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Abstract. In this paper we first define the category of hyper BCK-algebras. After
that we show that the category of hyper BCK-algebras is connected, factorisable and
has equalizers, coequalizers, products, coproducts, intersection and kernel. It is a con-
sequence that this category is complete and cocomplete and hence has pullbacks and
pushouts.

1. Introduction

The study of BCK-algebras was initiated by Y. Imai and K. Iséki[5] in 1966 as a gen-
eralization of the concept of set-theoretic difference and propositional calculi. Since then a
great deal of literature has been produced on the theory of BCK-algebras. In particular,
emphasis seems to have been put on the ideal theory of BCK-algebras. The hyperstructure
theory (called also multialgebras)was introduced in 1934 by F. Marty [8] at the 8th congress
of Scandinavian Mathematiciens. Around the 40’s, several authors worked on hypergroups,
especially in France and in the United States, but also in Italy, Russia and Japan. Over
the following decades, many important results appeared, but above all since the 70’s on-
wards the most luxuriant flourishing of hyperstructures has been seen. Hyperstructures
have many applications to several sectors of both pure and applied sciences. In [7], Y.
B. Jun et al. applied the hyperstructures to BCK-algebras, and introduced the notion of
a hyper BCK-algebra which is a generalization of BCK-algebra, and investigated some
related properties. In [3], R. A. Borzooei and H. Harizavi introduced the notion of regular
congruence relation on hyper BCK-algebras and constract a quotient hyper bck-algebra.
Now we follow [1, 3, 7] and introduce the category of hyper BCK-algebra and obtain some
results, as mentioned in the abstract.

2. Preliminaries

Definition 2.1. [7] By a hyper BCK-algebra we mean a non-empty set H endowed with
a hyperoperation “◦” and a constant 0 satisfying the following axioms:
(HK1) (x ◦ z) ◦ (y ◦ z) � x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x ◦ H � {x},
(HK4) x � y and y � x imply x = y.
for all x, y, z ∈ H , where x � y is defined by 0 ∈ x ◦ y and for every A,B ⊆ H, A � B is
defined by ∀a ∈ A, ∃b ∈ B such that a � b.

In any hyper BCK-algebra H , 0 ◦ 0 = {0}, 0 � x, x � x, 0 ◦ x = {0}, x ◦ y � x,
x◦0 = {x}, for all x, y ∈ H . Let I be a nonempty subset of a hyper BCK-algebra H . Then
I is said to be, a hyper BCK-ideal of H if x ◦ y � I and y ∈ I imply x ∈ I for all x, y ∈ H ,
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a hyper BCK-subalgebra of H if x ◦ y ⊆ I for all x, y ∈ I, reflexive if x ◦ x ⊆ I for all
x ∈ H . Let H be a hyper BCK-algebra, Θ be an equivalence relation on H and A,B ⊆ H .
Then, we write AΘB if there exist a ∈ A and b ∈ B such that aΘb, we write AΘ̄B if for
all a ∈ A there exist b ∈ B such that aΘb and for all b ∈ B there exist a ∈ A such that
aΘb, Θ is called a congruence relation on H if xΘy and x

′
Θy

′
then x ◦ x

′
Θ̄y ◦ y

′
for all

x, y, x′, y′a ∈ H , Θ is called a regular relation on H if x ◦ yΘ{0} and y ◦ xΘ{0} then xΘy
for all x, y ∈ H . Let H and H ′ are two hyper BCK-algebras and f : H −→ H ′ be a map.
Then f is said to be a homomorphism of hyper BCK-algebras if f(x ◦ y) = f(x) ◦ f(y), for
all x, y ∈ H , and it is easy to show that, f(0) = 0′.

Theorem 2.2. [3] Let Θ be a regular congruence relation on hyper BCK-algebra H and
let

I = [0]Θ, Ix = [x]Θ and
H

I
= {Ix : x ∈ H}

Then, H
I with hyperoperation “◦” and hyperorder “�” which is defined as follows is a hyper

BCK-algebra which is called quotient hyper BCK-algebra.

Ix ◦ Iy = {Iz : z ∈ x ◦ y} , Ix � Iy ⇐⇒ I ∈ Ix ◦ Iy

3. Category of hyper BCK-algebras

Definition 3.1. The class of all hyper BCK-algebras and homomorphisms between hyper
BCK-algebras with usual composition of mappings forms a category called the category of
hyper BCK-algebras and denoted by HBCK.

