
Scientiae Mathematicae Japonicae Online, e-2006, 301–317 301

MULTIWAVELET NEURAL NETWORK PREPROCESSING OF
IRREGULARLY SAMPLED DATA

AKIRA MORIMOTO, RYUICHI ASHINO, AND RÉMI VAILLANCOURT
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Abstract. Multiwavelets are briefly reviewed and preprocessing and postprocessing for
such wavelets are introduced. Least squares curve fitting of irregularly sampled data is
achieved by means of unshifted and shifted multiscaling functions. This preprocessing
procedure combined with multiwavelet neural networks for data-adaptive curve fitting
is shown to perform well in the case of high resolution. In the case of low resolution it
is more accurate than numerical integration and cheaper than matrix inversion.

1. Introduction

Wavelets and multiwavelets are used by scientists and engineers to represent and process
empirical data in order to extract important characteristics from the data, to denoise or
compress the data, and so on.

Scalar wavelets, also called uniwavelets, are functions which localize a given function
both in space and frequency. A family of scalar wavelets can be constructed from a scalar
function called wavelet function. Wavelets pick up the details at various scales. A second
scalar function, called scaling function, is used to pick up approximations at various scales.
The simplest scalar wavelet in L2(R) is the Haar system, see Meyer [1, Section 3.2], with
the indicator function of the interval [0, 1] as a scaling function.

On the other hand, multiwavelets consist of several scaling functions and wavelets. It
is believed that multiwavelets are ideally suited to multichannel signals like color images
which are two-dimensional three-channel signals and stereo audio signals which are one-
dimensional two-channel signals. For instance, for a two-channel signal, which consists of
a two-vector sequence of bits, {xk}, the lowpass and highpass filters are 2 × 2 matrix func-
tions corresponding to two scaling functions and two wavelets, respectively. Multiscaling
functions and multiwavelets can simultaneously have orthogonality, linear phase, symmetry
and compact support. Such a situation cannot occur in the scalar case with real scaling
functions and real wavelets.

A natural question for the discrete multiwavelet transform is how to construct a vector
input from a given scalar sampled data (see [2] or [3]). One of the problems here is the
difference in data structures. Converting sampled data to input is called preprocessing or
prefiltering. This question is not so serious for uniwavelets because, in practice, the given
sampled data can be used as an input for the discrete uniwavelet transform (for detail, see
[4, pp. 232–233] and [5, pp. 43–45].

In this paper, a wavelet neural network is used in the interactive construction of vector
input data from irregularly sampled scalar data. The desired vector input data is expanded
in terms of the multiscaling functions of a chosen multiwavelet and fit in the least squares
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sense to the given scalar data by means of the wavelet neural network with back propaga-
tion. It is assumed that linear combinations of shifted and dilated multiscaling functions
can approximate any function in L2(R). The more accurate is this step, the better will be
the discrete multiwavelet transform. It will be seen that adding a constant shift parame-
ter, θ, to the arguments of the multiscaling functions can avoid structural problems with
certain multiwavelets. For this reason, the curve fitting procedure is essential for prepro-
cessing. Neural networks allow data-adaptive curve fitting and adaptability greatly reduces
the computation cost for certain problems.

In [6], a preprocessing design is proposed for multiwavelet filtering using neural networks
for regularly sampled data. In the present paper, a curve fitting method for irregularly
sampled data is proposed and applied to a preprocessing design with multiwavelet neural
network for the discrete multiwavelet transform. Other preprocessing and postprocessing
designs for multiwavelets can be found in [5, pp. 157–161].

The paper is organized as follows. In section 2, multiwavelets are briefly reviewed.
Preprocessing and postprocessing are defined in section 3. Section 4 deals with least squares
curve fitting to irregularly sampled data. Section 5 introduces multiwavelet neural networks
and present numerical results. Section 6 summarizes our preprocessing and postprocessing
designs based on curve fitting. Section 7 is a conclusion.

2. Multiwavelets

Definitions and properties of multiwavelets, filters and filter banks can be found, for
instance, in Ashino, Nagase, and Vaillancourt [7], Zheng [8], and in the monograph by
Keinert [5]. The following standard wavelet and multiwavelet notation will be used.

