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Abstract. This paper considers a discrete time optimal stopping problem with a finite
planning horizon. In addition to an offer that may appear randomly, at each point in
time over the entire planning horizon a quitting offer is assumed to be available. By
accepting this, a decision maker can terminate the process. This paper assumes that
the probability that an offer will appear if a search cost is paid is higher than if it is
not paid. Thus, decisions must be made as to whether or not to accept the quitting
offer, to accept an appearing offer, and to conduct a search for an offer. The main
purpose of this paper is to clarify the properties of the optimal decision rules. One
of our main findings is that the quitting offer must either be accepted at the starting
point of the process or not be accepted prior to the end of the planning horizon, the
deadline.

1 Introduction

In everyday life, we often encounter situations which require us to choose the best from
chances subsequently appearing within a given planning horizon. Examples of these sit-
uations include finding an apartment with the lowest rent, selling an asset at the highest
price, accepting a business proposal with the highest profit potential, and so on. In each
of the above situations, at each point in time up to the end of the planning horizon, the
deadline, the decision maker has to decide whether to stop the search process by accepting a
currently available offer or to continue the process. The above problem is usually called the
optimal stopping problem [2]-[7][11][12][15]-[17] where the decision maker is usually referred
to as the searcher.

Since the seminal works by Stigler [19] and McCall [12], over the years many models
of the optimal stopping problem have been proposed and examined. In the majority of
these, for example, [1][3]-[8][10]-[12][15][16], it is assumed that a search cost must be paid
to find an offer. The search cost can be represented by, for example, the advertising cost
paid by businesses to attract more customers. The adoption of the search cost necessitates
the introduction of the search skipping option. This is because with an excessively large
search cost, it may become optimal to skip the search if the time period remaining up to
the deadline is sufficiently long. Although literature on the optimal stopping problem with
search cost is abundant, we found only one article [1] in which the search skipping option is
taken into consideration. In the articles on the optimal stopping problem with search cost
such as those cited above except [1], each search at a point in time is assumed to produce
no more than one offer at the next point in time. Contrary to this, Assaf and Levikson
[1] study the optimal stopping problem with an infinite planning horizon where the effect
of the search effort (advertising) may last more than one period, implying that searching
may be skipped if the search effort is still effective in producing offer at the next point in
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time. In addition to [1], two articles on the dynamic pricing problem [20] and admission
control problem [18], which are related to the optimal stopping problem, also take the search
skipping option into account.

In the conventional models with search cost, it has been implicitly assumed so far that an
offer will definitely appear when the search cost is paid. However, a scenario where an offer
may not appear even if a search cost is invested seems to be more natural from a practical
viewpoint. In this scenario, a state that no offer will appear up to the deadline may become
a possibility. This leads to a violation of the absolute requirement of the optimal stopping
problem with finite planning horizon that an offer must be necessarily accepted up to the
deadline. To avoid the occurrence of this violation, in this paper, we introduce a quitting
offer at the deadline, which by accepting, the searcher can quit the process. This quitting
offer is similar to the salvaging offer which is normally assumed to exist at the deadline
in the newsboy problem [9][13][14]. The introduction of quitting offer is not needed in [1]
because the planning horizon is assumed to be infinite in their model.

The introduction of a quitting offer only at the deadline is rather restrictive since in
reality we often encounter situations where a quitting offer is also available at any point in
time prior to the deadline. Here, for explanatory convenience in the subsequent discussions,
we shall provide the definitions of some terms which will be referred to throughout this
paper. First, let a randomly appearing offer be referred to as the random offer, and one
which is readily available at each point in time over the entire planning horizon be the
quitting offer. Next, the term stopping means the act of terminating the search process by
accepting a randomly appearing offer, and the term quitting is the act of terminating the
search process by accepting the quitting offer. Below let us provide three examples in which
the above two types of offer are available.

1. Consider a short term traveler to a foreign country who has bought a car with a buyback
agreement (quitting offer) from a dealer and he plans to sell it before returning to his
home country. At any time before his departure date, he can sell the car back to the
dealer or search for other buyers (random offer) who may offer a price higher than the
one stated in the buyback agreement.

2. Consider a company which plans to divest itself from its wholly-owned trucking sub-
sidiary by the year end in an attempt to refocus on its core business. Before the year
end, the company can close down this subsidiary by selling the trucks to a salvage dealer
(quitting offer) who has agreed to purchase them at any time or find another firm which
may make a buying offer (random offer) for the subsidiary as a whole.

3. Consider a company which plans to launch a new product after say five years. The
company can invest money to find a new product idea with high profit potential (random
offer) or undertake the readily available product idea created by the previous product
development project team (quitting offer).

Furthermore, it is assumed in [18] and [20] that no offer will appear if the search is
skipped. In reality, however, even if a search is skipped, it is possible that an offer will appear
with some probability, and this will be normally lower than one if a search is conducted. So
far, this possibility has not been considered in any model proposed on the optimal stopping
problem with search cost. Below, let us illustrate our viewpoint with an example. Consider
a seller who has a piece of land for sale. Even if the seller does not spend any money to
advertise the sale except to put up a ‘for sale’ sign on the land, a buyer who coincidentally
passes by and becomes interested in buying may also approach the seller.

Taking the above into consideration, in this paper we propose a model of the optimal
stopping problem with the following four assumptions:

1. A quitting offer is available at every point in time throughout the entire planning horizon;
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2. Searching for a random offer can be skipped if the searcher so wishes.
3. If the search is skipped, a random offer may appear with a probability lower than that

when the search is conducted.
4. If the search is conducted, a search cost must be paid. The search cost paid at the

beginning of a period produces no more than one offer at the next point in time, which
implies that an offer may not appear.

In this problem, the searcher has to made decisions as to whether or not to accept the
quitting offer, to accept an appearing offer, and to conduct a search for an offer. The
objective of this paper is to clarify the properties of the optimal decision rules, which
consist of the three rules: The optimal quitting rule, the optimal stopping rule, and the
optimal search rule.

Based on our review of the previous research, a model which takes the above four
assumptions into consideration has never been proposed in the literature on the optimal
stopping problem. However, we notice that research on the inventory problem with salvage
option [14] possesses a structure which is related to ours in terms of the introduction of the
quitting offers. In [14], Petruzzi and Monahan deal with a problem of determining when a
retailer should terminate the selling season in the primary market by selling the remaining
inventory in a secondary market. Our model differs from theirs in the following three major
respects. Firstly, they assume that it is the searcher who offers a price for the assets on sale
whereas in our model the searcher does not make an offer; he instead weighs the randomly
appearing offer against his reservation value in determining whether or not to accept it.
Secondly, they assume that a single fixed price is offered by the seller throughout the selling
period so long as he does not terminate the selling process while in our model the offer’s
value is a random variable. Thirdly, they do not take the search cost of finding an offer into
consideration.

Our major finding is that in the optimal decision rules a quitting offer must either be
accepted at the starting point of the process or not be accepted prior to the deadline.
However, it may be accepted at the deadline. Besides, our model yields the result that
there may exist a searching time threshold, which implies that the searcher should skip the
search from the starting point of the process up to this time threshold. In other words,
the time period between the searching time threshold and the deadline can be called the
searching period.

