semisimple class will be denoted SR. If C is a subclass
of either Rng or IR, the lower radical determined by C is the smallest radical in that variety
which contains C, and will be denoted by LC. If C is a hereditary subclass of either Rng
or IR, the upper radical determined by C is the largest radical in that variety such that
C ⊆ SR, and will be denoted by UC. We remark that UC consists of those elements of the
variety in question which have no nonzero homomorphic image in C.

The radical theory in IR differs in certain ways from that in Rng. Radicals in Rng have
the ADS property, i.e. if I �R, then R(I)�R for any radical R. This is not true in general
for radicals in IR. Radicals in IR which have this property are called ADS-radicals. Snider
[11] showed that the class L

Rng has a natural complete lattice structure (although it is not
a set) with respect to inclusion, and this is in fact true for radicals in any universal class.
The lattice LIR of radicals in IR was studied in [3]. For further details concerning general
radical theory, we refer to any of the standard texts, for example [7].
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2. Atoms in sublattices of LIR

In [3] it was shown that the classes L
IR
h and L

IR
i of hereditary and invariant radicals are

complete sublattices of LIR. Hence the class L
IR
ih of hereditary invariant radicals is also a

complete sublattice of LIR. We will characterise the atoms of L
IR
ih .

Let C be a hereditary, homomorphically closed class of rings. It is well known that
LC = {R ∈ Rng |every nonzero homomorphic image of R has a nonzero accessible subring
which is in C}. A similar characterization may be given for involution rings, that is, if
C is a hereditary, homomorphically closed subclass of IR, then LC = {(R, ∗) ∈ IR |every
nonzero homomorphic image of (R, ∗) has a nonzero accessible sub-involution ring which is
in C}.
Lemma 2.1. Let S be a simple ring. Then λL{S, Sop} = L{(S, ∗) | ∗ is an involution on
S} ∨ L{(S ⊕ Sop, e)}.
Proof. If ∗ is an involution on S, then by the definition of the operator λ, (S, ∗) ∈ λL{S, Sop}.
Hence L{(S, ∗) | ∗ is an involution on S} ≤ λL{S, Sop}. Also, S ⊕ Sop ∈ L{S, Sop} and so
(S ⊕ Sop, e) ∈ λL{S, Sop}, whence L{(S ⊕ Sop, e)} ≤ λL{S, Sop} and so L{(S, ∗) | ∗ is an
involution on S} ∨ L{(S ⊕ Sop, e)} ≤ λL{S, Sop}.

To prove the reverse inclusion, note that L{(S, ∗) | ∗ is an involution on S} ∨ L{(S ⊕
Sop, e)} = LC, where C := {(S, ∗) | ∗ is an involution on S} ∪ {(S ⊕ Sop, e)}. Since C
consists of simple involution rings, it is homomorphically closed and hereditary. Suppose
that (R, ∗) ∈ λL{S, Sop}. Then R ∈ L{S, Sop}, whence every nonzero homomorphic image
of R has a nonzero accessible subring which is isomorphic either to S or to Sop. In particular,
if (T, ∗) is a nonzero homomorphic image of (R, ∗), then T contains a nonzero accessible
subring K which is isomorphic either to S or to Sop. It is easily seen that (K +K∗, ∗) is an
accessible sub-involution ring of (T, ∗). If K = K∗, then (K + K∗, ∗) = (K, ∗) ∈ {(S, ∗) | ∗
is an involution on S} ⊆ C. If K 	= K∗ then (K +K∗, ∗) ∼= (S⊕Sop, e) ∈ C (cf. [1, Theorem
3.12], noting that the proof of this result does not make use of the existence of a unity in
S). Thus in either case, (T, ∗) has a nonzero accesssible sub-involution ring which is in C,
so (R, ∗) ∈ LC, and the proof is complete.

Proposition 2.2. The lattice L
IR
ih is atomic, and the atoms of L

IR
ih are those radicals A

of the form A = L{(S, ∗) | ∗ is an involution on S} ∨ L{(S ⊕ Sop, e)}, where S is a simple
ring.

Proof. In [3, Propositions 2.4 and 3.11] it is shown that the lattice L
Rng

sh of symmetric
hereditary radicals of rings is atomic, and the mapping R → λR is a lattice isomorphism
of L

Rng

sh onto L
IR
ih . Moreover the atoms of L

Rng

sh are the radicals L{S, Sop} where S is a
simple ring. Hence the atoms of L

IR
ih are the radicals λL{S, Sop} where S is a simple ring.