Notation 1. The notation is as follows.
(i) Given a function f ∈ L2(R), we let fjk(x) denote the scaled and shifted functions

fjk(x) = 2j/2f(2jx− k), j ∈ Z, k ∈ Z.(1)

(ii) Given a vector-valued function F = [f1, . . . , fd]T ∈ L2(R)d, we let Fjk denote the
scaled and shifted vector functions

Fjk = [f1
jk, . . . , f

d
jk]T , j ∈ Z, k ∈ Z.(2)

(iii) D = {1, . . . , d} for a positive integer d.
(iv) Z+ = {0, 1, 2, . . .} is the set of natural numbers including zero.
(v) 〈f, g〉 =

∫
R
f(x)g(x) dx is the L2(R) inner product of f and g.

Definition 1. A vector-valued function Ψ := [ψ1, . . . , ψd]T ∈ L2(R)d is called a multi-
wavelet function if the system

{ψδ
jk}δ∈D, j∈Z, k∈Z(3)

forms an orthonormal basis for L2(R). In this case, the functions ψδ
jk are called multiwavelets

and (3) is called an orthonormal multiwavelet basis. The multiwavelet expansion of f ∈
L2(R) with respect to (3) is

f(x) =
∑

δ∈D, j,k∈Z

〈
f, ψδ

jk

〉
ψδ

jk(x).(4)

To construct a multiwavelet function, Ψ, from a multiscaling function, Φ, we generalize
to multiwavelets the notion of multiresolution analysis given in Mallat [9] and Meyer [1] for
scalar wavelets.
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Definition 2. An increasing sequence of closed subspaces {Vj}j∈Z of L2(R),

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ,
is called a multiwavelet multiresolution analysis if it satisfies the following four properties:

(i) ∩j∈ZVj = {0} and ∪j∈ZVj is dense in L2(R).

(ii) f(x) ∈ Vj if and only if f(2x) ∈ Vj+1.

(iii) f(x) ∈ V0 if and only if f(x− k) ∈ V0 for every k ∈ Z.

(iv) There exists a multiscaling function Φ := [ϕ1, . . . , ϕd]T ∈ V d
0 such that {ϕδ(x −

k)}δ∈D,k∈Z form an orthonormal basis of V0.

When multiwavelets are constructed from a multiresolution analysis, there exist functions
ϕδ, δ ∈ D, called scaling functions , such that the set of functions

{ϕδ
0,k}δ∈D, k∈Z

⋃
{ψδ

jk}δ∈D, j∈Z+, k∈Z(5)

is an orthonormal basis of L2(R). The multiwavelet expansion of f ∈ L2(R) with respect
to (5) is

f(x) =
∑

δ∈D, k∈Z

〈
f, ϕδ

0,k

〉
ϕδ

0,k(x) +
∑

δ∈D, j∈Z+, k∈Z

〈
f, ψδ

jk

〉
ψδ

jk(x).(6)

The coefficients
〈
f, ϕδ

0,k

〉
and

〈
f, ψδ

jk

〉
are called multiscaling coefficients and multiwavelet

coefficients of f , respectively.

Remark 1. In the n-dimensional case, a multiresolution analysis {Vj}j∈Z of L2(Rn) for
multiwavelets is defined the same way as in the one-dimensional case, but there are 2n − 1
multiwavelet functions which can be parametrized by the set E := {0, 1}n\{(0, . . . , 0)} as

Ψε := [ψ1
ε , . . . , ψ

d
ε ]T ∈ V d

1 , ε ∈ E.

A multiresolution analysis {Vj}j∈Z of L2(Rn) can be constructed from a given one-dimensional
multiresolution analysis by means of the tensor product of multiresolution analyses.

Assume that we have a multiwavelet multiresolution analysis {Vj}j∈Z of L2(R). Using
(ii) of Notation 1, we define the lowpass matrix coefficients

Hk :=
〈
Φ0,0,ΦT

1,k

〉
=

(〈
ϕδ

0,0, ϕ
η
1,k

〉)
(δ,η)∈D×D

∈ C
d×d,

and the matrix frequency response, or matrix symbol,

M0(ξ) :=
1√
2

∑
k∈Z

Hke
−ikξ ∈ L2([0, 2π])d×d.