Theorem 3.2. Let f ∈ Hom(H,K) in the HBCK. Then the following statements are
equivalent:
(i) f is injective,
(ii) f is monic.

Proof. (i) =⇒ (ii) The proof is straightforward.
(ii) =⇒ (i) Let f ∈ Hom(H,K) be monic morphism in HBCK. It is enough to prove that
Kerf = {0} where Kerf = {x ∈ H : f(x) = 0}. It is easy to prove that Ker(f ) is a hyper
BCK-ideal of H . Now, let i, j : Kerf −→ H be two maps such that i be inclusion map and
j(x) = 0, for all x ∈ Kerf . Then it is clear that i, j ∈ Hom(Ker(f),H) and f ◦i = f ◦j = 0.
Since f is left cancelable, then i = j. Hence, x = i(x) = j(x) = 0 for all x ∈ Kerf and so
Kerf = {0}. Therefore, f is injective.

Theorem 3.3. {0} is a zero object in HBCK.

Proof. The set {0} trivially forms a hyper BCK-algebra. Hence, {0} ∈HBCK. Let
H ∈HBCK. Since g : H −→ {0} with g(x) = 0, for all x ∈ H , is an unique morphism
from H into {0} in HBCK and f(0) = 0 for each morphism f in HBCK, then the sets
Hom({0}, H) and Hom(H, {0}) are singleton. Hence, {0} is the zero object in HBCK.

Theorem 3.4. HBCK is connected.

Proof. Let H and K are two objects in HBCK. Since 0HK : H −→ K with 0HK(x) =
0, for all x ∈ H , is a morphism in HBCK, then Mor(H, K) 
= φ. Therefore, HBCK is
connected.

Theorem 3.5. HBCK has equalizers.
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Proof. Let f, g ∈ Hom(H,K) and T = {x ∈ H : f(x) = g(x)}. Since f(0) = 0 = g(0), then
0 ∈ T 
= φ. Let x, y ∈ T , then f(x) = g(x) and f(y) = g(y). Hence,

f(x ◦ y) = f(x) ◦ f(y) = g(x) ◦ g(y) = g(x ◦ y)

and so x ◦ y ∈ T . Therefore, T is a hyper BCK-subalgebra of H and so T ∈HBCK. Now,
we show that T together with the inclusion morphism i : T −→ H is the equalizer of f
and g in HBCK. It is clear that f ◦ i = g ◦ i. Let j ∈ Hom(L, H) such that f ◦ j = g ◦ j.
Then, f(j(x)) = g(j(x)), for all x ∈ L, and so Im(j) ⊆ T . Hence, we can define a morphism
δ : L −→ T by δ(x) = j(x), for all x ∈ L. It is clear that δ ∈ Hom(L, T ) and i ◦ δ = j. So
the following diagram is commutative.

T �i �f
�

g
H K

L
�

���
j�

���
δ

Since i is monic, then δ is an unique morphism in HBCK such that the above diagram is
commutative. Therefore, HBCK has equalizers.

Lemma 3.6. Let H ∈HBCK and {Θi : i ∈ I} is a nonempty family of regular congruence
relation on H, then

⋂
i∈I

Θi is a regular congruence relationon H.

Proof. The proof is straightforward.

Lemma 3.7. Let f ∈ Hom(H,K) in HBCK and relation Rf associated with f on H is
defined as follows:

xRfy ⇐⇒ f(x) = f(y)

Then, Rf is a regular congruence relation on H.

Proof. Let a, b, x ∈ H and aRfb. Then, f(a) = f(b). Since f is a homomorphism, then
f(a ◦ x) = f(b ◦ x) and f(x ◦ a) = f(x ◦ b). Hence by the definition of Rf , a ◦ xRfb ◦ x

and x ◦ aRfx ◦ b and so Rf is a congruence relation on H . Now, let a, b ∈ H, a ◦ bRf{0}
and b ◦ aRf{0}. Then, there are s ∈ a ◦ b and t ∈ b ◦ a such that sRf0 and tRf0. Hence,
f(s) = 0 = f(t). Thus, 0 = f(s) ∈ f(a◦b) = f(a)◦f(b) and 0 = f(t) ∈ f(b◦a) = f(b)◦f(a).
This implies that f(a) � f(b) and f(b) � f(a). Hence by (HK4), f(a) = f(b) and so aRfb.
Therefore, Rf is a regular congruence relation on H .

Theorem 3.8. HBCK has coequalizers.