The result now follows from Lemma 2.1.

Proposition 2.3. Let S be a simple ring with unity. Then A = L{(S, ∗) | ∗ is an involu-
tion on S} ∨ L{(S ⊕ Sop, e)} is an atom of L

IR
i .

Proof. Let R be a symmetric radical in Rng such that 0 < R ≤ L{S, Sop} and let 0 	=
R ∈ R. Then R has a a nonzero accessible subring I such that either I ∼= S or I ∼= Sop.
Assume the former. Since S has a unity, I � R and is a direct summand of R. Hence
S is a homomorphic image of R and so is in R. Since R is symmetric, Sop ∈ R, and so
{S, Sop} ⊆ R. Similarly, I ∼= Sop implies {S, Sop} ⊆ R. Hence L{S, Sop} = R, and so
L{S, Sop} is an atom of L

Rng
s . The desired result follows from the fact that the mapping
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R → λR defines an isomorphism of L
Rng
s onto L

IR
i [3, Propositions 2.4 and 3.11] and

Lemma 2.1.

3. Special Radicals

It is well known [11] that the class L
Rng
sp of special radicals in Rng is a lattice which is

not a sublattice of L
Rng. Special radicals for involution rings were defined by Salavová [10].

Recall that an involution ring (R, ∗) is called prime if (A, ∗), (B, ∗)� (R, ∗), AB = 0 implies
A = 0 or B = 0. A class M of involution rings is called a special class if (i) M consists
of prime involution rings, (ii) M is hereditary and (iii) if (A, ∗) � (R, ∗), (R, ∗) prime and
(A, ∗) ∈ M implies that (R, ∗) ∈ M. If R is a radical in IR such that R = UM for some
special class M, then R is called a special radical. It was shown in [3] that the class L

IR
sp

of all special radicals in IR is a lattice, but not a sublattice of LIR

The prime (Baer) radical in Rng will be denoted β and the prime radical in IR will be
denoted β∗. Nore that β∗ = λβ. If C is a class of rings or involution rings, the smallest
special radical containing C will be denoted LsC. Whether LsC is a radical of rings or
involution rings will be clear from the context.

A ring R is called a ∗-ring ([8], [5]) if R is a prime ring and all non-isomorphic homo-
morphic images of R are β-radical rings. In view of the association of the symbol ∗ with
the involution operation, we will refer to such rings as s-rings in the sequel. Similarly an
involution ring (R, ∗) which is prime, and whose non-isomorphic homomorphic images are
β∗-radical rings will be called an s-involution ring. The smallest special radical containing
a class C of rings or involution rings will be denoted LC. H. France-Jackson (formerly H.
Korulczuk) [8] has given a partial characterisation of atoms in L

Rng
sp .

Proposition 3.1. Let R be an s-ring. Then Ls{R} is an atom of L
Rng
sp .

Let π denote the class of all prime rings, and if A is any prime ring let πA be the smallest
special class containing A. Then

Proposition 3.2. [5, Theorem 3] If R is an s-ring, then Ls{R} = U(π\πR).

Let Π denote the class of all prime involution rings and if (A, ∗) is a prime involution
ring, let Π(A,∗) be the smallest special class containing (A, ∗). We can prove analogies for
involution rings of the preceding two results using proofs vitrtually identical to those in [8]
and [5], that is:

Proposition 3.3. Let R be an s-∗-ring. Then Ls{(R, ∗)} is an atom of L
IR
sp .

Proposition 3.4. If (R, ∗) is an s-involution ring, then Ls{(R, ∗)} = U(Π\ΠA).

Proposition 3.5. Let (R, ∗) be an s-involution ring. Then Ls{(R, ∗)} =Ls{(S, ∗)} for
some simple idempotent involution ring (S, ∗) if and only if (R, ∗) contains a minimal ideal.

