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ABSTRACT. In the paper we study a mathematical problem of optimally managing a
portfolio of assets which are dependent on microeconomic and macroeconomic factors
and where the investor’s aim is to maximize the portfolio’s risk sensitized growth rate.
We consider an infinite horizon control problem of maximizing the portfolio’s risk
sensitized growth rate criterion. Using the so-called span semi-norm approach and
imposing some technical assumptions we provide a complete solution to the above
control problem.

1 Introduction

There have been several works where optimal investment models are reformulated as a
risk sensitive stochastic control problems. Among them, Fleming [8], Fleming and Sheu
[10], Bielecki and Pliska [1] explored the idea of risk sensitive control to the problems
arising from portfolio management.

In particular, Bielecki and Pliska [1] applied risk sensitive control to a version of Mer-
ton’s [17] intertemporal capital asset pricing model and introduced the approach of risk
sensitive portfolio optimization based on the dependence of the assets on macroeconomic and
microeconomic factors .The result was an optimal control problem with infinite horizon risk
sensitive criterion. Using continuous time risk sensitive control theory ( see [9], [18] and
[23]) the authors showed that the optimal portfolio strategy is a simple function of the fac-
tor levels. Other studies of risk sensitive criterion include [2], [11], [12], [16], [19], [20].
In particular , in [2] Bielecki and Pliska considered the case with transaction costs
having a fixed component.They used impulse control models to show that the solutions to
the corresponding control problem can be obtained via so-called risk sensitive
quasivariational inequalities.

Throughout all this works on risk sensitive portfolio management the security prices
follow diffusion processes and underlying factor processes was taken to be Gaussian or, at
least ( see Nagai [19]) non-Gaussian processes.

Our interest is to reformulate the portfolio management problem, proposed by Bielecki
and Pliska [1], in discrete time context and develop a procedure for computation of optimal
strategies. Fortunately, the discrete time risk sensitive control theory offers a potential path
to a solution to our problem.

Our financial model resembles the one described in [3], where dynamic programming
approach was used to solve discrete time portfolio optimization control problem with re-
striction that the factors’ state space is finite. In our paper we do not need restrictions
on the factor space. However, our approach is different from [3] and is based on method
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applied by Di Masi and Stettner in [6].

Similar approach was also applied by Stettner (see [22]) to continuous time risk sensi-
tive portfolio managing. Under assumption that investor can change his portfolio only at
discrete times the cases with and without transaction costs were solved.

The paper is organized as follows. In Section 2 we give a detailed description of our
financial model, state suitable control problem and introduce assumptions. In Section 3 we
construct the corresponding Bellman equation and prove the verification theorem. Section
4 contains the main results of the paper which are a solution of the Bellman equation and
a complete characterization of optimal trading strategy.

2 Financial Model and Assumptions

2.1 Financial Model We shall assume that the evolution of factors has a Markovian
structure, namely it is described by discrete-time Markov process X = (z;),t = 0,1,...,
which is defined on a probability space (2, F, P) and takes values on a compact separable
metric space £ endowed with a Borel o- algebra £. Moreover we assume that z; has a
transition operator P(z:,-) at the generic period ¢.

We shall consider a financial market in which m+1 financial assets are traded in discrete
time only.

One of them is a bank account with a constant interest rate r, so a deposit of one dollar
gives a reward e™ after ¢ periods. We shall denote by B; the part of wealth hold in the
bank account at the time ¢.

There are also m risky assets with prices-per-share S; at time ¢, which depend on the
level of the factor process X = (z:).The assets are modelled in such way, that asset returns
depend on the beginning and the end of the trading period. Namely, there is a Borel
measurable function o : £ x E x R™ — R7T such that for

g St1+1 St
t+1 Stl ) ) Strn )

and given X, := o ((z5), 0 < s <t)and Y, := 0 ((7s,5s), 0 < s < t) with Sy := (S}, -+, 5™)
we have

P(Zip1 € Al Vi, Xia) = /a(xt,xt+1,z)u(dz),
A

where A € R™ and p is a probability measure on R™.

Let us also consider an economic agent who starts with the initial capital V5 = v and
invests it in the above m + 1 assets. We assume that our investor can change his portfolio
without transactions costs and is allowed to buy any nonnegative number (also parts) of
the assets. We admit neither short selling nor short borrowing.

The trading strategy is modelled as follows.

