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Abstract. In this paper we introduce the notion of J-algebra, and show that the
minimal sharp J-algebras form a variety of d-algebras. Moreover, we discuss Smaran-
dache disjointness and the disjointness digraph in J-algebras.

1 Introduction. Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras ([7, 8]). It is known that the class of BCK-algebras is a proper
subclass of the class of BCI-algebras. In [5, 6] Q. P. Hu and X. Li introduced a wide class
of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a
proper subclass of the class of BCH-algebras. Recently, Y. B. Jun, E. H. Roh and H. S.
Kim ([10]) introduced a new notion, called a BH-algebra, i.e., (I), (II) and (V) x∗y = 0 and
y ∗ x = 0 imply x = y, which is a generalization of BCH/BCI/BCK-algebras. They also
defined the notions of ideals and boundedness in BH-algebras, and showed that there is a
maximal ideal in bounded BH-algebras. J. Neggers and H. S. Kim ([14]) introduced and
investigated a class of algebras which is related to several classes of algebras of interest such
as BCH/BCI/BCK-algebras and which seems to have rather nice properties without being
excessively complicated otherwise. Furthermore, they demonstrated a rather interesting
connection between B-algebras and groups. P. J. Allen et al. ([1]) included several new
families of Smarandache -type P -algebras and studied some of their properties in relation
to the properties of previously defined Smarandache -types. Recently, P. J. Allen et al.
([2]) introduced the notion of a super commutative d-algebra and showed that if (X ; ∗) is a
commutative binary system, then by adjoining an element 0 and adjusting the multiplication
to x ∗x = 0, they obtained a super commutative d-algebra, thereby demonstrating that the
class of such algebras is very large. They noted that the class of super commutative d-
algebras is Smarandache disjoint from the class of BCK-algebras, once more indicating
that the class of d-algebras is quite a bit larger than the class of BCK-algebras and leaving
the problem of finding further classes of d-algebras of special types which are Smarandache
disjoint from the classes of BCK-algebras and super commutative d-algebras as an open
question. Lastly the idea of a super Smarandache class of algebras was also defined and
investigated.

It has been proved that BCK-algebras do not form a variety. W. H. Cornish ([4])
introduced the condition (J), and proved that the BCK-algebras satisfying the condition
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(J), called J-variety, form a variety. It was shown that the variety of commutative (positive
implicative, implicative) BCK-algebras is a subvariety of the J-variety, and that no non-
trivial variety of BCK-algebras is 1-based or can be defined by identities involving only two
variables.

In this paper we introduce the notion of J-algebra, and show that the minimal sharp
J-algebras form a variety of d-algebras. Moreover, we discuss Smarandache disjointness and
the disjointness digraph in J-algebras.

2 J-algebras. An algebra (X ; ∗) is said to be a J-algebra if, for any x, y ∈ X ,

x ∗ (x ∗ (y ∗ (y ∗ x))) = y ∗ (y ∗ (x ∗ (x ∗ y))) (J)

Example 2.1. Let X := {0, 1, 2, 3} be a set with the following tables:

∗1 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 3
3 2 3 0 0

∗2 0 1 2 3
0 0 0 0 1
1 1 0 0 0
2 2 1 0 0
3 3 1 3 0

Then (X ; ∗i), i = 1, 2, are J-algebras.

An algebra (X ; ∗) is said to be sharp if there exists 0 ∈ X such that x ∗ 0 = x,∀x ∈ X .
A J-algebra (X ; ∗) is said to be a sharp J-algebra if it is sharp. An algebra (X ; ∗) is said
to be precise if there exists 0 ∈ X such that x ∗ y = 0 = y ∗ x, (x, y ∈ X) implies x = y. A
J-algebra (X ; ∗) is called a precise J-algebra if it is precise.

Theorem 2.2. If an algebra (X ; ∗, 0) is a sharp J-algebra, then it is a precise J-algebra.