Proof. Suppose that (R, ∗) contains a minimal ideal (K, ∗). Then (K, ∗) is a simple in-
volution ring ring. For suppose that 0 	= (J, ∗) � (K, ∗). Then J � K � R, whence, by
the Andrunakievich Lemma, (J)3 ⊆ J ⊆ K, where J denotes the ideal of R generated by
J . Now (J, ∗) is an ideal of (R, ∗), so (J

3
, ∗) = (J, ∗)3 is an ideal of (R, ∗). Since (R, ∗)

is a prime involution ring, (J, ∗)3 	= 0. By the minimality of (K, ∗), this implies that
(J, ∗)3 = (K, ∗). But (J, ∗)3 ⊆ (J, ∗) ⊆ (K, ∗), so (J, ∗) = (K, ∗). Hence (K, ∗) is a simple
involution ring. It follows from the hereditariness of Ls{(R, ∗)} that (K, ∗) ∈ Ls{(R, ∗)},
whence Ls{(K, ∗)} ⊆ Ls{(R, ∗)}. Since β∗ ⊂ Ls{(K, ∗)} and Ls{(R, ∗)} is an atom of L

IR
sp ,

we have that Ls{(R, ∗)} = Ls{(K, ∗)}.
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Conversely, suppose that Ls{(R, ∗)} =Ls{(S, ∗)}, where (S, ∗) is a simple involution
ring. Then Ls{(S, ∗)} = U(Π\Π(S,∗)). Since (R, ∗) ∈ Ls{(S, ∗)}, (R, ∗) has no nonzero
homomorphic image in Π\Π(S,∗). But (R, ∗) is prime, and hence (R, ∗) ∈ Π(S,∗). It follows
from that (R, ∗) has an accessible subring which is isomorphic to an accessible subring of
(S, ∗). Since (S, ∗) is a simple idempotent involution ring, this implies that (R, ∗) has an
ideal (K, ∗) which is isomorphic to (S, ∗). Again since (S, ∗) is simple, (K, ∗) is a minimal
ideal of (R, ∗).
Proposition 3.6. Let R be an s-ring. Then (R ⊕ Rop, e) is an s-involution ring.

Proof. Clearly (R ⊕ Rop, e) is a prime involution ring. Let f : (R ⊕ Rop, e) → (S, ∗)
be a surjective homomorphism with nonzero kernel. Suppose that ker f ∩ R = 0. Let
(x, y) ∈ ker f . If r ∈ R, then (x, y)(r, 0)(x, y) = (xrx,0) ∈ ker f∩R. Hence xRx = 0. Since
R is a prime ring, x = 0. Since ker f ∩ R = 0 and f is an involution ring homomorphism,
it is easily verified that ker f ∩ Rop = 0. By similar reasoning to that employed above, we
may deduce that y = 0. This contradicts our assumption that ker f is nonzero. Hence
ker f ∩ R 	= 0, from which it is easily deduced that ker f ∩ Rop 	= 0. Since R is an s-ring,
so is Rop, and so f(R) and f(Rop) are β-radical rings. Hence S is a β-radical ring and so
(S, ∗) is a β∗-radical ring. Thus (R ⊕ Rop, e) is an s-involution ring.

Proposition 3.7. Let R be an s-ring which does not have minimal ideals. Then (R ⊕
Rop, e) is an s-involution ring which does not have minimal ideals.

Proof. It follows from Proposition 3.6 that (R ⊕ Rop, e) is an s-involution ring. Suppose
that (I, e) is a minimal ideal of (R ⊕ Rop, e). Using arguments similar to those employed
in the proof of Proposition 3.6 it may be shown that I ∩ R 	= 0 and I ∩ Rop 	= 0. Since
R does not have minimal ideals, there exists an ideal J of R with 0 ⊂ J ⊂ I. But then
(J ⊕ Jop, e) is a nonzero ideal of (R ⊕ Rop, e) which is properly contained in (I ⊕ Iop, e),
which contradicts our assumption that (I⊕Iop, e) is a minimal ideal of (R⊕Rop, e). Hence
(R ⊕ Rop, e) has no minimal ideals.

France-Jackson [6] has given an example of an s-ring R which has no minimal ideals.
Consequently, the radical Ls{R} is an atom of L

Rng
sp which cannot be generated by a simple

ring. It follows from Propositions 3.6 and 3.7 that Ls{(R ⊕ Rop, e)} is an atom in L
IR
sp

which cannot be generated by a simple involution ring.