Let V; denote the agent’s wealth at time ¢. Suppose that at time ¢ our agent invests a
proportion of his wealth, denoted by aF, in the k-th risky asset and the rest of wealth is
invested in the bank account, i.e. B, = (1 —a} — -+ — a/)V,.

Notice that the absence of short selling and short borrowing imposes some restrictions

on the trading possibilities. Namely, we have

Vk=1,---,m afZO and Zafgl.
k=1
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k

At time ¢ our agent buys hf := a‘skv’ shares of the asset k. Therefore at time ¢ + 1 the
t

agent’s wealth is

Vigr = h{Sty + -+ h"St, + Bee' .
Analogously, at time ¢ 4+ 1 our investor can change portfolio by investing a proportion

of his wealth V;41 in the risky assets and so on.

Let a; = (aj,...,a) denote the vector of proportions invested at time ¢ in the risky
assets. Then the wealth of the investor evolves under trading strategy a; and V; is given
accordingly by

(1) Vier = Vile" +ar 0 (Zipr — €'1)]

where by o we denote an inner product of vectors and 1 represents the vector of 1’s.
Indeed, we have

o kv St o kv Stes Sk
W+1 = Z a; ‘/t Sf + Bter = Z a; ‘/t Stk + 1-— Z ay; Wer
k=1 k=1

k=1
m k
= Vile"+ Y aF Sep1 _pr
! AN .

To describe the concept of control formally we introduce the following notations and
definition.

Let A be a compact subset of R™, whose elements a = (al,...a™) represent vectors
of proportions invested in the risky assets. Moreover, let & = (a;) denote an R™-valued
investment process or trading strategy whose components are af, k=1,--- ,m.

Definition A control strategy & = (a;) is admissible if the following conditions are
satisfied:

NIE!
Q

o
IA
—

(i) Vt>0 a €A, afF>0,k=1,---,m and

x>
Il
—

(#i) a¢is ) — measurable.

With each admissible trading strategy & = (a;) we associate the following risk sensitive
measure of performance (risk sensitized grown rate)

TOAY s 2\ 1 ©
(2) JE(a) = thilo%f (—6) TlnEx {exp <_EIHVT)} .

where F, denotes the conditional expectation under given g = x.
The nonnegative parameter © captures the investor’s attitudes about risk aversion.
Notice that by Taylor expansion for © close to 0 we have, that

2
InE {exp (—g In VT)} ~ —%E (InVr) + %Var (InVp).

Consequently, for sufficiently small © the expression (2) gives an information about the long
run growth rate of the wealth V; together with the value of risk measured by the variance
of InV;.
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The aim of our investor is to maximize the functional (2).i.e. choose an admissible
trading strategy a* such that
JE(a*) =sup J¥(a).
a

We can notice that the control problem of maximization of (4.2) is equivalent to mini-
mization of the following functional

CIAY s 2\ 1 ©
(3) Je(a) = ll;njotip <6> T In £, {exp (—5 anT>} .

2.2 Assumptions Let us first introduce assumptions on the factor process X = (z¢).
Namely, we shall need the following assumptions:

(A1) Vf € C(E) the mapping £ > z — Pf(x) :gf(y)P(amdy)

is continuous.

(A2) 30 < 1 such that Vz,2’ € E,VB € &
P(z',B) — P(x,B) <34.
Let us introduce the following conditional expectation
1O (2, Tean, ar) = E{e(f%1n[evv+ato(zt+1,ew~1)])|yt,XtH}
(4)

_ fe(—% ln[ev'-i—a,,o(z—.g'nl)])Oé(xt’J:H_l7 dZ) )

The requirement for ;© is that:
(A3) There are constants 0 < b < B such that Va,y € F and Va € A

[€) e
67511’13 S u@(x’y’a) S e*flnb.

(A4) Vy€ E,Va€ A the mapping FE >z — p?(z,y,a)
is continuous.

Remark 2.1 In view of the construction of u® the assumption (A3) introduces some
restriction on the set A. Indeed, it is required that the set A is such that, for each
acA zeR™

b<e" +ao(z—e"1)<B a.s..

The boundedness from below is needed to rule out the pathological cases while the boundedness
from above is a stronger form of the natural assumption, that the conditional expectation
(4) exists and is finite.

