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FIXED POINT OF CONTRACTION AND EXPONENTIAL ATTRACTORS
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Abstract. The exponential attractor is known as one of useful notions of invariant
attractors in the theory of infinite-dimensional dynamical systems. It is also known
that, if the semigroup of a dynamical system satisfies a compact perturbation condition
of contraction, then the dynamical system has exponential attractors. In this paper,
we clarify the meaning of the compact perturbation condition of contraction and show
that the exponential attractor is a natural generalization of the exponentially stable
equilibrium.

1 Introduction The study of the long time behavior of systems arising from physics,
mechanics and biology is a capital issue, as it is important, for practical purposes, to
understand and predict the asymptotic behavior of the system.

For many parabolic and weakly damped wave equations, one can prove the existence
of the finite dimensional (in the sense of the Hausdorff or the fractal dimension) global
attractor, which is a compact invariant set which attracts uniformly the bounded sets of
the phase space (see [12] and [14]). Since it is the smallest set enjoying these properties, it
is a suitable set.

Now, the global attractor may present two major defaults for practical purposes. Indeed,
the rate of attraction of the trajectories may be small and (consequently) it may be sensible
to perturbations.

In order to overcome these difficulties, Foias, Sell and Temam proposed in [7] the notion
of inertial manifold, which is a smooth finite dimensional hyperbolic (and thus robust)
positively invariant manifold which contains the global attractor and attracts exponentially
the trajectories. Unfortunately, all the known constructions of inertial manifolds are based
on a restrictive condition, the so-called spectral gap condition. Consequently, the existence
of inertial manifolds is not known for many physically important equations. A non-existence
result has even been obtained by Mallet-Paret and Sell for a reaction-diffusion equation in
higher space dimensions.

Thus, as an intermediate object between the two ideal objects that the global attractor
and an inertial manifold are, Eden, Foias, Nicolaenko and Temam proposed in [13] the notion
of exponential attractor, which is a compact positively invariant set which contains the
global attractor, has a finite fractal dimension and attracts exponentially all the trajectories.
So, compared with the global attractor, an exponential attractor is more robust under
perturbations and numerical approximations (see [13] and [3, 6] for discussions on this
subject). Another motivation for the study of exponential attractors comes from the fact
that the global attractor may be trivial (say, reduced to one point) and may thus fail to
capture important transient behaviors (see [2, 10]). We note however that, contrarily to the
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global attractor, an exponential attractor is not necessarily unique, so that actual/concrete
choice of an exponential attractor is in some sense artificial.

Exponential attractors have been constructed for a large class of equations (see [4, 13]
and more recent papers [1, 8, 9, 11]). The known constructions of exponential attractors
(see for instance [4] and [13]) make an essential use of orthogonal projectors with finite rank
(in order to prove the so-called squeezing property) and are thus valid in Hilbert spaces only.
Recently, Efenviev, Miranville and Zelik gave in [5] a construction of exponential attractors
that is no longer based on the finite-rank squeezing property but is based on a compact
perturbation of the contraction semigroup and that is thus valid in a Banach setting. So,
exponential attractors are as general as global attractors.

In this paper, we intend to clarify the meaning of the compact perturbation of contraction
semigroup and to show that the notion of exponential attractors is a natural generalization of
that of exponentially stable equilibria. So the theory of exponential attractors is considered
as a natural generalization of Banach’s fixed point theorem for contraction mappings in an
infinite-dimensional dynamical system.

2 Basic Concepts Let X be a Banach space with norm ‖·‖X . Let X be a subset of X , X

being a metric space with the distance d(U, V ) = ‖U −V ‖X (U, V ∈ X) induced from ‖ ·‖X .
A family of nonlinear operators S(t), 0 ≤ t < ∞, from X into itself is called a (nonlinear)
semigroup on X if S(t) enjoys

1. S(0) = 1 (the identity mapping on X);

2. S(t)S(s) = S(t + s), 0 ≤ t, s < ∞ (the semigroup property).

When a semigroup on X has the property:

the mapping G(t, U) = S(t)U is continuous from [0,∞) × X to X,(2.1)

S(t) is called a continuous semigroup on X.
Let S(t) be a continuous semigroup on X. For each U0 ∈ X, the X-valued continuous

function S(·)U0 is called a trajectory starting from U0. The family of all such trajectories
are denoted by (S(t),X, X), and is called a dynamical system determined by S(t) on the
phase space X in the universal space X .