Then, the dilation equation and its Fourier transform are

Φ(x) = 21/2
∑
k∈Z

HkΦ(2x− k), Φ̂(ξ) = M0(ξ/2)Φ̂(ξ/2),

where Φ̂(ξ) := [ϕ̂1(ξ), . . . , ϕ̂d(ξ)]T ∈ L2(R)d. It is known that if we choose M1(ξ) such that

M(ξ) :=
[
M0(ξ) M0(ξ + π)
M1(ξ) M1(ξ + π)

]
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is a unitary matrix for almost all ξ ∈ [0, 2π], then the multiwavelet function Ψ is given by
the wavelet dilation equation or its Fourier transform,

Ψ(x) = 21/2
∑
k∈Z

GkΦ(2x− k), Ψ̂(ξ) = M1(ξ/2)Φ̂(ξ/2),

where Gk, k ∈ Z, are the Fourier coefficients of M1(ξ), that is,

M1(ξ) =
1√
2

∑
k∈Z

Gke
−ikξ ∈ L2([0, 2π])d×d.

Thus, the highpass matrix coefficients, Gk, k ∈ Z, are given by the scalar products

Gk :=
〈
Ψ0,0,ΦT

1,k

〉
=

(〈
ψδ

0,0, ϕ
η
1,k

〉)
(δ,η)∈D×D

∈ C
d×d.

The orthogonal projection Pj on Vj can be represented as

Pj f =
∑
k∈Z

CT
j,k Φj,k, Cj,k :=

∫
R

f(x)Φj,k(x) dx ∈ C
d,

where, explicitly, Cj,k =
[
C1

j,k, · · · , Cd
j,k

]T and

Cδ
j,k :=

∫
R

f(x)ϕδ
j,k(x) dx, δ ∈ D.

Similarly, the orthogonal projection Qj on Wj , where Wj denotes the orthogonal comple-
ment of Vj in Vj+1, can be represented as

Qj f =
∑
k∈Z

DT
j,k Ψj,k, Dj,k :=

∫
R

f(x)Ψj,k(x) dx ∈ C
d.

The terms of the sequences
{
Cj,k ∈ �2(Z)d

}
k∈Z

and
{
Dj,k ∈ �2(Z)d

}
k∈Z

are called the
approximation coefficients and detail coefficients, respectively, at resolution j.

Definition 3 (Discrete multiwavelet transform). The discrete multiwavelet transform of f
is the mapping{

Cj,k ∈ �2(Z)d
}

k∈Z
→

({
Cj−1,k ∈ �2(Z)d

}
k∈Z

,
{
Dj−1,k ∈ �2(Z)d

}
k∈Z

)
,(7)

defined by

Cj−1,k =
∑
n∈Z

Hn−2k Cj,n =
∑
n∈Z

Hn Cj,n+2k,

Dj−1,k =
∑
n∈Z

Gn−2k Cj,n =
∑
n∈Z

Gn Cj,n+2k.

Definition 4 (Inverse discrete multiwavelet transform). The inverse discrete multiwavelet
transform is the mapping({

Cj,k ∈ �2(Z)2d
}

k∈Z
,
{
Dj,k ∈ �2(Z)2d

}
k∈Z

)
→ {

Cj+1,k ∈ �2(Z)2d
}

k∈Z
,(8)

defined by

Cj+1,n =
∑
k∈Z

HT
n−2k Cj,k +

∑
k∈Z

GT
n−2k Dj,k.

The discrete transforms (7) and (8) are sometimes referred to as decomposition and
reconstruction, respectively.
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3. Preprocessing and postprocessing

Let {xn}n∈Z be a sequence of increasing sampling points in R. Let f(t) be a function of
a continuous variable t and f [xn] denote a discretized version of f defined on the sequence
{xn}. The sequence

{
f [xn]

}
n∈Z

is called the sampled data or the sampling data. For each
pair of successive sampling points, xn and xn−1, define the sampling width by

∆n := xn+1 − xn.

If all the sampling widths are equal, the sampling points, {xn}n∈Z, are said to be regularly
sampled, otherwise they are irregularly sampled.

Let f ∈ V0 ⊂ L2(R) be a signal to be analyzed. The following Procedure 1, as illustrated
in Figure 1, is typical of discrete multiwavelet analysis.

extract feature, 
denoise, 
compress, etc.