4. g-Radicals

It may be shown that for a Plotkin radical R in any universal class C the ADS property
is equivalent to the statement:

G1 I � J � R ∈ C, I ∈ R =⇒ ∃X � R such that I ⊆ X ⊆ J and J ∈ R.
Clearly, this condition may be satisfied by a class which is not a radical class. In the

case that C is hereditary, condition G1 is equivalent to:
G2 I � J � R, I ∈ R =⇒ 〈I〉 ∈ R, where.〈I〉 denotes the ideal of R which is generated by

I.
In particular, because the semisimple classes of radicals in Rng are always hereditary,

conditions G1 and G2 are equivalent in such classes. In [4] a complete characterisation was
given for radical classes in Rng whose semisimple classes satisfy the equivalent conditions
G1 and G2. It turns out [4] that these are those radical classes R such that either R or
SR consists entirely of idempotent rings. Such radicals are called g-radicals. As the ADS
property does not hold in general in IR, semisimple classes are not necessarily hereditary
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in this variety. As this appears to cause some difficulty in the development of the theory
of g-radicals, we will define as follows:

A radical A in IR is called a g-radical if A satisfies ADS and (I, ∗)�(J, ∗)�(R, ∗), (I, ∗) ∈
SA =⇒ 〈(I, ∗)〉 ∈ SA, where.〈(I, ∗)〉 denotes the ideal of (R, ∗) which is generated by (I, ∗).

It is not known whether the requirement that A satisfies ADS is redundant in this
definition.

Proposition 4.1. Let A be a radical in IR such that A ≤ I∗, where I∗ denotes the radical
class of idempotent involution rings. Then A is a g-radical.

The proof is similar to that of the corresponding result for rings [4, Proposition 2.1], and
will therefore be omitted.

Proposition 4.2. Let A be a radical in IR such that SA ⊆ I∗. Then A is a g-radical.

Proof. Let (I, ∗)� (J, ∗}� (R, ∗), (I, ∗) ∈ SA. Then I is idempotent and I �J �R. Hence
I � R, so 〈I〉 = I ∈ SA. Hence A is a g-radical.

Lemma 4.3. Let R be a symmetric radical. The R ∈ SR if and only if (R ⊕ Rop, e) ∈
S(λR).

Proof. Since R is symmetric,

λR(R ⊕ Rop, e) = (R(R ⊕ Rop), e)
= (R(R) ⊕R(Rop), e)
= (R(R) ⊕R(R)op, e) (again since R is symmetric).

The result now follows easily.

Proposition 4.4. Let R be a symmetric in Rng. Then λR is a g-radical in IR if and
only if R is a g-radical in Rng.

Proof. Suppose that R is a symmetric g-radical in Rng. Suppose that (I, ∗)�(J, ∗)�(R, ∗),
and that (I, ∗) ∈ SλR. Then I � J � R. Since R is symmetric, R(I) = λR(I, ∗) = 0,
i.e. I ∈ SR. Then 〈I〉 ∈ SR, since R is a g-radical. But 〈(I, ∗)〉 = (〈I〉 , ∗) and hence
〈(I, ∗)〉 ∈ SR. Hence λR is a g-radical in Rng.

Conversely, suppose that R is a symmetric radical in Rng which is not a g-radical. Then
there exists a ring R with I � J � R, I ∈ SR and 〈I〉 /∈ SR. Then (I ⊕ Iop, e) � (J ⊕
Jop, e) � (R ⊕ Rop, e) and (I ⊕ Iop, e) ∈ S(λR) by Lemma 4.3. Morover 〈(I ⊕ Iop, e)〉 =
(〈I〉 ⊕ 〈I〉op

, e) /∈ S(λR) by Lemma 4.3. Hence λR is not a g-radical in IR.

In [4, Theorems 3.7 and 3.9] it was shown that L
Rng
g and L

Rng

gh are sublattices of L
Rng.

As an immediate consequence of [3, Proposition 3.12] and Proposition 4.4 we have:

Proposition 4.5. The mapping R → λR is a lattice isomorphism of the lattice L
Rng
g

(L
Rng

gh ) of (hereditary) g-radicals in Rng onto the lattice L
IR
g (LIR

gh ) of (hereditary) invariant
g-radicals in IR.

Proposition 4.5 enables us to give a full characterization of invariant g-radicals in IR.