On the other hand, the assumption (A3) holds under restrictions on the relative growth
of prices of the risky assets. Namely, if there are constants d < D such that fort

Si
dgg—jlgD for i=1,--- 'm,
t
we have o o
672 In D §M®($7y7a/) <6771nd.
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3 Optimality equation

Let us consider the following Bellman equation

(5) e?(@)+2 :,32& e%ce(x’“)/e“(x)Pg)(x,dy) )
jo

where ¢®(z,a) and P&(z,dy) are defined as follows:

gu@(x,y,a)P(x,dy)
) e R P
and
1) Cle,a) = 5 | [ 1 p.0)P(.dy)
E

The next verifications theorem states a relation between (5) and a given control problem.

Proposition 3.1 Let assumptions (Al), (A3) and (A4) be satisfied.
If there exists a function w € C(E) and a constants X such that for x € E equation (5) is
satisfied, then

© ©
A= Zinfg7(a) = = sup T (u(Xo)

where u : E — A is a Borel function for which the inf in (5) is attained.

Before the proof of the above Proposition, we prove the following auxiliary lemma.

Lemma 3.1 Let assumptions (A1) (A3) and (A4) be satisfied. Then for each f € C(E)
the mapping

Ex A3 (r,a)— P&f(z) = /f(y)PS(%dy)
E

18 continuous.

Moreover, the function c®(x,a) is continuous with respect to both variables.
Proof:
From the definition of u®(x,y,a) and (A3) immediately follows that a +— u®(x,y,a) is

continuous. Therefore the mappings
a— P&f(x) and aw c®(z,a)

are continuous.
The continuity of 4® and ¢® with respect to 2 follows from assumption (A4).
The boundedness of ¢®(z, a) follows from (A3). Indeed, we have

1
In— < c®(x,a) Slng.

& =
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This completes the proof.

Proof of Proposition 3.1
Let us first observe that by definition of ¢® and P&(z,-) the equation (5) can be rewritten
in the following form

(8) ew(:c)+)\ = inf E, {ew(xl)ue(gj7x1,a)} .
acA
Indeed,
@A —  ipf [e‘gce(x,a)few(x)Pg)(x,dy):|
a€A E

= inf [ eWu®(z,y,a)P(z,dy) .
a€A

Without loss of generality we assume that Vo = 1. Then

@A < B, [e@) O (2,31, a0)]

We may iterate T" times to conclude that
ew(x)Jr)\T <E, {67% InVp ew(zT)} )
Consequently, letting T — oo we obtain

2 2\ 1
/\6 < li;njolip (6) T InE, {exp (—% 1nVT>} .

Notice that equality holds for the optimal control strategy. The proof is therefore
completed.
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4 Main result

We shall start from the proof of the following auxiliary lemma.

Lemma 4.1 Let assumptions (A2), (A3) hold.
For each K < oo there is a constant A < 1 such that for each .2’ € E, a,a’ € A and
Beé&

(9) sup | P§ («/, B) — P§(x,B) | < A.
<K

Proof:
Suppose that the inequality (9) does not hold. That there are sequences (x,,), (),
(an), (al,), (©,) and (B,,) such that

P (&, Bo) — PS" (2, Bn) — 1 a8 1 — 00.

n

Therefore
Pa (), BS) — 0 and P& (2, B) — 0.
Since
gue(x,y,a)P(x,dy) e
P§(z,B) = 78,5, P dy) >e¢ 3% P(z,B)
E

we have that
P(z!,,B%) - 0 and P(z,,B,) —0 asn—oo.
Consequently
lim [P(x),,BS) — P(xy,, By)] =0

n—00

which contradicts the assumption (A2).

Notice that by Lemma 3.3 in [8] we can transform (5) in an equivalent form

. © a
(10) w(z) + A= inf s —®(z,a) +E/w(y)1/(dy) —I(v, Pg(z,-))|

where P(FE) is the space of probability measure on E and I(v, p1) is defined as follows

glog g—Zl/(dx), when v < 1,

I(v,p) =
. p1) +00 otherwise.

Moreover, the sup in (10) is attained for

[ e“®) P& (x,dz)
B

7 B = - .
¥(B) [ e P&(x,dz)
E
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For g € C(F) define the operator

(11) T9g(z) = inf % (@a) /eg(y)Pg)(x,dy) :
E
or in equivalent form
S} S © a
(12) T®g(z) = algi sup | —c°(x,a)+ [ gly)v(dy) — I(v, P§(z,"))
vEP(E) .
Notice that the sup in (12) is attained for
feg ) P& (z,d?)
gy—B8_
“B) = feg )P&(z,dz)

The next Proposition was proved in [6] and we give only main ideas of the proof.