Preprocessing

DMWT IDMWT

Postprocessing

(scalar sequence) 

{ f [x  ]}n n

Sampled data: 

Approximation:

{ C    }0,n n

(vector  sequence)

Approximation and details:

{ C     }-J,k k ,

{ D    }j,k k , j=-1,-2,..., -J

(vector sequences)

Approximation:

{ C    }0,n n

(vector sequence)

~

Approximation and details:

{ C     }-J,k k ,

{ D    }j,k k , j=-1,-2,..., -J

(vector sequences)

~

~

(scalar sequence) 

{ f [x  ]}n n

Processed data: 
~

Data processing

Compare

Figure 1. Typical discrete multiwavelet analysis procedure.

Procedure 1 (Discrete multiwavelet analysis).
(i) Given f(t), construct a sampled data

{
f [xn]

}
n∈Z

.
(ii) Use

{
f [xn]

}
n∈Z

to construct appropriate approximation vector coefficients C0,n ∈
�2(Z)d for n ∈ Z. This procedure is called preprocessing.

(iii) Do J iterations of the discrete multiwavelet transform, starting with C0,n ∈ �2(Z)d

for n ∈ Z, to get the coarsest approximation coefficients
{
C−J,k ∈ �2(Z)d

}
k∈Z

and the
coarser detail coefficients

{
Dj,k ∈ �2(Z)d

}
k∈Z

for j = −1,−2, . . . ,−J .
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(iv) Process those coefficients to get processed approximation coefficients
{
C̃−J,k ∈ �2(Z)d

}
k∈Z

and processed detail coefficients
{
D̃j,k ∈ �2(Z)d

}
k∈Z

, for j = −1, −2, . . . , −J .

(v) Do J iterations of the inverse discrete multiwavelet transform starting with
{
C̃−J,k ∈

�2(Z)d
}

k∈Z
and

{
D̃j,k ∈ �2(Z)d

}
k∈Z

, for j = −1, −2, . . . , −J to get the processed

approximation coefficients
{
C̃0,n ∈ �2(Z)d

}
n∈Z

.

(vi) Construct an appropriate sequence
{
f̃n

}
n∈Z

from
{
C̃0,n ∈ �2(Z)d

}
n∈Z

which should
have the same structure as the original sequence

{
f [xn]

}
n∈Z

. This procedure is called
postprocessing.

In this paper, we deal only with the preprocessing and postprocessing steps, leaving data
processing for future work.

3.1. The simplest preprocessing and postprocessing for uniwavelets. Let ψ be a
uniwavelet function with scaling function ϕ. Assume that f ∈ Span {ϕj0,k}k∈Z

for fixed
j0 ∈ Z and its sampled data {fn := f [xn]}n∈Z is given. Then, f can be represented as

f(x) =
∑
k∈Z

〈f, ϕj0,k〉ϕj0,k(x).

The preprocessing procedure for uniwavelets is to get the coefficients {〈f, ϕj0,k〉}k∈Z from
the sampled data {fn}n∈Z. Recall that 2j ϕ(2jx − k) tends to Dirac’s δ function as j →
∞, because scaling functions for uniwavelets are usually required to be continuous, well-
localized and to satisfy ∫

R

ϕ(x)dx = 1.

We may assume that j0 is large enough and that x0 satisfies k ∼ 2j0x0. Then we have the
following correspondence between coefficients and sampled data:

2j0/2 〈f, ϕj0,k〉 =
∫

R

f(x) 2j0 ϕ(2j0x− k) dx ∼ f(x0).

Thus, the simplest preprocessing and postprocessing for uniwavelets are the following:

Procedure 2 (Preprocessing for uniwavelets). For given sampled data {fn}n∈Z, assume
j0 = 0 and obtain the approximation coefficients by 〈f, ϕ0,n〉 := fn.

Procedure 3 (Postprocessing for uniwavelets). For given coefficients {〈f, ϕ0,n〉}n∈Z, ob-
tain the sampled data by f̃n := 〈f, ϕ0,n〉.
3.2. Simple preprocessing for multiwavelets. Many approaches to preprocessing for
multiwavelets have been proposed. A short summary is given in [5]. Here, as an example,
we describe a simple preprocessing for multiwavelets. It is named odd-even preprocessing
and based on the simplest preprocessing for uniwavelets explained above. We also give an
example to show that a “good” preprocessing is needed.

