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ON BRANCHES IN POSITIVE IMPLICATIVE
BCI-ALGEBRAS WITH CONDITION (S)
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ABSTRACT. In this paper we show that given a positive implicative BCI-algebra X
with condition (S), every branch V(a) of X with respect to the BCI-ordering < on
X forms an upper semilattice (V(a); <); especially, if V(a) is a finite set, (V(a); <)
forms a lattice; moreover, if (V(a); <) is a lattice, it must be distributive. We also
obtain some interesting identities on V(a).

K. Iséki and S. Tanaka in [7] discussed more systematically positive implicative BCK-
algebras. The author in [3] considered the relations between lattices and positive implicative
BCK-algebras with condition (S).

In order to generalize the positive implicativity from BCK-algebras to BCl-algebras, J.
Meng and X. L. Xin in [9] introduced positive implicative BCI-algebras, M. A. Chaudhry in
[1] introduced weakly positive implicative BCI-algebras. Based on [1], S. M. Wei and Y. B.
Jun in [10] investigated a series of properties of weakly positive implicative BCI-algebras.
Based on [9], the author in [4] showed that positive implicative BCI-algebras are equivalent
to weakly positive implicative BCI-algebras, and obtained some further properties of theirs.

In this paper we will continue our discussion of [3], [4] and [10]. We will first consider
the relations between lattices and the branches of a positive implicative BCl-algebra with
condition (S), and next give several interesting identities on such a branch.

0 Preliminaries For the notations and elementary properties of BCK and BClI-algebras,
we refer the reader to [7], [6] and [8]. And we will use some familiar notions and properties
of lattices without explanation.

Recall that given a BCI-algebra (X; *, 0), the following identities hold:
zxx=0,z+0=2x and (xxy)xx=0xy,
(xxy)xz=(x*xz)*y, (0.1)
O (zxy)=(0xz)*(0xy). (0.2)

And X with respect to its BCI-ordering < forms a partially ordered set (X; <) satisfying
the following quasi-identities:

(zxy)x(z*x2) < zx*y, (0.3)
(xx2)x(yxz) <z*y, (0.4)
z* (zxy) <y, (0.5)
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where the binary relation < on X is defined as follows: z < y if and only if x *y = 0.
Moreover, the following assertions are valid: for any z, y, z € X,

z <y implies z*xy < 2 * 1, (0.6)
x <y implies x * 2z < y* 2, (0.7)
z*y < z implies = x z < ¥. (0.8)

A branch V(a) of a BCI-algebra X is such set {x € X | > a} in which a is a minimal
element of X in the sense that < a implies = a for all z € X. It has been known (see,
e.g., [8], §1.3) that the collection {V(a) | @ € L(X)} of branches of X forms a partition of
X, that is, X =U,er(x) V(a) and V(a) NV (b) = @ whenever a # b, where L(X) is the set
of the entire minimal elements of X. And the following assertions are true:

2z € V(a) implies 0 x z = 0 % a, (0.9)
x € V(a) and y € V(b) imply z *y € V(axb), (0.10)
z < y implies that = and y are in the same branch of X. (0.11)

It has been known (see, e.g., [8], §2.8) that a BClI-algebra X is with condition (S) if
and only if there is a binary operation o on X such that (X; o,0) is a commutative monoid
satisfying the identity

xx(yoz)=(z*xy)*z. (0.12)

Moreover, if X is with condition (S), the following hold: for any z, y, z € X,
(zoy)xz <y, (0.13)
xxy <z if and only if x < yoz. (0.14)

A BCl-algebra X is called positive implicative if it satisfies the identity
it is called weakly positive implicative if it satisfies the identity
(xxy)xz=((z*2)*2)*(yx*z). (0.15)
It is known (see, [4], Theorem 2) that a BCI-algebra is positive implicative if and only if it
is weakly positive implicative. Thus, if X is positive implicative, (0.15) is valid. Replacing
y by 0 and z by y in (0.15), the following holds: for any z, y € X,

rxy=((x*y)*y)*(0x*y). (0.16)
Moreover, if y is in the branch V(b) of X, by (0.16) and (0.9), we obtain
zxy=((z*y)=y)*(0xb). (0.17)

Proposition 0.1. Let V(a) be a branch of a positive implicative BCI-algebra X . Then the
following is true: for any x € V(a),

x=(xxa)*(0*a), (0.18)
or equivalently, x=(zx(0xa))*a. (0.19)

Proof. For any x € V(a), we have (x % a) * (0% a) < z by (0.4). Denote
u=(z*xa)=*(0xa).