Proposition 4.6. Let A be an invariant radical in IR. Then A is a g-radical if and only
if either A ≤ I∗ or SA ⊆ I∗.
Proof. Let A be a symmetric g-radical. Then by Proposition 4.5 A = λR fror some
invariant g-radical R in Rng. Then from [4], either R ≤ I or SR ⊆ I. In the former
case if (R, ∗) ∈ A, then R ∈ R, whence R is idempotent. Hence A ≤ I∗ in this case.
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Suppose that SR ⊆ I, and let (R, ∗) ∈ SA. Then A(R, ∗) = λR(R, ∗) = R(R) (since R is
symmetric) = 0. Hence R is idempotent, and so (R, ∗) ∈ I∗. Thus SA ⊆ I∗.

Conversely, suppose that A ≤ I∗ or SA ⊆ I∗. If A ≤ I∗, then A is a g-radical by
Proposition 4.1. If SA ⊆ I∗, it follows from Proposition 4.2 that A is a g-radical.

In [4, Theorem 2.3] it is shown that a radical R is a g-radical in Rng such that SR ⊆ I
if and only if SR is contained in the subdirect closure of some set K := {F1, ..., Fn} where
each of the Fi is a finite field. It follows that the elements of SR are all commutative
rings, and hence that R is symmetric in this case. Note that the class K is special, and
since SR ⊆ K := SUK, we have that UK ≤ R. Hence λ(UK) ≤ λR. Since UK is the
upper radical determined by the special class K it follows from [2, Proposition 3.2] that
λUK = UK∗, where K∗ := {(R, ∗) ∈ IR | ∃I � R such that I ∩ I∗ = 0 and R/I ∈ K}.
Clearly K∗ =

n⋃
i=1

Ki, where Ki := {(R, ∗) ∈ IR | ∃I � R such that I ∩ I∗ = 0 and

R/I ∼= Fi}. Since Fi is a field, and hence a simple ring with unity, it may easily be verified
that Ki := {(Fi, ∗) | ∗ is an involution on Fi} ∪ {(Fi ⊕ Fi, e)}. We can now prove:

Proposition 4.7. Let A be an invariant radical in IR. Then A is a g-radical such that

SA ⊆ I∗ if and only if SA is contained in the subdirect closure of a class K :=
n⋃

i=1

{(Si, ∗) |
either Si is a finite field or (Si, ∗) ∼= (Fi ⊕ Fi, e) for some finite field Fi}.
Proof. Suppose that A is an invariant g-radical in IR such that SA ⊆ I∗. Then A = λR
for some g-radical R in Rng by Proposition 4.5. Clearly, SR ⊆ I. It follows from the
preceding discussion that SA is contained in a class of the form in the statement of this
proposition.

Conversely, suppose that A is an invariant radical in IR such that SA is contained in

the subdirect closure of some class K of the form K :=
n⋃

i=1

{(Si, ∗) | either Si is a finite

field or (Si, ∗) ∼= (Fi ⊕ Fi, e) for some finite field Fi}. Let K1 := {F | F is a finite field
and (F, ∗) ∈ K} and let K2 := {F | F is a finite field and (F ⊕ F, e) ∈ K}. Suppose
that (R, ∗) ∈ SA. Then there exist elements (Si, ∗) of K and surjective homomorphisms
θi of (R, ∗) onto (Si, ∗), i ∈ I, such that

⋂
i∈I

ker θi = 0. For each i ∈ I, either Si ∈ K1

or Si = Fi ⊕ Fi, where Fi ∈ K2. In the first instance, θi is a ring homomorphism of R
onto Si. In the second instance, it is easily verified that ϕi1 := π1 ◦ θi and ϕi2 := π2 ◦ θi

are ring homomorphisms of R onto Fi, where πk denotes projection of Si = Fi ⊕ Fi onto
the k-th component. Moreover, ker θi = kerϕi1 ∩ kerϕi2. Furthermore, 0 =

⋂
i∈I

ker θi =⋂
Si∈K1

ker θi ∩
⋂

Si∈K2

ker θi =
⋂

Si∈K1

ker θi ∩
⋂

Si∈K2

(kerϕi1 ∩ kerϕi2). It follows that R is a

subdirect product of elements of K1 ∪ K2. But the subdirect closure of K1 ∪ K2 is the
semisimple class of a g-radical R in Rng, and consists of idempotent rings [4, Theorem 2.3].
It follows that R is idempotent, and hence SA ⊆ I∗. It follows from Proposition 4.1 that
A is a g-radical.