Procedure 4 (Odd-even preprocessing). For given sampled data {fn}n∈Z, obtain approx-
imation coefficients by C0,n := [f2n−1, f2n]T .

In our examples, we use the Matlab sample data leleccum.dat which involves a real-
world electrical consumption signal measured over the course of three days. This signal is
particularly interesting because of noise introduced when a defect developed in the monitor-
ing equipment as measurements were being made. We use the Chui–Lian CL2 multiwavelet
given in [10]. Figure 2 illustrates the multiscaling and multiwavelet functions of CL2.
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Figure 2. CL2 multiscaling functions, φ1(x) and φ2(x), and multiwavelet
functions, ψ1(x) and ψ2(x).

Example 1 (Odd-even preprocessing for the CL2 multiwavelet). The data leleccum.dat is
an electrical consumption measured (say, in kilowatts) every minute over the course of 3
days, that is, 4320 minutes. We use the first 1024 points of this data.

(i) Apply the odd-even preprocessing to get the approximation C0 = [C1
0 , C

2
0 ]T , which is

shown in the top two plots of Figure 3.
(ii) Apply the CL2 discrete multiwavelet transform twice to get C2 = [C1

2 , C
2
2 ]T , D2 =

[D1
2 , D

2
2]

T , and D1 = [D1
1, D

2
1]

T . The result is in the bottom parts of Figure 3, where
C1

2 , D1
2 and D1

1 are in the left-hand side and C2
2 , D2

2 and D2
1 are in the right-hand

side.
Following standard notation, Ci

j denotes the set of coefficients of the approximation part by
the scaling function φi at level j. Similarly, Di

j denotes the set of coefficients of the detail
part by the wavelet function ψi at level j.

Obsevation 1. The odd-even preprocessing is not well suited for the CL2 multiwavelet be-
cause D2

1 and −C2
0 have a similar shape and the maximum norm of D2

1 is big. This means
that D2

1 contains low frequency information, which should be contained in the approxima-
tion coefficients, that is, C2 in this case.

4. Least squares curve fitting to irregularly sampled data

Generally, given a finite set of irregularly sampled points {(xn, yn)} in the plane, one
tries to fit a curve f(x; a1, a2, . . . , ar) to these points in the weighted least squares sense by
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Figure 3. Plot of electricity consumption (say, in kilowatts) against time
in minutes of the odd-even preprocessed leleccum.dat and its discrete
multiwavelet transforms for Example 1.

minimizing the sum of squares

∑
n

|f(xn; a1, a2, . . . , ar) − yn|2
(

∆n + ∆n−1

2

)

over the parameters {aj}. This model will be adapted to the problem in hand in the
following subsections.

4.1. Curve fitting with multiscaling functions. Hereafter, we only deal with the real-
valued case and assume that the number of multiscaling functions is two, that is, d = 2.

First, let us find the least squares approximation to a continuous function f ∈ L2(R) ∩
C(R) in Vj . As each element sj ∈ Vj is represented by the two sums

sj(x) =
∑

k

c1j,kϕ
1(2jx− k) +

∑
k

c2j,kϕ
2(2jx− k),(9)

our problem is to find coefficients c1j,k and c2j,k that minimize the integral

∫
R

|f(x) − sj(x)|2 dx.(10)
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When Φ = [ϕ1, ϕ2]T is an orthonormal multiscaling function, the best approximation is
given by the integrals

c1j,k = 2j

∫
f(x)ϕ1(2jx− k) dx, c2j,k = 2j

∫
f(x)ϕ2(2jx− k) dx.(11)

which can be calculated by numerical integration. In general, given an irregularly sampled
data

{
f [xn]

}
, integral (10) can be approximated by the formula

E(c1j,k, c
2
j,k) =

∑
n

|f [xn] − sj [xn]|2
(

∆n + ∆n−1

2

)
.(12)

We expect the least squares solution to (12) to be an accurate approximation to f [xn] at
the points xn and the function sj(x) defined by the least squares solution to give “the
best-fitting” curve to the given irregularly sampled data.