Proof. If x ∗ y = 0 = y ∗ x, x, y ∈ X , then

x ∗ (x ∗ (y ∗ (y ∗ x))) = x ∗ (x ∗ (y ∗ 0))
= x ∗ (x ∗ y) [X is sharp]
= x ∗ 0
= x [X is sharp]

Similarly, y ∗ (y ∗ (x ∗ (x ∗ y))) = y. Since X is a J-algebra, we obtain x = y.

An algebra (X ; ∗) is said to be minimal if there exists 0 ∈ X such that 0 ∗ x = 0 for any
x ∈ X .

Example 2.3. The algebra (X ; ∗1) is a precise minimal J-algebra, but not sharp;
(X ; ∗2) is a precise sharp J-algebra in Example 2.1. Let X := {0, 1, 2, 3} be a set with the
following table:

∗3 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 0
3 3 1 0 0
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Then (X ; ∗3) is a minimal sharp J-algebra, but not precise.

J. Neggers and H. S. Kim ([13]) introduced the notion of d-algebras which is a gen-
eralization of BCK-algebras, and investigated several relations between d-algebras and
BCK-algebras. A d-algebra ([13]) is a non-empty set X with a constant 0 and a binary
operation “∗” satisfying the axioms: (I) x ∗x = 0 (nilsquare); (II) 0 ∗x = 0 (minimal); (III)
x ∗ y = 0 and y ∗ x = 0 imply x = y (precise) for all x, y ∈ X .

Theorem 2.4. If (X ; ∗, 0) is a minimal sharp J-algebra, then it is a d-algebra.

Proof. By Theorem 2.2, X is precise. If we let y := 0 in (J), then

0 = 0 ∗ (0 ∗ (x ∗ (x ∗ 0))) [X is minimal]
= x ∗ (x ∗ (0 ∗ (0 ∗ x))) [condition (J)]
= x ∗ (x ∗ 0) [X is sharp]
= x ∗ x,

proving the theorem.

Notice that the minimal sharp J-algebras are seen to be a variety while the d-algebras
are not a variety. Thus, the minimal sharp J-algebras form a variety of d-algebras.

An algebra (X ; ∗) is said to have an inclusion condition if (x∗y)∗x = 0 for any x, y ∈ X .

Example 2.5. Let X := {0, 1, 2, 3} be a set with the following tables:

∗4 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 1

∗5 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 3
3 3 3 1 0

Then (X ; ∗4) is a J-algebra with inclusion condition, while (X ; ∗5) is a sharp J-algebra, but
not having the inclusion condition, since (2 ∗5 3) ∗5 2 = 1 �= 0.

Theorem 2.6. If (X ; ∗, 0) is a precise minimal J-algebra with inclusion condition, then
it is a sharp J-algebra.

Proof. Since (X ; ∗, 0) has an inclusion condition, we obtain (x ∗ 0) ∗ x = 0, ∀x ∈ X . If
we let y := 0 in (J), then x ∗ (x ∗ (0 ∗ (0 ∗ x))) = 0 ∗ (0 ∗ (x ∗ (x ∗ 0))). Since X is minimal,
x ∗ (x ∗ (0 ∗ (0 ∗ x))) = x ∗ (x ∗ 0) and 0 ∗ (0 ∗ (x ∗ (x ∗ 0))) = 0, and hence we obtain
x ∗ (x ∗ 0) = 0. Since X is precise, we obtain x ∗ 0 = x, proving the theorem.

Theorem 2.6 serves as a partial converse to Theorem 2.2 above.

3 Smarandache disjointness. Let (X, ∗) be a binary system/algebra. Then (X, ∗) is
a Smarandache-type P -algebra if it contains a subalgebra (Y, ∗), where Y is non-trivial, i.e.,
|Y | ≥ 2, or Y contains at least two distinct elements, and (Y, ∗) is itself of type P . Thus,
we have Smarandache -type semigroups (the type P -algebra is a semigroup), Smarandache -
type groups (the type P -algebra is a group), Smarandache -type abelian groups (the type
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P -algebra is an abelian group). A Smarandache semigroup in the sense of Kandasamy is in
fact a Smarandache -type group (see [11]). Smarandache-type groups are of course a larger
class than Kandasamy’s Smarandache semigroups since they may include non-associative
algebras as well.