In [4, Theorem 3.9] it is shown that the lattice L
Rng

gh of hereditary g-radicals in Rng is
atomic and that its atoms are precisely the radicals L{S}, where S is a simple idempotent
ring. It is easily seen that the lattice L

Rng

sgh is also atomic and that its atoms are the radicals

L{S, Sop}, where S is a simple ring. It follows from Proposition 4.5 that the lattice L
IR
ihg of

invariant hereditary g-radicals in IR is atomic, and that its atoms are precisely the radicals
λL{S, Sop}, where S is a simple idempotent ring. Hence from Lemma 2.1 we have:
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Proposition 4.8. The lattice L
IR
ihg is atomic, and its atoms are the radicals L{(S, ∗) | ∗ is

an involution on S} ∨ L{(S ⊕ Sop, e)},where S is a simple idempotent ring.

The question arises: are all g-radicals in IR invariant? The following two examples give
a negative answer.

Example 4.9. Let C be the field of complex numbers, and let A := L{(C, id)}. It follows
from Proposition 4.1 that A is a g-radical. Let c be the involution defined by zc := z for
all z ∈ C. Then clearly (C, id) ∈ A. Since (C, c) is a simple involution ring, (C, id) ∈ A
would imply (C, c) ∼= (C, id) which is false. Hence (C, c) /∈ A, so A is not invariant.

Lemma 4.10. Let (R, ∗) be a subdirect product of the involution rings (Ri, id), i ∈ I, where
Ri is commutative for all i. Then (R, ∗) = (R, id).

Proof. Let θi : (R, ∗) → (Ri, id) be involution ring homomorphisms such that
⋂

ker θi = 0.
If r ∈ R, then θi(r∗) = (θi(r))id = θi(r) for all i ∈ I. It follows that r∗ = r = rid and so
(R, ∗) = (R, id).

Example 4.11. Let Zp be a prime field and let R := U{Zp}. Then R is a g-radical in
Rng by [4, Proposition 2.3.]. Let A := U{(Zp, id)}. Suppose that (I, ∗) � (J, ∗) � (R, ∗),
and that (I, ∗) ∈ SA. Then (I, ∗) is a subdirect product of copies of.(Zp, id). Hence I is
a subdirect products of copies of Zp, so I ∈ SR. . Moreover, I � J � R, and since R
is a g-radical, 〈I〉 ∈ SR. It follows that 〈I〉 is a subdirect product of copies of Zp. Now
〈(I, ∗)〉 = (〈I〉 , ∗), whence by Lemma 4.10, 〈(I, ∗)〉 = (〈I〉 , ∗) = (〈I〉 , id). It follows that
〈(I, ∗)〉 is a subdirect product of copies of (Zp, id) and so 〈(I, ∗)〉 ∈ SA. Hence A is a
g-radical.

It is clear that (Zp ⊕ Zp, id) ∈ SA so (Zp ⊕ Zp, id) /∈ A. But (Zp ⊕ Zp, e) is a simple
involution ring which is not a subdirect product of copies of (Zp, id), and so is in A. Hence
A is not an invariant radical.

Proposition 4.12. The class L
IR
g of all g-radicals in IR is a complete lattice.

Proof. Let {Ai | i ∈ I} be a class of g-radicals in IR. Let (I, ∗) � (J, ∗) � (R, ∗) such that

(I, ∗) ∈ S
( ∨

i∈I

Ai

)
. Since the Ai satisfy ADS, the semisimple classes SAi are hereditary,

and so S
( ∨

i∈I

Ai

)
=

⋂
i∈I

SAi. Hence (I, ∗) ∈ SAi for each i ∈ I. Since each Ai is a

g-radical, 〈(I, ∗)〉 ∈ SAi for each i ∈ I, so 〈(I, ∗)〉 ∈ ⋂
i∈I

SAi = S
( ∨

i∈I

Ai

)
. Hence

∨
i∈I

Ai is

a g-radical. It follows from a well-known lattice-theoretic result that L
IR
g is a lattice with

the join defined as in L
IR
g and the meet

∧
s defined by

∧
s Ai :=

∨{Bi ∈ L
IR
g | Bi ≤ Ai for

all i ∈ I}.
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[10] K. Salavová: Radicals of rings with an involution, Comment Math. Univ. Carol. 16 (1977), 367-381.
[11] R.L. Snider: Lattices of radicals, Pacific J. Math. 40 (1972), 207-219.

Nelson Mandela Metropolitan University,
Port Elizabeth 6031, South Africa