The rest of the paper is organized as follows. Section 2 provides a strict definition of
our model. Section 3 defines several functions and examines their properties, which will
be used in the subsequent analysis. In Section 4 we derive the optimality equations of the
model, and in Section 5 we clarify the properties of the optimal decision rules. In Section 6
we extend the discussion to the case where the planning horizon is infinite. In Section 7
we provide some numerical examples that ascertain the properties of the optimal decision
rules. In Section 8 we present the overall conclusions of our research and suggest some
further works.

2 Model

Consider the following discrete-time stochastic decision process where points in time are
numbered backward from the final point in time of the planning horizon, time 0 (the dead-
line) as 0, 1, · · · and so on. Accordingly, if time t is a present point in time, the two adjacent
times t + 1 and t − 1 are the previous and next points in time, respectively. Let the time
interval between times t and t−1 be called the period t. This is small enough that no more
than one offer may appear.
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It is assumed that the searcher must necessarily accept one of the offers subsequently
appearing up to the deadline. If a fixed cost s ∈ [0,∞) (search cost) is paid at the beginning
of a period, an offer can be found at the next point in time with a probability λ1 ∈ (0, 1]
and if the search cost is not paid, an offer may appear with a probability λ0 ∈ [0, 1) where
λ1 > λ0; for convenience let us define λ = λ1 − λ0 where 0 < λ ≤ 1. In the discussion
that follows, the value w of an offer appearing randomly will be referred to as a random
offer w. Random offers appearing at successive points in time, w, w′, · · · , are independent
identically distributed random variables having a known continuous distribution function
F (w) with a finite expectation µ; let f(w) denote its probability density function, which is
truncated on both sides. More precisely, F (w) and f(w) are defined as follows. For certain
given numbers a and b such that 0 < a < b < ∞

F (w) = 0, w ≤ a, 0 < F (w) < 1, a < w < b, F (w) = 1, b ≤ w,(2.1)
f(w) = 0, w < a, f(w) > 0, a ≤ w ≤ b, f(w) = 0, b < w,(2.2)

where clearly 0 < a < µ < b.
In addition to the random offer defined above, a fixed quitting offer ρ ∈ (−∞,∞) is

assumed to be also available at each point in time where ρ < 0 implies the disposal cost to
discard the unsold asset if the decision process is an asset selling process. Let us refer to
the quitting offer at each point in time except the deadline as the intervening quitting offer
and to the one on the deadline as the terminal quitting offer. By β ∈ (0, 1] let us denote the
discount factor, implying that the monetary value of one unit a period hence is equivalent
to that of β units at the present point in time.

The decision rules of the model consist of the following three rules:

1. Quitting rule prescribing whether or not to quit the process by accepting the quitting
offer ρ.

2. Stopping rule prescribing whether or not to stop the process by accepting a random of-
fer w.

3. Search rule prescribing whether or not to search for a random offer at the beginning of
every period.

The objective here is to find the optimal decision rules to maximize the total expected
present discounted net profit over the planning horizon, i.e., the expected present discounted
revenue from accepting an offer whether a random or quitting offer minus the total expected
present discounted search cost paid up to a time when the process terminates by accepting
an offer.

3 Preliminaries

This section defines the functions that will be used to describe the optimality equations
of the model in Section 4. The properties of the functions verified in this section will be
applied to the analysis of the model in the sections that follow. For any x let us define the
following function

T (x) = E[max{w − x, 0}](3.1)

where E represents the taking of expectation with respects to w. Then, using the function,
let us define:

K0(x) = λ0βT (x)− (1 − β)x,(3.2)
K1(x) = λ1βT (x)− (1 − β)x − s,(3.3)
L(x) = λβT (x) − s(3.4)
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where

L(x) + K0(x) = K1(x)(3.5)

due to the definition of λ = λ1 − λ0. By x
K0

, x
K1

, and x
L

let us denote the solutions of the
equations K0(x) = 0, K1(x) = 0, and L(x) = 0, respectively, if they exist, i.e.,

K0(xK0
) = 0, K1(xK1

) = 0, L(x
L
) = 0.(3.6)

If these equations have multiple solutions, then let us define the minimum of them by x
K0

,
x

K1
, and x

L
, respectively. In addition, for technical reason, if λ0 = 0, let us define

x
K0

= 0.(3.7)

Lemma 3.1 below will be used to examine the properties of the functions K0(x), K1(x),
and L(x) and their solutions x

K0
, x

K1
, and x

L
stated in the two lemmas that follows.

Lemma 3.1

(a) T (x) is continuous and nonincreasing on (−∞,∞).
(b) T (x) is strictly decreasing on (−∞, b].
(c) T (x) = 0 on [b,∞) and T (x) > 0 on (−∞, b).

Proof. See Appendix A.

Lemma 3.2

(a) K1(x) and K0(x) are continuous and strictly decreasing on (−∞,∞) if β < 1.
(b) K1(x) + x and K0(x) + x are nondecreasing on (−∞,∞).
(c) |K1(x)+x−K1(y)−y| ≤ β|x−y| and |K0(x)+x−K0(y)−y| ≤ β|x−y| for any x and y.
(d) Let (1 − β)2 + s2 = 0. Then x

K1
= b where x < (≥) x

K1
⇔ K1(x) > (=) 0 ⇒ K1(x)

> (≤) 0.
(e) Let (1 − β)2 + s2 �= 0. Then there uniquely exists x

K1
< b where x < (= (>)) x

K1
⇔

K1(x) > (= (<)) 0.
(f) Let λ0 > 0.

1 Let β = 1. Then x
K0

= b where x < (≥) x
K0

⇔ K0(x) > (=) 0 ⇒ K0(x) > (≤) 0.
2 Let β < 1. Then xK0

uniquely exists with 0 < xK0
< b where x < (= (>)) xK0

⇔
K0(x) > (= (<)) 0.

(g) If s > 0, there uniquely exists xL < b where x < (= (>)) xL ⇔ L(x) > (= (<)) 0.

Proof. See Appendix B.

Next, let us examine the relationship among x
K0

, x
K1

, and x
L
. It will be seen later on

that this relationship plays a key role in determining whether or not to conduct the search
for a random offer.

Lemma 3.3 Let s > 0. Then:

(a) Let λ0 = 0. Then:
1 If β = 1, then xK1

= xL .
2 If β < 1, then x

K0
< (= (>)) x

K1
⇔ x

K1
< (= (>)) x

L
.
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(b) Let λ0 > 0. Then:
1 If β = 1, then x

K1
> x

L
.

2 If β < 1, then x
K0

< (= (>)) x
K1

⇔ x
K1

< (= (>)) x
L
.

Proof. See Appendix C.

From Lemma 3.3 we immediately obtain the following corollary.

Corollary 3.1 Let s > 0. Then:
(a) Let β = 1. If λ0 = 0, then x

K1
= x

L
, or else x

K1
> x

L
.

(b) Let β < 1. Then λβT (xK0
) > (= (<)) s ⇔ xK1

< (= (>)) xL .