Proposition 4.1 Let assumptions (Al) (A2) (A3) and (A4) be satisfied.

Then the operator T® is a local contraction in C(E) endowed with the span norm

[lg]]sp = sup g(z) — ingg(az), namely for each M > 0 there ezists a constant p(M) < 1 such
z€E ye

that for each g1, g2 € C(E) with ||g1]lsp < M, ||g2]|sp < M we have

17991 — T®gallsp < p(M)[lg1 — g2llsp-

Sketch of proof:

Notice that under assumptions (A1) and (A4) the operator T© transforms C(E) into itself.
Therefore the inf in (10) is attained.

For given g1, g2 € C(F) and z1,z2 € E choose a1, as such that

(13) T®gl(w1) = sup cg(wl,al) + /gl(y)u(dy) —I(v, P§' (x1,°)) | »
veP(E) | . |

and

(14) T@gg(xg) = sup c@(xg,ag) -+ /gg(y)l/(dy) — I(v, P§*(z2,)) | »
vEP(E) i . |

Moreover, let
fe-‘h ) P& (21, d2)

B
v(B) = fe-‘h )P (z1,dz)’

and
[ e91Z) P& (25, dz)

B
I/Q(B) - f@gl(z)sz(l'Q,dz) .
E
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Then
T®gy(x2) — T®ga(22) — (T€g1(21) — TOg2(x1))
< 9c%(z2,a2) +£91(y)1/2(dy) — I(v2, P&*(22,7))
= §%(@2,02) + [ 2u)valdy) — I(v, P& (w2, )
- 1, a1) +£91(Q)V1(dy) —I(vn1, Pg' (21,°))
+ 91, m) +£92(y)1/1(d2/) — I(ve, P& (21,-))
= g(gl(y) —92(y)) (v2 — v1)(dy) < [lg1 — gal[sp(v2 — v1)(T),

where the set I' we obtain from Hahn-Jordan decomposition of v5 — 1. Therefore

IT®g1 — T®ga||sp < ||g1 — g2|lsp sup sup sup (Veragr — Varalgs)s
z,x'€F a,a’ €A Be

where
[ e9) P&(x,dz)

_ B
Vrag(B) = [ es*) P& (z,dz)
E

Notice that
Ve.ag(B) > e 1910 P& (2, B).

Therefore using the similar method as in Lemma 4.1 we obtain

sup sup  sup sup(Vpa,g, — Var,ar,g.) = P(M) <1,
91,92:1101]lsp: |92l sp<M z,2'€E a,a’ €A BEE

which completes the proof.

We shall make an additional assumption:
(A5) Aezm T <1,

where b, B come from (A3) and A is specified as in Lemma 4.1.

We can now formulate our main result

Theorem 4.1 Assume (Al), (A2), (A3), (A4) and (A5). Then there exists at most one
(up to an additive constant) function w € C(FE) and a unique constant A\ for which the
Bellman equation (5) is satisfied.

Proof:
Note first that under the assumption (A5) we have
NSl < 1|

where |c®||s, = sup c®(z,a) — inf ¢®(z,a). Indeed
z,a T,a

max [ 1 (z,y, a)P(z, dy)

AeQHC ||<p<AxaE < Ae
mlnf,u z,y,a)P(z,dy)

)
5 In

|t
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It is easy to check that
)
e e
[T 0[|sp < EHC I[sp -

where 0 is a null function defined on E. Moreover, under Proposition 2 [7] we have that
n
1(T®)"0llsp < M,

where

S}
M = EHCGHSP —|—1n

o (A2l )|
3 (aere)|

Then, by Proposition 4.1 we obtain
n+1 n
I(T®)" 0= (T°)" 0llsp < p(M)™[[(T®) O] -

Therefore the sequence (T@)n 0 is convergent in the span semi-norm to a function w satis-
fying ||T®w — w||sp = 0. Consequently, there is a constant A such that

TOw =w+ A\

The uniqueness of A and w (up to an additive constant ) follows from
Proposition 4.1.

We can summarize the above results in the following form

Theorem 4.2 Let assumptions (A1), (A2), (A3), (A4) and (A5) be satisfied. Then there
is an admissible trading strategy which is a function of current values of the factor
levels and mazimizes the functional (2).

Moreover, the optimal trading strategy at time t depends only on values of the factor process
X = (x¢) at time t and can be computed by solving the equation (5).

The proof immediately follows from Proposition 3.1 and Theorem 4.1.
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