Given algebra types (X, ∗) (type-P1) and (X, ◦) (type-P2), we shall consider them to be
Smarandache disjoint if the following two conditions hold:

(A) If (X, ∗) is a type-P1-algebra with |X | > 1 then it cannot be a Smarandache -type-
P2-algebra (X, ◦);

(B) If (X, ◦) is a type-P2-algebra with |X | > 1 then it cannot be a Smarandache -type-
P1-algebra (X, ∗).

Given a set X , define x ∗ y = a for some fixed a ∈ X , ∀x, y ∈ X , then the condition (J)
holds obviously, as does the associative law and the commutative law. Thus (X ; ∗) is an
example of a J-algebra which is also a commutative semigroup. Setting a := 0, we obtain
0 ∗ x = 0 for all x ∈ X , and the minimal condition applies as well. Obviously, the precision
condition fails and thus, if one wants to use Theorem 2.2, the sharpness condition fails as
well. In fact, if we consider the algebra (X ; ∗, a) with x ∗ y = a for all x, y ∈ X , where
a ∈ X (fixed), to be a collapsed algebra (a trivial algebra). then we have the following:

Theorem 3.1. The class of precise J-algebras and the class of collapsed J-algebras are
Smarandache disjoint.

Proof. If x ∗ y = 0 = y ∗ x, x, y ∈ X , then a = 0 in the collapsed algebra (X ; ∗, a). Since
X is collapsed, x ∗ y = 0 = y ∗ x for any x, y ∈ X . It follows from X is precise that x = y,
i.e., |X | = 1, whence Smarandache disjointness follows.

Theorem 3.2. The class of J-algebras and the class of commutative cancellative semi-
groups are Smarandache disjoint.

Proof. Let (X ; ·) be both a J-algebra and a commutative cancellative semigroup. The
condition (J) becomes x3y2 = y3x2, ∀x, y ∈ X , whence cancelling x2y2 from both sides we
find that x = y and thus |X | = 1, proving the theorem.

An algebra (X ; ∗, ) is called a left (right, resp.) semigroup if x ∗ y = x (x ∗ y = y, resp.)
for all x, y ∈ X . If (X ; ∗) is both a J-algebra and left (or right) semigroup, then x = y for
all x, y ∈ X and thus |X | = 1, i.e.,

Theorem 3.3. The class of J-algebras and the class of left (or right) semigroups are
Smarandache disjoint.

If (X ; ∗, e) is a J-algebra and a group, then y := e in (J) yields x ∗ (x ∗ (e ∗ (e ∗ x))) =
x ∗ (x ∗ x) and e ∗ (e ∗ (x ∗ (x ∗ e))) = x ∗ x, ∀x ∈ X . Hence x ∗ (x ∗ x) = x ∗ x and x = e,
i.e., |X | = 1. We summarize:

Theorem 3.4. The class of J-algebras and the class of groups are Smarandache disjoint.
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4 Disjointness digraph. In a minimal J-algebra (X ; ∗, 0) and x, y ∈ X , we consider x
to be disjoint from y (denoted x → y) if x ∗ (x ∗ y) = 0.

Proposition 4.1. Let (X ; ∗, 0) be a minimal sharp J-algebra and x, y ∈ X. If x → y,
then x → y ∗ (y ∗ x).

Proof. If x → y, then x ∗ (x ∗ y) = 0. It follows from Theorem 2.4 that

x ∗ (x ∗ (y ∗ (y ∗ x))) = y ∗ (y ∗ (x ∗ (x ∗ y))) [condition (J)]
= y ∗ (y ∗ 0)))
= y ∗ y [X is sharp]
= 0. [Theorem 2.4]

Notice that 0 ∗ (0 ∗ x) = 0 means 0 → x for all x ∈ X . On the other hand x ∗ (x ∗ 0) = 0
as well, so that x → 0 for all x ∈ X . This means that in the disjointness graph of a minimal
sharp J-algebra (X ; ∗, 0), denoted ΓD(X), the vertex 0 is both a universal source (0 → x)
and a universal sink (x → 0) or an index object(vertex) and a terminal object(vertex).