Proof. (a) Immediate from Lemma 3.3(a1,b1).
(b) Since K0(xK0

) = 0 by definition, we have L(x
K0

) = K1(xK0
) from Eq. (3.5).

Thus from Lemmas 3.3(a2,b2), 3.2(e) and Eq. (3.4) we see that x
K1

< (= (>)) x
L
⇔ x

K0

< (= (>)) x
K1

⇔ K1(xK0
) > (= (<)) 0 ⇔ L(x

K0
) > (= (<)) 0 ⇔ λβT (x

K0
) > (= (<)) s.

4 Optimality Equations

In this section, we provide the optimality equation that satisfies the objective function of
the model. Let ut and rt(w) be the maximum total expected present discounted profits,
respectively, with no random offer and with a random offer w. Then we have

u0 = ρ,(4.1)
ut = max{ρ, Ut}, t ≥ 1,(4.2)

r0(w) = max{w, ρ},(4.3)
rt(w) = max{w, ρ, Ut} = max{w, ut}, t ≥ 1(4.4)

where Ut is the maximum total expected present discounted profits from rejecting both
random offer w and intervening quitting offer ρ, expressed as follows.

Ut = max

⎧⎨
⎩

K : β(λ0 E [rt−1(ξ)] + (1 − λ0)ut−1),

C : β(λ1 E [rt−1(ξ)] + (1 − λ1)ut−1) − s

⎫⎬
⎭ , t ≥ 1(4.5)

where ξ is the random offer appears at time t − 1, the next point in time and where the
symbols K and C represent, respectively, the decision to, respectively, skip and conduct the
search for a random offer†. Thus the first and second terms inside the braces of the right-
hand side of Eq. (4.5) are the maximum total expected present discounted profits from,
respectively, skipping and conducting the search for a random offer. Now, for convenience,
let

U0 = ρ.(4.6)

Then Eq. (4.2) holds for t ≥ 0 instead of t ≥ 1. Thus

ut = max{ρ, Ut}, t ≥ 0, with u0 = ρ.(4.7)
rt(w) = max{w, ut}, t ≥ 0.(4.8)

†We use K instead of S as a symbol representing “skip the search” because the symbol S is normally used
to represent the decision of “stopping the process” in conventional optimal stopping problems.
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Since E[rt−1(ξ)] = E[max{ξ, ut−1}] = E[max{ξ − ut−1, 0}] + ut−1 = T (ut−1) + ut−1 for
t ≥ 1, noting Eqs. (3.2) and (3.3), we can rewrite Eq. (4.5) as follows.

Ut = max

{
K : λ0βT (ut−1) + βut−1,

C : λ1βT (ut−1) + βut−1 − s

}

= max{K0(ut−1) + ut−1, K1(ut−1) + ut−1}(4.9)
= max{K0(ut−1),K1(ut−1)} + ut−1, t ≥ 1.(4.10)

Since λ = λ1 − λ0, from Eq. (3.4) we have

K1(ut−1) + ut−1 − K0(ut−1) − ut−1 = λβT (ut−1) − s = L(ut−1), t ≥ 1.(4.11)

Accordingly, Eq. (4.9) can be rewritten as

Ut = max{0, L(ut−1)} + K0(ut−1) + ut−1, t ≥ 1.(4.12)

From all the above the optimal decision rule of the model can be prescribed as follows.

Optimal Decision Rule 4.1

(a) Let t = 0.
1 Suppose no random offer exists. Then quit the process by accepting the terminal

quitting offer ρ (see Eq. (4.1)).
2 Suppose a random offer w appears. Then, if w ≥ ρ, accept the offer w, or else accept

the terminal quitting offer ρ (see Eq. (4.3)).
(b) Let t ≥ 1.

1 Suppose no random offer exists.
i. If ρ ≥ (≤) Ut, quit the process by accepting the intervening quitting offer ρ (con-

tinue the search process) (see Eq. (4.2)).
ii. Assume that the process continues. If L(ut) ≥ (≤) 0, conduct the search for a

random offer by paying the search cost s (skip the search for a random offer) (see
Eq. (4.12)), and then the process proceeds to time t− 1; go to (a) if t = 1 and to
(b) if t ≥ 2.

2 Suppose a random offer w appears.
i. If w ≥ ut, accept the random offer w, or else do not (i.e., ut becomes the

searcher’s optimal reservation value) (see Eq. (4.8)).
ii. If the searcher rejects the random offer w, either quit the process by accepting

the intervening quitting offer ρ or continue the process (see Eq. (4.4)). Then the
decision rule is the same as in (b1i).

iii. Assume that the process continues. Then the decision rule is the same as in
(b1ii).

5 Analysis

This section is devoted to examining the properties of the optimal quitting rule and optimal
search rule. The optimal stopping rule is prescribed by comparing the random offer w
against ut for t ≥ 0 as stated in Optimal Decision Rule 4.1(a2,b2i).
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5.1 Optimal quitting rule

This subsection examines the searcher’s optimal quitting rule where he has to decide at
each point in time whether to accept the quitting offer or continue the process. Here, let
u = limt→∞ ut if it exists.

Theorem 5.1

(a) ut is nondecreasing in t ≥ 0.

(b) Let ρ ≥ max{x
K0

, x
K1

}. Then Ut ≤ ρ and ut = ρ for t ≥ 0.

(c) Let ρ < max{x
K0

, x
K1

}. Then:

1 ρ ≤ Ut = ut ≤ b for t ≥ 0 where

ut = max{K0(ut−1) + ut−1, K1(ut−1) + ut−1},(5.1)
= max{K0(ut−1),K1(ut−1)} + ut−1,(5.2)
= max{0, L(ut−1)} + K0(ut−1) + ut−1, t ≥ 1.(5.3)

2 ut converges to a finite u as t → ∞ where max{K0(u), K1(u)} = 0.

Proof. Note that U1 − ρ = max{K0(ρ),K1(ρ)} · · · (1∗) from Eqs. (4.10) and (4.7), and that
if λ0 = 0, then x

K0
= 0 by definition (Eq. (3.7)) and K0(x) = −(1 − β)x · · · (2∗) from

Eq. (3.2).
(a) From Eq. (4.7) with t = 1 we have u1 ≥ ρ = u0. Let ut−1 ≥ ut−2. Then from

Eq. (4.9) and Lemma 3.2(b) we obtain Ut ≥ max{K0(ut−2)+ut−2, K1(ut−2)+ut−2} = Ut−1,
so that ut ≥ max{ρ, Ut−1} = ut−1 due to Eq. (4.7). Therefore, by induction we get ut ≥ ut−1

for t ≥ 1, implying that ut is nondecreasing in t ≥ 0.
(b) Let ρ ≥ max{xK0

, xK1
}. Then ρ ≥ xK0

and ρ ≥ xK1
. If λ0 = 0, then ρ ≥ xK0

= 0,
hence K0(ρ) = −(1− β)ρ ≤ 0 from (2∗), and if λ0 > 0, then K0(ρ) ≤ 0 from Lemma 3.2(f).
Hence K0(ρ) ≤ 0 whether λ0 = 0 or λ0 > 0. Since ρ ≥ x

K1
, we have K1(ρ) ≤ 0 from

Lemma 3.2(d,e). Thus U1−ρ ≤ 0, i.e., U1 ≤ ρ from (1∗), so u1 = ρ due to Eq. (4.7). Suppose
Ut−1 ≤ ρ. Then since ut−1 = ρ from Eq. (4.7), we have Ut = max{K0(ρ) + ρ, K1(ρ) + ρ} =
U1 ≤ ρ from Eq. (4.9), so ut = ρ due to Eq. (4.7) for t ≥ 1. Accordingly, by induction it
follows that Ut ≤ ρ = ut for t ≥ 1. From this result and the fact that U0 = ρ and u0 = ρ
due to, respectively, Eqs. (4.6) and (4.7) we see that the assertion holds.