Then v < z. So, by (0.11) and (0.9), we obtain v € V(a) and 0* v = 0 * a. Also, by (0.4)

and (0.5), the following holds:

(2 (0% a)  (xxa) x (0 ) Sa*(2+a) <a.

Since u = (x % a) * (0xa) and 0% u = 0 x qa, it follows (z * (0 * u)) * u < a. Then the face
that a is a minimal element of X gives (z * (0 *u)) * u = a. So, by u € V(a) (i.e., a < u),
we derive

((xx(0xu))*xu)*xu=axu=0.
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Hence ((x *u)*u)* (0% u) = 0 by (0.1). Thus (0.16) implies z xu = 0, i.e., x < u. In
addition, u < z. Therefore = u. We have shown that z = (z *a) % (0*a), in other words,
z=(r*(0xa))*a by (0.1). O

1 Relations between lattices and branches Let’s begin our discussion with vari-
ous relations between lattices and the branches of a positive implicative BCI-algebra with
condition (S).

Theorem 1.1. Let X be a positive implicative BCI-algebra with condition (S). Then every
branch V(a) of X with respect to the BCI-ordering < on X forms an upper semilattice
(V(a); ) withx Vy = (xoy)*a for any x, y € V(a).

Proof. For any z, y € V(a), by (0.12) and (0.9), we have

zx(zoy)=(r*xx)*xy=0xy=0%a.
Then (0.14) and the commutativity of o give

1< (@oy)o(0+a)=(0+a)o(zoy).
So, (0.7) and (0.13) imply

2+(0+a) < (0% a)o(z0y)* (0+a) <woy.

Using (0.7) once more, it follows (z* (0xa))*a < (zoy)*a. Hence x < (zoy)xa by (0.19).
Similarly, y < (z o y) * a. It is easy to see from (0.11) that (x o y) xa € V(a). Therefore
(x oy) * a is an upper bound of x and y. Next, let u € V(a) be any upper bound of z and
y. Then z < w and y < u. By < w and (0.6), we obtain (zoy) *xu < (zoy) *x. By (0.13)
and y < u, the following holds: (zoy) *xx < y < u. Comparison gives (zoy) *u < u, i.e.,
((xoy)*u)*u=0.So,

(woy)*a)xu=((((zxoy)*a)xu)*u)*(0xa) [by (0.17)]
= (((zoy)*xu)xu)xa)* (0xa) [by (0.1)]
=(0x*a)*(0%a)=0.
Hence (z o y) * a < u. We have shown that (z oy) * a is the least upper bound of z and y.
Therefore (V(a); <) is an upper semilattice with x Vy = (z o y) * a. O

It is known that the zero element is the only minimal element of a BCK-algebra.

Corollary 1.2 ([5], Theorem 1). If X is a positive implicative BCK-algebra with condi-
tion (S), then (X; <) forms an upper semilattice with xVy =z oy for any xz,y € X.

It is interesting that if the branch V(a) in Theorem 1.1 is a finite set, we have a nice
result as follows.

Proposition 1.3. Let V(a) be a branch of a positive implicative BCI-algebra X with con-
dition (S). If V(a) is a finite set, then (V(a); <) forms a lattice.