Proof. Let f, g ∈ Hom(H,K) in HBCK and∑
= {Θ : Θ is a regular congruence relation on K such that f(a)Θg(a), for all a ∈ H}

Since K × K ∈ ∑
, then

∑ 
= φ. Now, let ρ =
⋂

Θ∈�
Θ. By Lemma 3.6, ρ is a regular

congruence relation on K. It is clear that f(a)ρg(a), for all a ∈ H . Hence, ρ ∈ ∑
and

so ρ is the minimal element of
∑

with respect to ⊆. Now consider the quotient hyper
BCK-algebra K

ρ and the canonical epimorphism π : K −→ K
ρ . Since f(a)ρg(a) for all

a ∈ K, then π(f(a)) = π(g(a)) for all a ∈ K. Hence, π ◦f = π ◦g. Now, let j ∈ Hom(K, L)
such that j ◦ f = j ◦ g and let ν : K

ρ −→ L is defined by ν([a]ρ]) = j(a) for all a ∈ K.
First, we show that ν is well-defined. Let a, b ∈ K and [a]ρ = [b]ρ. Since by Lemma 3.7, the
relation Rj associated with j is a regular congruence relation on K and j(f(a)) = j(g(a)),
then Rj ∈ ∑

. On the other hand, since ρ is a minimal element of
∑

, hence ρ ⊆ Rj . Since
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aρb, then aRjb and so j(a) = j(b). Hence the map ν is well-defined. It is clear that ν is a
homomorphism and this implies that ν ∈ Hom(K

ρ , L). Moreover, it easy to check that the
following diagram is commutative.

�f
�

g
H K

π
K
ρ

�

L

�
���j

�
���

ν

Since π is epic, then ν is an unique morphism such that the above diagram is commutative.
Therefore, HBCK has coequalizers.

Theorem 3.9. HBCK has products.

Proof. Let {(Hi, ◦i, 0i)}i∈I be a family of objects in HBCK and H be all of functions
f : I −→

⋃
i∈I

Hi such that f(i) ∈ Hi, for all i ∈ I. The function 0 : I −→
⋃
i∈I

Hi, which is

defined by 0(i) = 0i, is called the zero element of H . Let “ ◦ ” be a hyperoperation on H
which is defined as follows:

(f ◦ g)(i) = f(i) ◦i g(i), ∀f, g ∈ H, ∀i ∈ I

We can check that (H, ◦, 0) forms a hyper BCK-algebra and so H ∈HBCK. For each i ∈ I,
there exists a natural projection pi : H −→ Hi which is defined by pi(f) = f(i), for all
f ∈ H . We can see that the map pi, for all i ∈ I, is a homomorphism and so for all
i ∈ I, pi ∈ Hom(H,Hi) in HBCK. We claim that object H together with the morphisms
{pi}i∈I is a product of the family {(Hi, ◦i, 0i)}i∈I . Let (H ′, ◦′, 0′) be an object of HBCK
and let {qi ∈ Hom(H ′, Hi) : i ∈ I} be a family of morphisms in HBCK. For any x ∈ X, let
fx : I −→

⋃
i∈I

Hi be a function which is defined by fx(i) = qi(x) for all i ∈ I. Then we can

define the function f : H ′ −→ H by f(x) = fx, for all x ∈ H ′. Now, it is easy to prove that
f ∈ Hom(H ′, H) and pi ◦ f = qi, for all i ∈ I. Thus the following diagram is commutative,

Hi

pi� H
	

X
�

�
�

��
fqi

Moreover, f is an unique morphism such that the above diagram is commutative. Therefore,
the object H together with the morphisms {pi}i∈I is the product of the family {Hi}i∈I in
HBCK.

Corollary 3.10. HBCK has pullbacks.

Proof. By Theorems 3.5 and 3.9, HBCK has equalizers and products. Therefore, HBCK
has pullbacks by [[1], Theorem 3.7].

Theorem 3.11. HBCK is complete.

Proof. By Theorems 3.9 and 3.5, HBCK has products and equalizers. Therefore, HBCK is
complete by [[1], Theorem 6.2].

Corollary 3.12. Let I be a small category and let F : I −→ HBCK be a functor. Then F
has a Limit.

Proof. Let F : I −→HBCK be a functor from a small category. By Theorem 3.11, HBCK
is complete. Therefore, F has a Limit by [[1], the definition of Limit].
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Theorem 3.13. HBCK has coproducts.