(c) Let ρ < max{xK0
, xK1

}.
(c1) Note that u0 = U0 = ρ due to Eqs. (4.6) and (4.7), so u0 = U0 ≥ ρ. Let

x
K1

> x
K0

. Then since ρ < x
K1

, we have K1(ρ) > 0 from Lemma 3.2(d,e), so K1(ρ) ≥ 0.
Hence U1 − ρ ≥ K1(ρ) ≥ 0 from (1∗), so U1 ≥ ρ. Let x

K1
≤ x

K0
. Then ρ < x

K0
, hence it

follows that λ0 = 0 leads to ρ < x
K0

= 0 by the definition of x
K0

, so K0(ρ) = −(1−β)ρ ≥ 0
from (2∗) and that λ0 > 0 leads to K0(ρ) > 0 from Lemma 3.2(f), hence K0(ρ) ≥ 0. Thus
U1 − ρ ≥ K0(ρ) ≥ 0 from (1∗), so U1 ≥ ρ. Accordingly, we have U1 ≥ ρ whether x

K1
> x

K0

or x
K1

≤ x
K0

. Assume Ut−1 ≥ ρ, hence ut−1 = Ut−1 due to Eq. (4.7), so ut−1 ≥ ρ. Then
from Eq. (4.9) and Lemma 3.2(b) we get Ut ≥ max{K0(ρ) + ρ, K1(ρ) + ρ} = U1 ≥ ρ, so
ut = Ut for t ≥ 1 due to Eq. (4.7). Hence, by induction it follows that ut = Ut ≥ ρ · · · (3∗)
for t ≥ 0. Therefore, from Eqs. (4.9), (4.10), and (4.12) we have, respectively, Eqs. (5.1),
(5.2), and (5.3). Here note that if λ0 > 0, then x

K0
≤ b due to Lemma 3.2(f) and if λ0 = 0,

then x
K0

= 0 < b by the definition of x
K0

, so x
K0

≤ b. Accordingly, x
K0

≤ b whether λ0 > 0
or λ0 = 0. In addition, since x

K1
≤ b due to Lemma 3.2(d,e), it eventually follows that

ρ < max{x
K0

, x
K1

} ≤ b, hence u0 = ρ < b from Eq. (4.7). Suppose ut−1 ≤ b. Then from
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Eq. (5.1), Lemma 3.2(b), Eqs. (3.2), (3.3), Lemma 3.1(c), and the assumption of s ≥ 0 we
have

ut ≤ max{K0(b) + b, K1(b) + b}
= max{β(λ0T (b) + b), β(λ1T (b) + b) − s} = max{βb, βb − s} = βb ≤ b.

Accordingly, by induction ut ≤ b for t ≥ 0. Therefore, from (3∗) it follows that ρ ≤ Ut =
ut ≤ b for t ≥ 0.

(c2) Since ut is upper bounded in t ≥ 0 from (c1), it follows from (a) that ut converges
to a finite u as t → ∞. Then, noting Eq. (5.1) and Lemma 3.2(c) we have

|ut − max{K0(u) + u, K1(u) + u}|
= |max{K0(ut−1) + ut−1, K1(ut−1) + ut−1} − max{K0(u) + u, K1(u) + u}|
≤ max{|K0(ut−1) + ut−1 − K0(u) − u|, |K1(ut−1) + ut−1 − K1(u) − u|}
≤ max{β|ut−1 − u|, β|ut−1 − u|} = β|ut−1 − u|,

which converges to 0 as t → ∞. Accordingly, ut converges to max{K0(u) + u, K1(u) + u},
hence u = max{K0(u) + u, K1(u) + u} or equivalently max{K0(u), K1(u)} = 0.

Here we shall discuss the practical implications of Theorem 5.1. Let t ≥ 1. First, the as-
sertion (b) implies that when ρ is large enough to be greater than or equal to max{x

K0
, x

K1
},

since Ut ≤ ρ = ut for t ≥ 0, if no random offer w exists at that time, it is optimal to quit
the process by accepting the quitting offer ρ for t ≥ 1 (Optimal Decision Rule 4.1(b1i)),
whereas, if a random offer w appears at the any t ≥ 1, the searcher must decide to quit
the process by accepting either the quitting offer ρ or random offer w (Optimal Decision
Rule 4.1(b2i)). In other words, it follows that the search process starts and ends at the
same time.

On the other hand, the assertion (c) implies that when ρ is small enough to be less than
max{x

K0
, x

K1
}, since Ut ≥ ρ for t ≥ 0, it is optimal to continue the process by rejecting

the intervening quitting offer for t ≥ 1 if a random offer does not appears or appears but
is rejected (Optimal Decision Rule 4.1(b1i,b2ii)). Thus from the above result, Eqs. (4.1),
and (4.3) we see that the quitting offer is never accepted prior to the deadline; however,
it may be accepted at the deadline. This implies that the process is reduced to the one
with only the terminal quitting offer. Under this condition, at all points in time except the
deadline, the searcher will make a decision only between accepting a current random offer
or continue the process. Furthermore, since ρ is assumed to be small enough to be less than
max{x

K0
, x

K1
}, a searcher, in order to avoid being forced to accept ρ at the deadline, would

be more motivated to accept the random offer. Consequently, he will tend to lower his
optimal reservation value ut as the remaining time periods up to the deadline t decreases.
Therefore, it can be conjectured that ut is nondecreasing in t. Theorem 5.1(a) affirms this
conjecture.

5.2 Optimal search rule

In this subsection, we will discuss the optimal search rule on whether or not to invest a
search cost to find a random offer. From Optimal Decision Rule 4.1(b1ii), we see that the
sign of L(ut) determines whether or not the search should be conducted.

Theorem 5.2 Let ρ < max{x
K0

, x
K1

}.
(a) Let s = 0. Then conduct the search for t ≥ 1.
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(b) Let s > 0.

1 For any given t ≥ 1, if ut−1 ≤ (≥) x
L
, then conduct (skip) the search.

2 Let ρ ≥ x
L
. Then skip the search for t ≥ 1.

3 Let ρ < x
L
.

i. Let λ0 = 0.