Proof. From Theorem 1.1, (V(a); <) is an upper semilattice, and we only need to prove
that (V(a); <) is a lower semilattice. For any z, y € V(a), let Q denote the set consisting
of the whole lower bounds of # and y. Then 2 is nonempty by a € €. It is easily seen from
(0.11) that  C V(a). Now, since V(a) is a finite set, so is 2. There is no harm in assuming
Q={b1, ba, --+, bp}. Put b=">b1 Vb V---Vb,. It is not difficult to verify that b is just the
greatest lower bound of z and y. Therefore (V(a); <) is a lower semilattice. O

However, if V(a) is an infinite set, Proposition 1.3 is false. In fact, a counter example
has been given in Example 3 of [3]. That is because every BCK-algebra X is a BCI-algebra
with the condition V(0) = X.
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In the following let’s turn to consider the distributivity of (V(a); <) if (V(a); <) is a
lattice.

Theorem 1.4. Let V(a) be a branch of a positive implicative BCI-algebra X with condition
(S). If (V(a); <) is a lattice, it must be distributive.

Proof. From lattice theory, a lattice is distributive if and only if it contains neither a rhom-
bus sublattice nor a pentagon sublattice (see, e.g., [2]). Now, if our assertion is not true,
the lattice (V(a); <) contains either a rhombus sublattice or a pentagon sublattice whose
Hasse diagrams are respectively assumed as follows.

u u

& €
As to the first diagram, it is easy to see from Theorem 1.1 that

u=xVy=(rxoy)*a.

Then (0.4) and (0.13) together give
uk (z*xa)=((xoy)xa)x(x*xa) < (voy)*z < y.

In a similar fashion we can prove u * (z x a) < z. So, u * (x *a) < y A z. Observing our
diagram, we have y A z = e. Hence u x (z xa) < e. Thus uxe < x*a by (0.8). Thereby
(0.7) implies that (uxe) *x < (z *a) * z, namely, (u* x) xe < 0*a. It follows from (0.12)

that u x (x o e) < 0% a. Therefore u * (0% a) < xoe by (0.8). Now, using (0.7) once more,
we obtain

(ux (0xa))*xa < (xoe)x*a,
which means from (0.19) and Theorem 1.1 that u < z V e. Note that e < z, we have
x Ve =x. Hence u < x, a contradiction with v > x.
As to the second diagram, we have (y o z) xa =y V 2z = u by Theorem 1.1. Then

((xxa)*xa)*((yoz)*xa)=((xxa)xa)xu=((z*xu)*a)*a. (1.1)
By (0.15), the left side of (1.1) is equal to (x * (y o z)) x a; by « < u, the right side to
(0% a)*a. So, (xx(yoz))*xa=(0x*a)*a. Hence

((x*(yoz))xa)*(0xa)=((0%a)*a)*(0xa)=0x*a.

Also, by (0.1) and (0.18), the following holds:

(zx(yoz))xa)x(0xa) = ((xxa)x(0xa))x(yoz)=zx(yoz)
Comparison gives z* (yoz) = 0%a. Thus (z*y)*z = 0xa by (0.12). Thereby (0.8) implies
(x *y) * (0% a) < z. On the other hand, by (0.9) and (0.4), we have

(xxy)*(0xa)=(x*xy)*(0xy) < x.
Then (x *y) * (0xa) < z Az. Because of z Az = e, it follows (z *y) * (0 * a) < e, that is,
(x+(0%a))*xy <e. Thus zx* (0*a) <yoe by (0.14). Hence (0.7) implies

(%(0%a) xa< (yoe) xa,
which means from (0.19) and Theorem 1.1 that z < y V e. Note that e < y, we have

y Ve =1y. Therefore x < y, a contradiction with =z > y.
Summarizing the above arguments, the lattice (V' (a); <) is distributive. O

Corollary 1.5. Let V(a) be a branch of a positive implicative BCI-algebra X with condition
(S). If V(a) is a finite set, then (V(a); <) is a distributive lattice.
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Corollary 1.6 ([3], Theorem 3). Let X be a positive implicative BCK-algebra with con-
dition (S). If (X; <) is a lattice, it must be distributive.