Example 4.2. Consider a BCK-algebra X := {0, 1, 2, 3} with

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 0
3 3 3 3 0

Then it is a minimal sharp J-algebra. By routine calculations we obtain the disjointness
digraph ΓD(X) as follows:
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If we relax the minimality condition 0∗x = 0 for all x ∈ X to the condition 0∗(0∗x) = 0,
∀x ∈ X (subminimal condition) then in a subminimal J-algebra (X ; ∗, 0), letting x := 0 in
(J), we obtain 0 = 0 ∗ (0 ∗ (y ∗ (y ∗ 0))) = y ∗ (y ∗ (0 ∗ (0 ∗ y))) = y ∗ (y ∗ 0) so that we
still maintain the conditions 0 → x for all x and x → 0 for all x in the disjointness graph
ΓD(X).

We shall consider a J-algebra (X ; ∗, p) pointed with special element p, and with x → y
meaning x ∗ (x ∗ y) = p to produce the digraph ΓD(X). The element p is called a null point
if x → p and p → x for all elements x ∈ X , i.e., if p = x ∗ (x ∗ p) = p ∗ (p ∗ x) for all x ∈ X .
Notice that if a null point exists then it is unique. In fact, if p and q are possibly null points
then we obtain p = q ∗ (q ∗ p) = p ∗ (p ∗ q) = q. We shall denote the unique null point of
a J-algebra X by 0 and consider Γ0(X) = ΓD(X) to represent the disjointness digraph of
the J-algebra (X ; ∗, 0).

If (X ; ∗, a) has x ∗ y = a for all x, y ∈ X , then x ∗ (x ∗ y) = a for all x, y ∈ X and x → y
in ΓD(X), i.e., Γa(X) is a complete digraph (whose adjacency matrix in the finite case has
all entries equal to 1). Notice that if p �= a, then Γp(X) contains no arrows whatsoever.
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The following questions arise:

(A) If (X, ∗) and (X ; ◦) are J-algebras and if for all p ∈ X , Γp(X, ∗) = Γp(X ; ◦), are (X, ∗)
and (X ; ◦) isomorphic as J-algebras ?

(B) If (X, ∗) and (X ; ◦) are J-algebras and there is a one-one correspondence ϕ : X → X
such that for all p ∈ X , Γp(X ; ∗) = Γϕ(p)(X ; ◦), are (X, ∗) and (X ; ◦) isomorphic as
J-algebras ?

The answer to these questions are seen to be no. Consider the following example.

Example 4.3. Let (X ; ∗, a) be an algebra with x ∗ y = a, ∀x, y ∈ X and let Γa(X ; ∗) =
Γa(X ; ◦). Then (X ; ∗) and (X ; ◦) are J-algebras. In fact, if x ∗ y = a, ∀x, y ∈ X , then
x ∗ (x ∗ y) = a, i.e., x → y in Γa(X ; ∗) and hence x → y in Γa(X ; ◦). Similarly, y → x in
Γa(X ; ◦). This means x◦(x◦y) = a = y◦(y◦x) and hence x◦(x◦(y◦(y◦x))) = x◦(x◦a) = a,
y ◦ (y ◦ (x ◦ (x ◦ y))) = y ◦ (y ◦ a) = a, proving (X ; ◦) is a J-algebra. Let X := {a, b, c} be a
set with the following table:

◦ a b c
a a a a
b a a b
c a a b

Assume x◦ (x◦ y) �= a for some x, t ∈ X . Then x �= a, i.e., we have to deal with expressions
b ◦ (b ◦ y) or c ◦ (c ◦ y), i.e., with expressions b ◦ b = a or b ◦ a = a, c ◦ b = a or c ◦ a = a,
whence x ◦ (x ◦ y) = a for all x, y ∈ X , i.e., Γa(X ; ◦) = Γa(X ; ∗). But it is not true that
x ◦ y = a for all x, y ∈ X , i.e., (X ; ∗) and (X ; ◦) are not isomorphic as J-algebras.
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