1. Let β = 1 or let β < 1 and λβT (x
K0

) ≥ s. Then conduct the search for t ≥ 1.
2. Let β < 1 and λβT (x

K0
) < s. Then there exists a t∗ ≥ 1 such that conduct

the search if 1 ≤ t ≤ t∗ and skip the search if t∗ < t.

ii. Let λ0 > 0.
1. Let β < 1 and λβT (x

K0
) ≥ s. Then conduct the search for t ≥ 1 where

ut ≤ x
L

for t ≥ 0.
2. Let β = 1 or let β < 1 and λβT (x

K0
) < s. Then there exists a t∗ ≥ 1 such

that conduct the search if 1 ≤ t ≤ t∗ and skip the search if t∗ < t.

Proof. Let ρ < max{xK0
, xK1

}. Then u1 − u0 = max{K0(ρ),K1(ρ)} from Eqs. (5.2) and
(4.7).

(a) Let s = 0. Since λ1 > λ0 by assumption and T (ut−1) ≥ 0 for t ≥ 1 due to
Lemma 3.1(c), we have K1(ut−1) + ut−1 ≥ K0(ut−1) + ut−1 for t ≥ 1, hence L(ut−1) ≥ 0
for t ≥ 1 from Eq. (4.11). Consequently, the assertion holds due to Optimal Decision
Rule 4.1(b1ii).

(b) Let s > 0. Then (1 − β)2 + s2 �= 0.
(b1) If ut−1 ≤ (≥) xL , then L(ut−1) ≥ (≤) 0 from Lemma 3.2(g), hence the assertion

holds due to Optimal Decision Rule 4.1(b1ii).
(b2) Let ρ ≥ x

L
. Then since u0 = ρ ≥ x

L
due to Eq. (4.7), we have ut−1 ≥ x

L
for t ≥ 1

from Theorem 5.1(a), hence skipping the search for t ≥ 1 is optimal from (b1).
(b3) Let ρ < x

L
. Then u0 = ρ < x

L
· · · (1∗) from Eq. (4.7).

(b3i) Let λ0 = 0. Then x
K0

= 0 by definition (Eq. (3.7)) and K0(x) = −(1− β)x from
Eq. (3.2).

(b3i1) Let β = 1. Then xK1
= xL due to Corollary 3.1(a), hence xK1

≤ xL . Let
β < 1 and λβT (x

K0
) ≥ s. Then x

K1
≤ x

L
due to Corollary 3.1(b). Accordingly, whether

β = 1 or “β < 1 and λβT (x
K0

) ≥ s”, we have x
K1

≤ x
L
, so that K1(xL

) ≤ 0 from
Lemma 3.2(e). Suppose ut−1 ≤ x

L
. Then, since L(ut−1) ≥ 0 due to Lemma 3.2(g), it

follows from Eqs. (5.3), (3.5), and Lemma 3.2(b) that ut = L(ut−1) + K0(ut−1) + ut−1 =
K1(ut−1) + ut−1 ≤ K1(xL

) + x
L
≤ x

L
. Accordingly, by induction ut ≤ x

L
for t ≥ 0, so that

ut−1 ≤ x
L

for t ≥ 1. Hence, the assertion holds from (b1).
(b3i2) Let β < 1 and λβT (x

K0
) < s. Then x

L
< x

K1
due to Corollary 3.1(b). Further-

more, from Theorem 5.1(c2) we get max{K0(u), K1(u)} = 0, implying that K1(u) ≤ 0, so
u ≥ x

K1
due to Lemma 3.2(e). From (1∗) and the above we have ρ = u0 < x

L
< x

K1
≤ u.

Accordingly, as t → ∞, the ut starts from u0 = ρ < x
L
, continues to increase, crosses

through xL , and converges to u > xL due to Theorem 5.1(a,c2), it follows that there exists
a t∗ ≥ 1 such that ut−1 < x

L
for 1 ≤ t ≤ t∗ and x

L
≤ ut−1 for t∗ < t, implying that conduct

the search if 1 ≤ t ≤ t∗ and skip the search if t∗ < t due to (b1).
(b3ii) Let λ0 > 0.
(b3ii1) Let β < 1 and λβT (x

K0
) ≥ s. Then, since x

K1
≤ x

L
due to Corollary 3.1(b),

we have K1(xL
) ≤ 0 due to Lemma 3.2(e). Suppose ut−1 ≤ x

L
. Then in the same way as

in the proof of (b3i1) we have ut ≤ x
L

for t ≥ 0. Accordingly, the assertion holds for the
same reason as in the proof of (b3i1).
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(b3ii2) Let β = 1 or let β < 1 and λβT (x
K0

) < s. Then x
K1

> x
L

due to Corol-
lary 3.1(a,b). Furthermore, since max{K0(u), K1(u)} = 0 from Theorem 5.1(c2), we
have K1(u) ≤ 0, so u ≥ x

K1
due to Lemma 3.2(e). From (1∗) and the above we have

ρ = u0 < x
L

< x
K1

≤ u. Accordingly, the assertion holds for the same reason as in the
proof of (b3i2).

Suppose ρ < max{x
K0

, x
K1

} holds. Then the search process is reduced to the one with
only the terminal quitting offer (see Theorem 5.1(c1)). Therefore, intuitively we might
expect that if the terminal quitting offer ρ is sufficiently small or negative, the searcher
would conduct the search to find a random offer w greater than ρ in order to avoid having
to accept ρ at the deadline. This is particularly true for the case of ρ < 0 because accepting
a negative terminal quitting offer will incur a cost for the searcher at the deadline. Now,
with reference to Theorem 5.2, we can observe the followings.

1. Let s = 0. Clearly conducting the search for a random offer is optimal since no search
cost is incurred.

2. Let s > 0, implying that a search cost is incurred if a search is conducted.

i. Let ρ ≥ x
L
. Then it is optimal to skip the search for all t ≥ 1. This result implies

that instead of actively conducting the search, the searcher would wait passively for
the random offer to appear.

ii. Let ρ < x
L
.

1) Let λ0 = 0 and β = 1 or let β < 1 and λβT (x
K0

) ≥ s. Then it is optimal to con-
duct the search for all t ≥ 1. Note that if λ0 = 0 and β = 1, we have ρ < xK1

= xL

from Corollary 3.1(a), and if β < 1 and λβT (x
K0

) ≥ s, we have ρ < x
K1

≤ x
L

from the fact that x
K1

≤ x
L

due to Corollary 3.1(b) and that x
K0

≤ x
K1

due to
Lemma 3.3(a2,b2). Thus in these two cases, we get ρ < x

K1
≤ x

L
. Therefore,

this result agrees with the above stated conjecture since ρ is sufficiently small.
2) Let λ0 > 0 and β = 1 or let β < 1 and λβT (x

K0
) < s. Then there exists the

searching time threshold t∗ ≥ 1 such that it is optimal to conduct the search if
1 ≤ t ≤ t∗ and skip the search if t∗ < t. This implies that the searching period
exists. The occurrence of this phenomenon is plausible since a search cost s > 0
is incurred for every period if the searcher decides to conduct the search. Hence
in order to save on the search cost, it becomes optimal to skip the search if the
planning horizon is sufficiently long.

In Theorem 5.2 we show that under certain conditions, the searching time threshold t∗

exists. Below, we shall investigate the monotonicity of t∗ in ρ if it exists.