4.2. Curve fitting with shifted multiscaling functions. For certain types of multi-
scaling functions, Φ, and sampling points, {xn}, it can happen that a given data {f [xn]}
cannot be well approximated by (9). For example, the multiscaling functions CL2 and CL3,
to be discussed in section 5, present a structural problem when solving a finite dimensional
version of the equation

2∑
�=1

∑
k∈Z

c�j,kϕ
�
j.k(xn) = fj,n,(13)

where fj,n are determined from j and f [xn]. More precisely, when the left-hand side of (13)
is represented in matrix form:

A
[
. . . , c1j,k, . . . , c

2
j,k, . . .

]T
,(14)

where the components of A are ϕ�
j.k(xn), a finite dimensional approximation of A is a

singular matrix. In such a case, we propose to use a shifted function sj(x + θ) instead of
sj(x), where the shift parameter θ will be chosen so as to avoid such a structural problem.
We call this procedure a shifted scaling fitting and its algorithm is as follows.

Algorithm 1 (Shifted scaling fitting). Minimize

Eθ(c1j,k, c
2
j,k) :=

∑
n

|f [xn] − sj [xn + θ]|2
(

∆n + ∆n−1

2

)
(15)

over c1j,k and c2j,k for fixed θ.

5. Multiwavelet neural networks

The field of neural networks started some fifty years ago but has found solid applications
only in the past twenty years and it is developing rapidly. Neural networks described in
Rumelhart and McClelland [11] are composed of simple elements operating in parallel.
These elements are inspired by biological nervous systems. As in nature, the network
function is determined largely by the connections between elements.

Assume that each summation of ϕ1(2jx−k) and ϕ2(2jx−k) in (9) contains L terms and
consider a three-layer neural network with input x and output sj(x) as shown in Figure 4.
Then, the backpropagation learning method gives the least squares solution to (15). We
call such a neural network a multiwavelet neural network.
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c2
j,k

s (x)

c1
j,k

ϕ  (2 x-k)2 jϕ  (2 x-k)1 j
Hidden layer

Output layer

Input layer

1 1

j

x

Figure 4. A three-layer multiwavelet neural network.

5.1. Training algorithm. Neural networks described [12] and [13] can be trained to per-
form a particular function by properly choosing the values of the connections (weights)
between elements. Commonly, neural networks are adjusted, or trained, so that a par-
ticular input leads to a specific target output. The network is adjusted by comparing the
output and the target until the network output matches the target. Typically, in supervised
learning, many input/target pairs are used to train a network.

The training algorithm for our multiwavelet neural networks consists in the four steps
listed in Algorithm 2.

Algorithm 2 (Training algorithm). Let input x be given.
(i) Fix the resolution j and set m = 0 (the number of trainings). Choose appropriate
initial coefficients c�,[m]

j,k , � = 1, 2. Set the conjugate gradients dc�,[m]
j,k = 0. Calculate the

initial square error E[m] = Eθ

(
c
1,[m]
j,k , c

2,[m]
j,k

)
.

(ii) Choose a constant 0 < λ[m] < 1 and calculate the conjugate gradients as follows:

dc
�,[m+1]
j,k =

∂Eθ

(
c
1,[m]
j,k , c

2,[m]
j,k

)
∂c

�,[m]
j,k

+ λ[m]dc
�,[m]
j,k .

(iii) Choose a constant η[m] > 0 and calculate the new coefficients

c
�,[m+1]
j,k = c

�,[m]
j,k − η[m]dc

�,[m+1]
j,k .

(iv) Calculate the square error

E[m+1] = Eθ

(
c
1,[m+1]
j,k , c

2,[m+1]
j,k

)
.

If E[m+1] is small enough, then the training is good and the algorithm is stopped. Else if
the relative error,

E[m] − E[m+1]

E[m]
,

is small, then the algorithm is aborted and we conclude that more training is useless and a
coarser resolution, j − 1, is needed for this experiment. Otherwise, set m = m + 1 and go
to (ii).
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Figure 5. The graph of the function sin245: y = sin245 (x).