Proof. Let {(Hi, ◦i, 0)}i∈I be a family of objects in HBCK. Without of loss of generality, we
can let Hi ∩Hj = {0}, for all i, j ∈ I and i 
= j. Hence, we can assume that Hi ∩Hj = {0},
for all i, j ∈ I and i 
= j. Now, let “ ◦ ” be a hyperoperation on H =

⋃
i∈I

Hi which is defined

as follows:

x ◦ y =
{

x ◦i y if x, y ∈ Hi, for some i ∈ I
{x} otherwise,

for all x, y ∈ H . Now, we prove that (H, ◦, 0) forms a hyper BCK-algebra.
(HK1) (1) If x, y, z ∈ Hi, the proof is clear.

(2) If x ∈ Hi, y, z ∈ Hj and i 
= j, then

(x ◦ z) ◦ (y ◦ z) = {x} ◦ (y ◦ z) = {x} � {x} = x ◦ y.

(3) If x, y ∈ Hi, z ∈ Hj and i 
= j, then

(x ◦ z) ◦ (y ◦ z) = {x} ◦ {y} = x ◦ y � x ◦ y

(4) If x, z ∈ Hi, y ∈ Hj and i 
= j, then

(x ◦ z) ◦ (y ◦ z) = (x ◦ z) ◦ {y} = x ◦ z � {x} = x ◦ y

The other cases are the same to the one of the above cases.
(HK2) (1) If x, y, z ∈ Hi, the proof is clear.

(2) If x ∈ Hi, y, z ∈ Hj and i 
= j, then

(x ◦ y) ◦ z = {x} = (x ◦ z) ◦ y

(3) If x, y ∈ Hi, z ∈ Hj and i 
= j, then

(x ◦ y) ◦ z = x ◦ y = (x ◦ z) ◦ y

(4) If x, z ∈ Hi, y ∈ Hj and i 
= j, then

(x ◦ y) ◦ z = x ◦ z = (x ◦ z) ◦ y

The other cases are the same to the one of the above cases.
(HK3) The proof is straightforward.
(HK4) Let x, y ∈ H be such that x � y and y � x. Then x ∈ Hi and y ∈ Hj for some

i, j ∈ I. If i = j, the proof is clear. Now we let i 
= j. In this case, 0 ∈ x ◦ y = {x} and
0 ∈ y ◦ x = {y} which implies that x = y.

Therefore, (H, ◦, 0) is a hyper BCK-algebra and so H ∈HBCK. Let (H ′, ◦′, 0′) be an
object of HBCK, {gi ∈ Hom(Hi, H

′) : i ∈ I} be a family of morphisms in HBCK and for
each i ∈ I, δi ∈ Hom(Hi, H) be a inclusion map. Since, for any x ∈ H there exists i ∈ I
such that x ∈ Hi. Hence, we can define f : H −→ H ′ by f(x) = gi(x), where x ∈ Hi. It
is easy to check that f is an unique morphism in HBCK such that the following diagram is
commutative.

Hi

δi� H



X

�
�

�
��

gi f

Hence, object H together with the morphisms {δi}i∈I is a coproduct of the family {(Hi, ◦i, 0i)}i∈I .
Therefore, HBCK has coproducts.

Corollary 3.14. HBCK has pushouts.
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Proof. By Theorems 3.8 and 3.13, HBCK has coequalizers and coproducts. Therefore,
HBCK has pushouts by [[1], the dual of Theorem 3.7].

Theorem 3.15. HBCK is co-complete.

Proof. By Theorems 3.13 and 3.8, HBCK has coproducts and coequalizers. Therefore,
HBCK is co-complete by [[1], the dual of Theorem 6.2].

Corollary 3.16. Let I be a small category and let F : I −→ HBCK be a functor. Then F
has a Co-Limit.

Proof. Let F : I −→HBCK be a functor from a small category. By Theorem 3.15 HBCK is
co-complete. Therefore, F has a Co-Limit by [[1], the dual of the definition of Co-Limit].

Theorem 3.17. HBCK is factorisable.

Proof. Let f ∈ Hom(H,K) in HBCK and Rf be the regular congruence relation on H

associated with f in Lemma 3.7. Let ν : H
Rf

−→ K is defined by ν([a]Rf
) = f(a). By the

proof of Theorem 3.8, ν is well-defined and ν ∈ Hom( H
Rf

, K). It is clear that ν is a monic.
Now, since π : H −→ H

Rf
is an epic and f = ν ◦ π, hence HBCK is factorisable.