Theorem 5.3 The searching time threshold t∗ in (b3i2) and (b3ii2) of Theorem 5.2
is nonincreasing in ρ.

Proof. Assume that ρ < ρ′. Then, by u′
t let us denote ut for ρ′. First from Eq. (4.7) we

have u0 − u′
0 = ρ − ρ′ < 0, hence u0 < u′

0. Suppose ut−1 ≤ u′
t−1. Then from Eq. (5.1) and

Lemma 3.2(b) we obtain ut ≤ max{K0(u′
t−1) + u′

t−1, K1(u′
t−1) + u′

t−1} = u′
t. Accordingly,

by induction we obtain ut ≤ u′
t for t ≥ 0. Hence ut is nondecreasing in ρ for t ≥ 0.

Furthermore, since the function L(x) is independent of ρ (see Eq. (3.4)), it follows that
x

L
is also independent of ρ. From the above result and the fact that ut is nondecreasing
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Figure 5.1: ut in t ≥ 0 for three different values of ρ.

in t ≥ 0 due to Theorem 5.1(a) it can be immediately seen that the assertion holds (see
Figure 5.1).

In Theorem 5.3 we can successfully verify the monotonicity of the searching time thresh-
old t∗ in ρ because the functions K0(x), K1(x), and L(x) are independent of ρ. However,
since K0(x), K1(x), and L(x) are dependent on the model’s other parameters s, β, λ0, and
λ1, it is very difficult to mathematically examine the monotonicity of t∗ in these parameters.
In Section 7.2 we will numerically investigate the monotonicities in s, β, λ0, and λ1.

6 Infinite Planning Horizon

Let us now extend the discussion into an infinite planning horizon. First, we need the
following corollary which is obtained directly from Theorem 5.2, Eqs. (5.1), and (4.9).

Corollary 6.1

(a) In (a), (b3i1), and (b3ii1) of Theorem 5.2 we have ut = K1(ut−1) + ut−1 for t ≥ 1
with u0 = ρ.

(b) In (b2) of Theorem 5.2 we have ut = K0(ut−1) + ut−1 for t ≥ 1 with u0 = ρ.

(c) In (b3i2) and (b3ii2) of Theorem 5.2 we have ut = K1(ut−1) + ut−1 for 1 ≤ t ≤ t∗

and ut = K0(ut−1) + ut−1 for t∗ < t.

When the planning horizon is sufficiently long, the maximum total expected present
discounted profit can be approximated by the u derived in Theorem 6.1 below.

Theorem 6.1

(a) In (a) of Corollary 6.1, if (1 − β)2 + s2 = 0, then u = b, or else u = x
K1

.

(b) Let λ0 > 0. Then u = b for β = 1 and u = x
K0

for β < 1 in (b) and (c) of Corol-
lary 6.1.

(c) Let λ0 = 0. Then u = 0 for β < 1 and u = ρ for β = 1 in (b) of Corollary 6.1 and
u = 0 for β < 1 and u = ut∗ for β = 1 in (c) of Corollary 6.1.
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Proof. (a) In this case we have K1(u) = 0 · · · (1∗) from Theorem 5.1(c2). Let (1−β)2+s2 =
0, hence β = 1 and s = 0. Then λ1T (u) = 0 from (1∗) and Eq. (3.3), so T (u) = 0 due
to the fact that λ1 > 0. Thus from Lemma 3.1(c) we have u ≥ b. Since u ≤ b from
Theorem 5.1(c1), we get u = b, hence the former half of the assertion holds. The latter half
is true due to Lemma 3.2(e), Eq. (3.6), and (1∗).

(b) Let λ0 > 0. Then we have K0(u) = 0 · · · (2∗) from Theorem 5.1(c2). Suppose
β = 1. Then λ0T (u) = 0 from (2∗) and Eq. (3.2), so T (u) = 0 due to the fact that λ0 > 0.
Thus we obtain u = b in almost the similar way as in the proof of (a). Suppose β < 1.
Then u = x

K0
due to Lemma 3.2(f2), Eq. (3.6), and (2∗).

(c) Let λ0 = 0. Then K0(x) = −(1 − β)x · · · (3∗) from Eq. (3.2). Assume that (b)
of Corollary 6.1 holds, so ut = K0(ut−1) + ut−1 = βut−1 for t ≥ 1 due to (3∗). Since
u0 = ρ from Eq. (4.7), we get ut = βtρ for t ≥ 1. Thus u = 0 if β < 1, or else ut = ρ,
so u = ρ. Assume that (c) of Corollary 6.1 holds. Since t∗ ≥ 1 exists, we obtain ut =
K0(ut−1) + ut−1 = βut−1 for t∗ < t due to Corollary 6.1(c) and (3∗). Thus ut = βt−t∗ut∗

for t∗ < t. Accordingly, we get u = 0 if β < 1, or else ut = ut∗ , so u = ut∗ .

7 Numerical Examples

In this section, through numerical experiments let us exemplify the properties of the optimal
decision rules and the monotonicity of the searching time threshold t∗ in four of the model’s
parameters s, λ0, λ1, and β.

7.1 Properties of optimal decision rules

Let β = 0.99, λ0 = 0.2, λ1 = 0.8, s = 0.07, ρ = 1.0. Then (1−β)2+s2 �= 0. Also, let F (w) be
the uniform distribution on [1.5, 2.5], i.e., a = 1.5 and b = 2.5. Using Eqs. (3.2) to (3.4), we
obtain x

K0
≈ 2.0455, x

K1
≈ 2.0227, and x

L
≈ 2.0145, so x

L
< x

K1
< x

K0
. In this case, since

1.0 = ρ < max{x
K0

, x
K1

} = x
K0

= 2.0455 (Theorem 5.1(c)), the search process reduces to
the one with only the terminal quitting offer. Figure 7.2 depicts the monotonicity of ut in t,
in which ut is nondecreasing in t (Theorem 5.1(a)). In addition, since 1.0 = ρ < x

L
= 2.0145

and since β < 1 and λβT (xK0
) = (0.8 − 0.2) × 0.99 × 0.1033 = 0.0614, i.e., λβT (xK0

) < s,
the conditions in Theorem 5.2(b3,b3ii2) are also satisfied. Figure 7.2 demonstrates that the
searching time threshold t∗ = 8 exists, implying that it is optimal to conduct the search if
1 ≤ t ≤ t∗ and to skip the search if t∗ < t.

7.2 Monotonicity of t∗ in s, λ0, λ1, and β

The monotonicity of t∗ in ρ is successfully proven in Theorem 5.3; however, its monotonicity
in other model’s parameters s, λ0, λ1, and β are difficult to verify for the reason stated in the
paragraph below the proof of Theorem 5.3. Accordingly, we shall numerically investigate
the monotonicity in s, λ0, λ1, and β where F (w) is the same as the one in Section 7.1.

1. Let the value of all the parameters be the same as those in Section 7.1 except s. Then
t∗ is nonincreasing in s (Figure 7.3(I)).

2. Let β and λ1 be the same as those in Section 7.1, and let s = 0.58 and ρ = −1.0. Then
t∗ is nonincreasing in λ0 (Figure 7.3(II)).