5.2. Numerical results on curve fitting. In our numerical experiments, we have applied
shifted scaling fitting to various kinds of data. We state here only one of them. Computation
was done with Matlab version 6.5.1 on a PC running under Windows 2000 with 512MB
of RAM. The CPU is AMD Athlon 1.13GHz.

In multiwavelet neural networks, the pairs of input and output
(
x, sj(x+ θ)

)
are known

and the coefficients
[
c1j,k, c

2
j,k

]
are unknown. We will deal with overdetermined systems.

In this case, the number of input and output pairs
(
x, sj(x + θ)

)
exceeds the number of

unknown coefficients
[
c1j,k, c

2
j,k

]
.

5.2.1. Multiscaling functions used in numerical experiments. The following three types of
multiscaling functions have been used in our numerical experiments.

• ANV2-3 and ANVb4.4: The multiscaling functions, with supports [0, 3], [0, 3] and
[−3, 3], [−3, 4], respectively, of Ashino, Nagase, and Vaillancourt [7] are generated by
Daubechies’ compactly supported scalar wavelets with N = 2 and the biorthogonal
wavelet 9/7, respectively.

• CL2 and CL3: The multiscaling functions of Chui and Lian [10] with N = 2 and
N = 3, respectively, with support [0, N ].

• GHM: The multiscaling function of Geronimo, Hardin, and Massopust [14] and its
multiwavelet function given in Donavan, Geronimo, Hardin, and Massopust [15]. The
supports of the two components of the multiscaling function are [0, 1] and [0, 2], re-
spectively.

5.2.2. Irregularly sampled data used in numerical experiments. To generate an irregularly
sampled data, we use the following function sin245:

sin245 (x) = sin
π

20
x+ sin

π

40
x+ sin

π

50
x, 0 ≤ x ≤ 1000,

which is illustrated in Figure 5. Define a function named noised-sin245 by adding to the
function sin245 a white noise with values in the interval [−0.2, 0.2].
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Figure 6. Irregular sampling, y vs. x, of ir245 (top) and ir-noised245 (bottom).

Irregular sampling widths {∆n}n∈Z+ are generated by uniform random numbers in
[0.1, 1.9] and the sampling points {xn}n∈Z+ are defined recursively by

x0 := 0, xn+1 := xn + ∆n, n ∈ Z+.

We take the sampling points {xn} in the open interval I = (0, 1000). In our experiment,
there were 1004 sampling points in I, the first being 1.5044 and the last being 999.5026.
We denote the sampling points in I by {xn} without referring to the index set.

An irregularly sampled data ir245 is given by sampling the function sin245 at the
sampling points {xn}. An irregularly sampled noised data ir-noised245 is given by sam-
pling the function noised-sin245 at the sampling points {xn}. Figure 6 illustrates these
irregularly sampled data, where the dots “•” denote the irregular sampling points.

Example 2 (Curve fitting to ir245 and ir-noised245 by V−3). For irregularly sampled data,
it is necessary that the chosen resolution, j ≤ −2, gives rise to overdetermined systems.
Hence we choose j = −3.

The following notation will be used:
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Table 1. Accuracy of curve fitting to ir245 by V−3.

Wavelet Nc θ N� E� EM

GHM 252 0 10 3.73E-01 5.23E-02
254 0.1 10 4.00E-01 5.89E-02

CL2 252 0 12 1.05E+00 8.88E-02
254 0.1 10 1.08E+00 9.19E-02

CL3 254 0 12 4.76E-02 1.92E-02
256 0.1 11 4.60E-02 2.31E-02

ANV2-3 254 0 10 9.15E-01 1.06E-01
256 0.1 10 9.07E-01 1.04E-01
256 0.2 10 9.85E-01 1.03E-01

ANVb4.4 266 0 10 1.70E-02 2.18E-02
268 0.1 10 1.95E-02 4.34E-02

Table 2. Accuracy of curve fitting to ir-noised245 by V−3.