Theorem 3.18. [3] Let I be a reflexive hyper BCK-ideal of H and relation Θ on H is
defined as follows:

xΘy ⇐⇒ x ◦ y ⊆ I and y ◦ x ⊆ I

for all x, y ∈ H. Then Θ is a regular congruence relation on H and I = [0]Θ.

Theorem 3.19. Let f ∈ Hom(H,K) in HBCK. Then the following statements are hold:
(i) If f is onto, then f is epic.
(ii) If f is epic and Im(f) is a reflexive hyper BCK-ideal of K, then f is onto.

Proof. (i) The proof is strightforward.
(ii) Let f ∈ Hom(H,K) be an epic in HBCK and relation Θ on K is defined as followes:

xΘy ⇐⇒ x ◦ y ⊆ Im(f) and y ◦ x ⊆ Im(f)

By Theorem 3.14, Θ is a regular congruence relation on H and Im(f) = [0]Θ. Hence K
Im(f)

is well-defined. Now, let π, g : K −→ K
Im(f) are two maps such that π is the canonical

epimorphism and g(x) = Im(f), for all x ∈ K. It is clear that π, g ∈ Hom(K, K
Im(f)) and

π ◦ f = Im(f) = g ◦ f . Since f is a right cancellable, then π = g. Hence, (Im(f))x = π(x) =
g(x) = Im(f) = [0]Θ for all x ∈ K, and so xΘ0. Thus by the definition of Θ, K ⊆ Im(f)
and so Im(f) = K. Therefore, f is onto.

Theorem 3.20. Let f ∈ Hom(H,K) in HBCK and let Im(f) be a reflexive hyper BCK-
ideal of K. Then the following statements are equivalent :
(i)f is a bimorphism,
(ii)f is an isomorphism.

Proof. (i)=⇒ (ii) Let f : H −→ K be a bimorphism in the category HBCK and let Im(f)
be a reflexive hyper BCK-ideal of K. Then by Theorems 3.3 and 3.4 f is injective and
onto. Now, let k ∈ K. Then there exists unique h ∈ H such that f(h) = k. Hence we can
define The function g : K −→ H by g(k) = h. Let k1, k2 ∈ K and h1, h2 ∈ H such that
f(h1) = k1, f(h2) = k2. Then, g(k1 ◦ k2) =

⋃
k∈k1◦k2

g(k) =
⋃

f(h)∈f(h1)◦f(h2)

h =
⋃

h∈h1◦h2

h =

h1 ◦h2 = g(k1)◦g(k2). Hence, g is a homomorphism. Thus, g is a morphism of the category
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HBCK. Moreover, it easy to check that g ◦ f = IdH and f ◦ g = IdK . Therefore, f is an
isomorphism.

(ii)=⇒ (i) The proof is strightforward.

Theorem 3.21. HBCK has intersections.

Proof. Let H and {Hi}i∈I be a family of hyper BCK-algebras, {fi}i∈I ⊆ Hom(Hi, H) and
let D =

⋂
i∈I

fi(Hi). Since fi(Hi) is a subalgebra of H for each i ∈ I, then D is also subalgebra

of H . Let x ∈ D. Since fi is monic for each i ∈ I, then by Theorem 3.2, it is injective. Thus
for each i ∈ I there exists an unique element xi ∈ Hi such that x = fi(xi). Hence for each
i ∈ I, we can define the map di : D −→ Hi by di(x) = xi. It is clear that di ∈ Hom(D,Hi).
Now, let d : D −→ H be inclusion map. Since fi ◦ di(x) = fi(di(x)) = fi(xi) = x = d(x),
for all x ∈ D and i ∈ I. Then, fi ◦ di = d for each i ∈ I and so the following diagram is
commutative.

D
di� Hi



H

�
�

�
��

d fi

Now, let e ∈ Hom(E, H) such that the following diagram is commutative.

E
ei� Hi



H

�
�

�
��

e fi

Let x ∈ E. Since e(x) = fi(ei(x)) ∈ fi(Hi) for each i ∈ I, then e(x) ∈ D. Hence, we can
define the morphism α : E −→ D by α(x) = e(x). It is clear that d ◦ α = e. Since d is
monic, then α ∈ Hom(E, D) is unique and the following diagram is commutative.

E e�
��



D




�

H
α

d

Hence, (D, H) is the intersection of the family of the subobjects {(Hi, fi)}i∈I in HBCK.
Therefore, the category HBCK has intersections.

Theorem 3.22. HBCK has kernels.