3. Let β be the same as that in Section 7.1 and let s = 0.17, ρ = −1.0, and λ0 = 0.1.
Then t∗ is not always monotone in λ1 (Figure 7.3(III)). From the graph we observe that
t∗ is nondecreasing on λ1 ∈ [0.16, 0.4242], nonincreasing on λ1 ∈ [0.4242, 0.8697], and
nondecreasing on λ1 ∈ [0.8697, 1.0].
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Figure 7.2: Time threshold t∗ for conducting search.

4. Let λ0 and λ1 be the same as those in Section 7.1, and let s = 0.58 and ρ = 0.01. Then
t∗ is not always monotone in β (Figure 7.3(IV)). From the graph we observe that t∗ is
nondecreasing on β ∈ [0.5, 0.7404] and nonincreasing on β ∈ [0.7404, 1.0].

Through the numerical experiments, we notice that the t∗ is nonincreasing in s and
λ0. These results are not surprising. In order to maximize profit, a searcher will try his
best to save on the search cost as much as possible. Thus, with all else being the same,
a higher search cost will decrease the searcher’s incentive to search, thereby leading to a
shorter searching period. Besides, a higher offer appearing probability λ0 when searching
is skipped will also decrease the searcher’s incentive to search because a higher λ0 reduces
the need to search, thereby resulting in a shorter search period. Although we are able to
interpret the implication of the above numerical results for the monotonicities in s and λ0,
we cannot provide a convincing explanation for the non-monotonicities of t∗ in λ1 and β.
This type of non-monotonic property sometimes appears in the optimal stopping problem
[3][6].

8 Conclusions and Suggested Future Studies

In this paper we have proposed a model of the optimal stopping problem where quitting
offer is available at every point in time throughout the planning horizon and where a search
cost is incurred to find a random offer. Below, we shall summarize some distinctive results
derived from our analysis.
C1. Let ρ ≥ max{x

K0
, x

K1
}. Then it is optimal to quit the process by accepting either the

intervening quitting offer ρ or the random offer w at the start of the process (Theo-
rem 5.1(b)). In other words, the process starts and ends at the same time.

C2. Let ρ < max{x
K0

, x
K1

}. Then:
1. It is not optimal to accept the intervening quitting offer at any point in time prior

to the deadline; however, it may be accepted at the deadline. In other words, in this
case the process reduces to one with only a terminal quitting offer (Theorem 5.1(c1)).

2. We obtained the conditions in which conducting the search is optimal for t ≥ 1
(Theorem 5.2(a, b3i1, b3ii1)) and those on which a searching time threshold t∗ ex-
ists (Theorem 5.2(b3i2, b3ii2)).
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β

t∗

3

2

1

0
0.5 0.6 0.7 0.8 0.9 1.0

β = 0.7404

Figure 7.3: Monotonicity of t∗ in the model’s parameters.

3. Let s > 0, ρ < x
L
, and β = 1. Then if λ0 = 0, it is always optimal to conduct the

search for t ≥ 1 (Theorem 5.2(b3i1)). However, if λ0 > 0, a searching time threshold
t∗ exists.

4. It was verified that the searching time threshold t∗ is nonincreasing in ρ. In addi-
tion, from the numerical examples, we observe that t∗ is nonincreasing in s and λ0

while it is not always monotone in λ1 and β.

Now, we conclude with a discussion of some directions in which our model could be
extended to make it more practical. Suppose the optimal stopping problem is restricted
to an asset selling problem. Then our model can be extended to deal with the sale of
multiple homogeneous assets. In addition, an extension where ρ is t-dependent provides a
useful generalization of our model. For example, ρ may be nondecreasing, nonincreasing, or
may change in a cyclical fashion in time periods remaining up to the deadline. Moreover,
another possible extension would be to consider the future availability of the offer once
rejected; Representative articles include [3], [6], [7], [8], [10], and [15]. Finally, a model
where a limited amount of budget [4] allocated to search for an offer at each point in time
is also worth discussing.
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Appendix : Proofs

A. Lemma 3.1

(a) Immediate from the fact that max{w − x, 0} is continuous and nonincreasing in x ∈
(−∞,∞) for any given w.

(b) Since T (x) = E [(w−x)I(w > x)] ≥ E[(w−x)I(w > y)]‡ for any x and y, we have
T (x)−T (y) ≥ E [(w−x)I(w > y)]− E[(w− y)I(w > y)] = −(x− y)E[I(w > y)] = −(x−
y)E[1−I(w ≤ y)] = −(x−y)(1−F (y)). Similarly we get T (x)−T (y) ≤ −(x−y)(1−F (x)).
Hence

−(x − y)(1 − F (y)) ≤ T (x) − T (y) ≤ −(x − y)(1 − F (x)).(A.1)

Let y < x < b, hence F (x) < 1 due to Eq. (2.1). Then −(x − y)(1 − F (x)) < 0, so
T (x) < T (y) from Eq. (A.1), i.e., T (x) is strictly decreasing on (−∞, b). Now, assume that
T (b) = T (x) for a certain x < b. Then T (x′) < T (x) = T (b) for x < x′ < b or equivalently
T (x′) < T (b) for x′ < b, which contradicts (a), thus it must be that T (b) < T (x), implying
that T (x) is strictly decreasing on (−∞, b].

(c) Let b ≤ x. If w ≤ b, then w ≤ x, hence max{w − x, 0} = 0, and if b < w, then
f(w) = 0 due to Eq. (2.2). Accordingly, T (x) = E[max{w − x, 0}I(w ≤ b)] + E[max{w −
x, 0}I(b < w)] = 0, hence the former half is true. If x < b, then T (x) > T (b) = 0 from (b),
hence the latter half is true.

B. Lemma 3.2

Let x ≤ a. If a ≤ w, then x ≤ w, hence max{w−x, 0} = w−x, and if w < a, then f(w) = 0
from Eq. (2.2). Thus

T (x) = E[max{w − x, 0}I(a ≤ w)] + E [max{w − x, 0}I(w < a)]
= E[(w − x)I(a ≤ w)] + 0
= E[(w − x)I(a ≤ w)] + E[(w − x)I(w < a)] = E [w − x] = µ − x.

Therefore, limx→−∞ T (x) = ∞. From this result and the fact that −(1−β)x is nonincreasing
on (−∞,∞), we immediately see that limx→−∞ K0(x) = ∞ · · · (1∗) if λ0 > 0 or β < 1,
limx→−∞ K1(x) = ∞ · · · (2∗), and limx→−∞ L(x) = ∞ · · · (3∗).

(a) Evident from Eqs. (3.3), (3.2), Lemma 3.1(a), and the fact that −(1−β)x is strictly
decreasing on (−∞,∞) if β < 1.

(b) From Eq. (A.1) we get

(x − y)F (y) ≤ T (x) + x − T (y) − y ≤ (x − y)F (x).(B.1)

Let y < x. Then (x − y)F (y) ≥ 0, thus T (y) + y ≤ T (x) + x from Eq. (B.1), hence
T (x) + x is nondecreasing on (−∞,∞). From this result and the fact that K1(x) + x =
β(λ1T (x)+x)−s = β(λ1(T (x)+x)+(1−λ1)x)−s, it follows that K1(x)+x is nondecreasing
on (−∞,∞) since (1 − λ1)x is nondecreasing on (−∞,∞). Similarly we can show that
K0(x) + x is nondecreasing on (−∞,∞).