2 Several identities on a branch We now consider several identities on a branch of a
positive implicative BCI-algebra with condition (S), which are similar to those on a positive
implicative BCK-algebra with condition (S).

Proposition 2.1. Let V(a) be a branch of a positive implicative BCI-algebra X with con-
dition (S). Then the following are valid:

(1) x=(zox)*a for any x € V(a);

(2) x <y impliesy = (xoy) *xa for any x, y € V(a);

(B) (zoy)*(rxoz)=(yx(xoz))*(0x*a) for any x € V(a) and y, z € X.

Proof. (1) and (2) are two immediate results of Theorem 1.1, and we only need to show (3).
Assume that x is any element in V(a), and y, z in X. By (0.13), we have (zoy) *z < y.
Using (0.7) two times, we obtain ((zoy) *x) xx < y *x and
((oy)xz)*z)*(0xa) < (y*z)*(0xa).

Then (0.17) implies (xoy)xx < (y*x)* (0xa). (2.1)
Using (0.7) once more and applying (0.1), it follows

(oy)+a)z < (y+a)2)+ 0+ a),
which means from (0.12) that

(zoy)*x(xoz) < (y*(voz))x(0xa). (2.2)
Next, by (0.12) and (0.9), one has

y*(zoy)=(yxx)*xy=0xx=0%*a.
Then (0.4) gives

(v (@o2)*((woy) «(w02) <y+(woy) = Dxa.

So, (0.8) implies

(y+ (w02)* (0+a) < (woy) * (zo2). (2.3)
Combining (2.2) with (2.3), it yields (zxoy) % (z02) = (y* (v 0 2)) * (0 % a). O

Theorem 2.2. Let V(a) be a branch of a positive implicative BCI-algebra X with condition
(S). Then for any x, y € V(a) and any z € X, the least upper bound (x*xz)V (y*z) of x*z
and y * z exists, and (x*2)V (y*2z) = (x Vy) * 2.

Proof. For any z, y € V(a) and any z € X, there is no harm in assuming z € V'(b), then
xxz€V(axb) and y*z € V(a+*b) by (0.10). So, by Theorem 1.1, the least upper bound
(x*x2)V (y*z)of z+zand y*z exists. It is easy to see from (0.7) that (z V y) % z is an
upper bound of x * z and y * z. Then

(xx2)V(y*xz) < (xVy)* 2. (2.4)
It remains to show that the opposite inequality of (2.4) holds. Denote

t=(xVy)xz and u= (xx*2)V (yx*z2).

Then we have u < ¢ by (2.4), and we only need to show ¢t < u. We first assert that the
following are valid:
txz)*(0%b),
tx (0 (axb)))* (ax*b),
(zoy)xa)sz,
(xx2z)o(y=2))*(axb).

—~~
0 g o o
2222
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In fact, by (0.17), we have
t=(xVy)xz=((zVy)*xz)x2)«(0xb) = (t*z)*(0*b),
(2.5) holding. Because ¢t € V(a#*b), (2.6) is a direct result of (0.19). Finally, (2.7) and (2.8)

can be seen from Theorem 1.1, as asserted. Now, combining (2.6) with (2.8) and noticing
(0.4), we obtain

Eru < (5 (0% (ax b)) # ((z#2) 0 (y+2)) (2.9
By (0.1) and (0.12), (2.9) is equivalent to

txu< ((tx(z*x2))x(y*xz2))*(0x(axb)). (2.10)
Also, by (0.13), one has (zoy) *x <y, then ((zoy) *z) %z <y =z by (0.7). So,
((zoy)xa)*z)*(yx2) =0. (2.11)

Right * multiplying both sides of (2.11) by a and applying (0.1), one obtains
((xoy)*xa)x2z)xx)*(y*x2)=0x*a.
Hence (2.7) gives (txx)*(y*z)=0x*a. (2.12)
Moreover, by (0.4), we have (¢ * z) * (z * z) < ¢t * x. Then (0.7) implies
(t52) 5 (25 2)) # (05 ) < (t52) 5 (0 %D).
That is, ((tx2) % (0%b))* (zx2) < (t*xx)*(0xb).
So, by (2.5), we obtain t % (x % z) < (¢t * ) % (0* ). Hence