Proof. Let f ∈ Hom(H,K) and 0 : H −→ K be the zero morphism in HBCK. It is clear
to prove that the equalizer of f and 0 is the kernel of f . Now, since HBCK has equalizers,
then HBCK has kernels.

Theorem 3.23. Let f ∈ Hom(H,K) be monic in HBCK and Im(f) be a reflexive hyper
BCK-ideal of K. Then f is a kernel.

Proof. Let f ∈ Hom(H,K). Since Im(f) is a reflexive hyper BCK-ideal of K, then by the
proof of Theorem 3.15(ii), K

Im(f) is well-defined and [0]Θ = Im(f). Now, let π : K −→ K
Im(f)

be the canonical epimorphism. Since f(x)◦0 = {f (x)} ⊆ Im(f) and 0◦f(x) = {0} ⊆ Im(f),
then f(x)Θ0 and so [f(x)]Θ = [0]Θ. Hence π ◦ f(x) = π(f(x)) = [f(x)]Θ = [0]Θ and this
implies that π ◦ f = 0. Now, let α ∈ Hom(L, K) such that π ◦α = 0. Since π(α(x)) = [0]Θ,
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then [α(x)]Θ = [0]Θ = Im(f) and so α(x) ∈ Im(f), for all x ∈ L. Hence, there exists z ∈ H
such that α(x) = f(z). Since f is monic then by Theorem 3.2, f is injective. Hence for each
x ∈ L there exists an unique z ∈ H such that α(x) = f(z). Thus we can define the function
δ : L −→ H by δ(x) = z. Let x, y ∈ L and z, w ∈ H such that δ(x) = z and δ(y) = w.
Then,

δ(x ◦ y) =
⋃

t∈x◦y

δ(t) =
⋃

f(s)=α(t), t∈x◦y

s

=
⋃

f(s)=α(t)∈α(x)◦α(y)

s =
⋃

f(s)∈f(z)◦f(w))

s

=
⋃

f(s)∈f(z◦w)

s =
⋃

s∈z◦w

s = z ◦ w

= δ(x) ◦ δ(y)

Hence, δ is a homomorphism and so δ ∈ Hom(L, H). It is clear that f ◦ δ = α. Since
f is monic, then δ is the unique morphism in HBCK such that the following diagram is
commutative.

H
f

K �π K
Im(f)

�

L
�

���
δ �

���α

Therefore, f is a kernel.

Theorem 3.24. Let f ∈ Hom(H,K) be epic in HBCK and Im(f) be a reflexive hyper
BCK-ideal of K. Then f is a cokernel.

Proof. Let f ∈ Hom(H,K) and Ker(f ) = {x ∈ H : f(x) = 0}. Let i : Ker(f ) −→ H be
inclusion map. It is clear that i ∈ Hom(Ker(f),H) and f ◦ i = 0. Now, let α ∈ Hom(H,L)
such that α ◦ i = 0. Since f is epic and Im(f) is a reflexive hyper BCK-ideal of K, then
by Theorem 3.15(ii) f is onto. Let k ∈ K. Then there exists h ∈ H such that f(h) = k.
Let δ : K −→ L is defined by δ(k) = α(h). First, we show that δ is well-defined. Let
k1 = k2 ∈ K, f(h1) = k1 and f(h2) = k2 for some h1, h2 ∈ H . Then, f(h1) = f(h2).
Hence, h1 ◦h2, h2 ◦h1 ⊆ Ker(f ) and so α(h1 ◦h2) = α(h2 ◦h1) = {0} . Thus, α(h1) � α(h2)
and α(h2) � α(h1) and so α(h1) = α(h2). Therefore, δ(k1) = δ(k2) and so δ is well-defined.
Now, let k1, k2 ∈ K, f(h1) = k1 and f(h2) = k2 for some h1, h2 ∈ H . Since f and α are
homomorphism, then

δ(k1 ◦ k2) = δ(f(h1) ◦ f(h2)) = δ(f(h1 ◦ h2))

=
⋃

h∈h1◦h2

δ(f(h)) =
⋃

h∈h1◦h2

α(h))

= α(h1 ◦ h2) = α(h1) ◦ α(h2)
= δ(k1) ◦ δ(k2).

Hence δ is a homomorphism and so δ ∈ Hom(K, L). Since f is epic, then δ is the unique
morphismin in the category HBCK such that the following diagram is commutative.

Ker(f )
i

H �f K�

L

�
��� δ

�
���

α
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Therefore, f is a cokernel.
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