(c) From Eqs. (A.1) and (3.3), for any x and y we immediately get

−(x − y)
(
1 − β(1 − λ1(1 − F (y)))

)≤ K1(x) − K1(y) ≤ −(x − y)
(
1 − β(1 − λ1(1 − F (x)))

)
,

from which

β(x − y)(1 − λ1(1 − F (y))) ≤ K1(x) + x − K1(y) − y ≤ β(x − y)(1 − λ1(1 − F (x))).

‡If a statement S is true, then I(S) = 1, or else I(S) = 0.
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Since λ1 ≤ 1 by assumption and since 0 ≤ 1−F (y) ≤ 1 and 0 ≤ 1−F (x) ≤ 1, the assertion
for K1(x) clearly holds. Similarly we can obtain |K0(x) + x−K0(y)− y| ≤ β|x− y| for any
x and y.

(d) Let (1 − β)2 + s2 = 0, so β = 1 and s = 0. Then K1(x) = λ1T (x). Noting the
assumption of λ1 > 0, we see that K1(x) = 0 for x ≥ b and K1(x) > 0 for x < b from
Lemma 3.1(c), so that x

K1
= b by the definition of x

K1
, hence x < (≥) x

K1
⇒ K1(x) > (=)

0. The inverse is true by contraposition.
(e) Let (1 − β)2 + s2 �= 0. First, let β < 1. Then limx→∞ K1(x) = −∞ · · · (4∗)

since limx→∞ T (x) = 0 from Lemma 3.1(c) and since −(1−β)x diverges to −∞ as x → ∞.
Accordingly, there uniquely exists x

K1
from (a), (2∗), and (4∗). Since K1(b) = −(1−β)b−s <

0 due to Lemma 3.1(c), we have xK1
< b from (a). Next, let β = 1, hence s > 0. Then

K1(x) = λ1T (x)−s for any x ∈ (−∞,∞) from Eq. (3.3), which is nonincreasing on (−∞,∞)
due to Lemma 3.1(a) and strictly decreasing on (−∞, b] due to Lemma 3.1(b). In addition,
we have K1(b) = λ1T (b)− s = −s < 0 due to Lemma 3.1(c) and the assumption of λ1 > 0.
Consequently, from (2∗) it follows that x

K1
uniquely exists with x

K1
< b. Thus, whether

β < 1 or β = 1, there uniquely exists xK1
< b; accordingly, the former half of the assertion

holds. Since K1(x) is strictly decreasing on the neighborhood of x = x
K1

< b due to
Lemma 3.1(b) and the fact that −(1 − β)x is nonincreasing on (−∞,∞), it follows that x
< (= (>)) xK1

⇒ K1(x) > (= (<)) 0. The inverse is true by contraposition.
(f) Let λ0 > 0.
(f1) Let β = 1. Then K0(x) = λ0T (x) = 0 for x ≥ b and K0(x) = λ0T (x) > 0 for

x < b from Eq. (3.2) and Lemma 3.1(c), hence xK0
= b by the definition of xK0

, so x < (≥)
x

K0
⇒ K0(x) > (=) 0. The inverse is true by contraposition.

(f2) Let β < 1. Then limx→∞ K0(x) = −∞ · · · (5∗) due to the fact that limx→∞ T (x) =
0 from Lemma 3.1(c) and that −(1−β)x diverges to −∞ as x → ∞. Therefore, xK0

uniquely
exists from (a), (1∗), and (5∗). Since β > 0, µ > 0, and b > 0 by assumptions, we have
K0(0) = λ0βT (0) = λ0βµ > 0 and K0(b) = λ0βT (b) − (1 − β)b = −(1 − β)b < 0 due to
Lemma 3.1(c), hence 0 < x

K0
< b from (a). In addition, we have x < (= (>)) x

K0
⇒ K0(x)

> (= (<)) 0 from the definition of x
K0

and (a). The inverse is true by contraposition.
(g) First, note that L(x) is continuous, nonincreasing on (−∞,∞), and strictly de-

creasing on (−∞, b] due to Eq. (3.4) and Lemma 3.1(a,b). Let s > 0. Then, since
L(b) = λβT (b) − s = −s < 0 from Lemma 3.1(c) and since L(x) > 0 for a certain suf-
ficiently small x < 0 from (3∗), it follows from the monotonicity of L(x) that x

L
uniquely

exists. The inequality x
L

< b is immediate from the monotonicity of L(x) and the inequality
L(b) < 0. The latter half is evident from the fact that L(x) is strictly decreasing in the
neighborhood of x = xL (< b).

C. Lemma 3.3

Let s > 0, hence (1 − β)2 + s2 �= 0. Then, since K0(xK0
) = 0 and K1(xK1

) = 0 by the
definitions of x

K0
and x

K1
, noting Eq. (3.5), we have

L(x
K0

) = K1(xK0
),(C.1)

L(x
K1

) = −K0(xK1
).(C.2)

(a) Let λ0 = 0, hence x
K0

= 0 by definition (Eq. (3.7)). Then K0(xK1
) = −(1 −

β)xK1
· · · (1∗) from Eq. (3.2).

(a1) Let β = 1. Then K0(xK1
) = 0 from (1∗), hence L(x

K1
) = 0 from Eq. (C.2), so

x
L

= x
K1

from Lemma 3.2(g). Thus the assertion holds.
(a2) Let β < 1. If x

K0
< (= (>)) x

K1
or equivalently 0 < (= (>)) x

K1
, then K0(xK1

)
< (= (>)) 0 from (1∗), hence L(x

K1
) > (= (<)) 0 from Eq. (C.2), so x

K1
< (= (>)) x

L
due



392 MONG SHAN EE AND SEIZO IKUTA

to Lemma 3.2(g). Thus x
K0

< (= (>)) x
K1

⇒ x
K1

< (= (>)) x
L
. The inverse is true by

contraposition.
(b) Let λ0 > 0.
(b1) Let β = 1. Then x

K0
= b from Lemma 3.2(f1). Since L(x

K0
) = L(b) = λβT (b) −

s = −s < 0 from Lemma 3.1(c) and the assumption of s > 0, it follows that K1(xK0
) < 0

due to Eq. (C.1). Thus we get x
K0

> x
K1

from Lemma 3.2(e). Hence K0(xK1
) > 0 from

Lemma 3.2(f1), thus L(x
K1

) < 0 from Eq. (C.2), so x
K1

> x
L

from Lemma 3.2(g).
(b2) Let β < 1. Then, if x

K0
< (= (>)) x

K1
, we have K0(xK1

) < (= (>)) 0 from
Lemma 3.2(f2), hence L(x

K1
) > (= (<)) 0 from Eq. (C.2), so x

K1
< (= (>)) x

L
from

Lemma 3.2(g). Thus xK0
< (= (>)) xK1

⇒ xK1
< (= (>)) xL . The inverse is true by

contraposition.
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