Wavelet Nc θ N� E� EM

GHM 252 0 10 9.80E+00 2.77E-01
254 0.1 10 9.89E+00 2.83E-01

CL2 252 0 12 1.03E+01 3.05E-01
254 0.1 10 1.01E+01 3.05E-01

CL3 254 0 11 9.50E+00 2.82E-01
256 0.1 11 9.32E+00 2.77E-01

ANV2-3 254 0 10 1.06E+01 2.79E-01
256 0.1 10 1.01E+01 2.94E-01
256 0.2 10 1.04E+01 3.13E-01

ANVb4.4 266 0 10 9.33E+00 2.79E-01
268 0.1 10 9.69E+00 2.80E-01

j Resolution level Nl Number of learnings
Nc Number of coefficients El Square error after learning
θ Shift parameter EM Maximum error after learning

The accuracy of curve fitting to ir245 and ir-noised245 by V−3 are given in Tables 1
and 2, respectively. The graphs of sin245 (top) and the fitting curve to ir245 by V−3 of
GHM (bottom) are given in Figure 7 and the graphs of noised-sin245 (top) and the fitting
curve to ir-noised245 by V−3 of GHM (bottom) are given in Figure 8. Corresponding
graphs for other multiscaling functions are similar.

Obsevation 2. Table 2 shows that the curve fitting accuracy is stable under the changes of
θ and multiscaling functions. The square errors after learning, El, are around 10 and the
maximum error after learning, EM , is around 0.3, which is close to the maximum value
of the energy of the noise. This means that we can have stable curve fitting under noise.
Figures 7 and 8 show that our curve fitting performs well with the GHM multiscaling
function and this is also true for other multiscaling functions. Comparing noised-sin245
(top) with the fitting curve to ir-noised245 (bottom) in Figure 8, we can see the good
denoising property of our curve fitting using the GHM multiscaling function and this is also
true for other multiscaling functions.
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Figure 7. The graphs, y vs. x, of sin245 (top) and the fitting curve to
ir245 by V−3 of GHM (bottom).

Example 3 (Neural networks preprocessing for CL2). We use the data leleccum.dat of Ex-
ample 1.

(i) Apply the multiwavelet neural networks preprocessing to get an approximation C0 =
[C1

0 , C
2
0 ]T . The result is given in the top row of Figure 9.

(ii) Apply the CL2 discrete multiwavelet transforms twice to get C2 = [C1
2 , C

2
2 ]T , D2 =

[D1
2 , D

2
2]

T , and D1 = [D1
1, D

2
1]

T . The result is shown in the bottom row of Figure 9,
where C1

2 , D1
2, and D1

1 are in the left-hand side and C2
2 , D2

2, and D2
1 are in the

right-hand side.

Obsevation 3. The difficulty with the odd-even preprocessing stated in Obsevation 1 is that
D2

1 contains low frequency information. For our multiwavelet neural network preprocessing,
it seems that D2

1 does not contain low frequency information, because the coefficients D2
1

highly oscillates and the maximum norm of D2
1 is small. Hence, our multiwavelet neural

networks preprocessing is well adapted to the CL2 multiwavelet.

6. Preprocessing and postprocessing based on curve fitting

Our preprocessing design is the following.

Procedure 5 (Multiwavelet neural network preprocessing).
(i) Try to find a minimizing solution of (15) for θ = 0 by multiwavelet neural networks.
(ii) If step (i) is hard, perturb θ to find a minimizing solution.
(iii) Denote the minimizing solution by C∗

j,k := [c1∗j,k, c
2∗
j,k]T .

(iv) Obtain approximate coefficients {Cj,k}k∈Z by Cj,k := 2−j/2C∗
j,k.
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Figure 8. The graphs, y vs. x, of noised-sin245 (top) and the fitting
curve to ir-noised245 by V−3 of GHM (bottom).

Our postprocessing design is the following.

Procedure 6 (Multiwavelet neural network postprocessing). Obtain processed data {f̃n}n∈Z

by
f̃n :=

∑
k

c1∗j,kϕ
1
(
2j(xn + θ) − k

)
+

∑
k

c2∗j,kϕ
2
(
2j(xn + θ) − k

)
.

7. Conclusion

Various numerical experiments have led to the following conclusions.
(i) Our curve fitting method is stable under noise for various multiscaling functions.
(ii) Our multiwavelet neural network preprocessing performs well for irregularly sampled

data.
This proposed preprocessing procedure combined with multiwavelet neural networks for
data-adaptive curve fitting is shown to perform well in the case of high resolution. In the
case of low resolution it is more accurate than numerical integration and cheaper than
matrix inversion.
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