(tx(xxz))*x(yxz) < ((t*xxz)*(0xb))*(y*x2z) [by (0.7)]
— ((ta) ()« (0xb) [by (0.1)]
=(0*a)*(0xDb) [by (2.12)]
=0x(axb). [by (0.2)]
From this, we derive
((tx(xx2))*(y*xz))* (0 (axb)) =0. (2.13)
Comparing (2.10) with (2.13), it yields ¢ x u < 0, in other words, t x u = 0 by 0 being a
minimal element of X. Consequently, t < u. The proof is complete. O

Theorem 2.3. Let V(a) be a branch of a positive implicative BCI-algebra X with condition
(S). Then the following hold: for any x,y, z € V(a),

(1) z=(zx(zxy))V((zxy)*(0*a));
(@) svy=2V((yee)s(0+a);
(3) x\/y)*xfy*x and (xVy)xy =x *y;
Proof. (1) For any z, y € V(a), we have x xy € V(a*a) = V(0) by (0.10). Then 0 < x*y.
So, by (0.6) and (0.11), we obtain
zx(zxy) <z and zx*(xxy) € V(a).
Also, by (0.4), one has (z*y) * (0*y) < x. So, by (0.9) and (0.11), one obtains

(x*xy)*x(0xa) <z and (zx*xy)x*(0xa)€ V(a). (2.14)
Since (V (a); <) is an upper semilattice, it follows
(xx(x*xy))V((z*xy)*(0*a)) <z (2.15)

Next, by (0.3), we have
(o5 (0% ) * (% (z9)) < (zy) % (0% a).
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Then (0.14) gives
(0%a) < (0% () o (2 +) * (0% a).
So, by (0.7), we obtain
(xx(0xa))xa< ((x*x(zxy))o((x*xy)=*(0xa)))*a.
Hence (0.19) and Theorem 1.1 imply
r<(xx(xxy))V((xxy)*(0xa)). (2.16)
Comparing (2.15) with (2.16), it yields x = (x x (x xy)) V ((x x y) * (0 * a)).
(2) Following the proof of (2.14), one has
(yxx)* (0xa) <y and (yx*xz)x*(0xa) € V(a).
Since (V(a); <) is an upper semilattice and z, y € V(a), it follows
V{(yxx)*(0xa)) <z Vy. (2.17)
Next, following the proof of (2.1), we have (zoy) *z < (y*x)* (0*a). Then (0.14) implies
zoy<xo ((y*xz)=*(0xa)). So, by (0.7), we derive
(oy)ra< (zo((yss)s (0+a)*a.
Therefore  Vy < 2V ((y * ) * (0 % a)) by Theorem 1.1. Comparison with (2.17) gives
xVy=zV ((y*xz)*(0x*a)).
(3) Tt is a direct result of Theorem 2.2.
(4) By (0.19), we have z = (2 x (0 * a)) * a; by (2) and Theorem 1.1, we obtain

zVy=aV((yxz)*(0xa))=(zo((y+z)*(0xa))x*a

Then
zx(xVy)=(zx(0x*a))*xa)* ((xo((y*xz)*(0xa)))*a)
S (2% (0xa)) = (zo((y*x)*(0xa))) [by (0.4)]
= ((zx (0% a))*z)* ((y* ) * (0xa)) [by (0.12)]
= ((zxx) % (0% a)) * ((y* ) * (0xa)) [by (0.1)]
<(zxx)*(y*x) [by (0.4)]
That is, zx(xVy) < (zxx)* (y*x). (2.18)

Next, by (0.3) and (3), one has

(zxz)*(zx(xVy) < (zVy)xx=yx*x.
So, (0.8) implies (zxx)*x(yxz) <zx(xVy). (2.19)
Combining (2.18) with (2.19), it follows z * (z V y) = (2 * ) * (y * ). O
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