Let (S(t),X, X) be a dynamical system. An element U ∈ X is called an equilibrium of
(S(t),X, X) if

S(t)U = U for every t ≥ 0.(2.2)

More generally, a set A ⊂ X is called an invariant set of (S(t),X, X) if

S(t)A = A for every t ≥ 0,

and is called a positively invariant set of (S(t),X, X) if

S(t)A ⊂ A for every t ≥ 0.(2.3)

A set A is said to absorb a set B if there is a time tB such that S(t)B enters to A after
the time tB, namely

S(t)B ⊂ A for every t ≥ tB.
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A set A is said to attract a set B if for any ε > 0, the ε neighborhood Wε(A) of A absorbs
B. Using the Hausdorff pseudo distance h(·, ·) defined by

h(B1, B2) = sup
U1∈B1

inf
U2∈B2

d(U1, U2),

this definition can be described as

lim
t→∞h(S(t)B,A) = 0.(2.4)

Indeed if (2.4) holds, then for any ε > 0, there exists some tε > 0 such that h(S(t)B,A) ≤ ε
2

for t ≥ tε; therefore, for any U ∈ S(t)B, d(U,A) ≤ ε
2 ; hence, U ∈ Wε(A), that is

S(t)B ⊂ Wε(A) for every t ≥ tε.

An equilibrium U of S(t) is said to be asymptotically stable if some open neighborhood
W of U is attracted by U , namely,

lim
t→∞h(S(t)W,U) = 0,

where the set {U} is denoted simply by U . Similarly, an invariant set A of S(t) is called an
attractor if some open neighborhood W of A is attracted by A, namely

lim
t→∞ h(S(t)W,A) = 0.

We call a set A an absorbing set of (S(t),X, X) if A absorbs every bounded set of X,
namely for any bounded set B ⊂ X, there is a time tB (depending on B) such that

S(t)B ⊂ A for every t ≥ tB.

We call an attractor A of (S(t),X, X) a global attractor if

1. A is a compact subset of X;

2. A attracts every bounded set of X, namely, for any bounded set B ⊂ X,

lim
t→∞h(S(t)B,A) = 0.

When the phase space X is a compact set of X , the set given by

A =
⋂
t≥0

⋃
s≥t

S(s)X(2.5)

is shown to be a global attractor of (S(t),X, X), see [12] or [14] .

3 Exponentially Stable Equilibria and Exponential Attractors It is often very
important to seek limit sets which attract other sets exponentially.

An equilibrium U of (S(t),X, X) is said to be exponentially stable if there exists some
neighborhood W of U which U attracts exponentially in the sense that

h(S(t)W,U ) ≤ C0e
−kt, 0 ≤ t < ∞(3.1)

with some constant C0 > 0 and some exponent k > 0.
In a neighborhood of the exponentially stable equilibrium the behavior of trajectories

can be described by a smaller dynamical system.
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Theorem 3.1. Let U be an exponentially stable equilibrium of (S(t),X, X). Then, there
exists some neighborhood W of U such that W is a positively invariant set (therefore
(S(t),W, X) defines a new dynamical system the phase space of which contains the point
U) and W is attracted exponentially by U in the sense (3.1).

Proof. There is some open ball W = B(U ; r), r > 0 for which (3.1) holds. Then take
a time T > 0 such that C0e

−kT = r
2 . Then, for every t ≥ T , S(t)W ⊂ W . So if we

set W =
⋃

0≤t<∞ S(t)W =
⋃

0≤t≤T S(t)W , then S(t) transforms W into itself for every
0 ≤ t < ∞; namely, W is positively invariant.

When 0 ≤ τ ≤ T , S(τ)W ⊂ W =
⋃

0≤t≤T S(t)W ; therefore, it holds that h(S(τ)W, U )
≤ sup0≤t≤T C0e

−kt = C0. Meanwhile, when τ ≥ T , S(τ)W =
⋃

0≤t≤T S(t + τ)W ⊂
S(τ − T )

⋃
0≤t≤T S(t + T )W ⊂ S(τ − T )W ; therefore, h(S(τ)W, U ) ≤ C0e

kT e−kτ . These
show that U attracts W exponentially.

We now assume that the phase space X is a compact subset of X . As noticed above,
(S(t),X, X) has the global attractor A.

A subset M ⊂ X is called an exponential attractor of (S(t),X, X) if M enjoys the
following properties:

1. M is a compact set of X such that A ⊂ M ⊂ X with finite fractal dimension dF (M)
in X (e.g., see [14, p. 366]).

2. M is a positively invariant set of S(t), i.e., S(t)M ⊂ M, 0 ≤ t < ∞.

3. M attracts X exponentially in the sense that

h(S(t)X, M) ≤ C0e
−kt, 0 ≤ t < ∞(3.2)

with some constant C0 > 0 and some exponent k > 0.

By some abuse of terminology, M is called an exponential attractor, but M may not be
an invariant set, and hence may not be an attractor in the precise sense defined above.

4 Contraction semigroups Consider a dynamical system (S(t),X, X), where X is a
closed bounded subset of a universal space X . We assume that, for some t∗ > 0, S(t∗) is a
contraction mapping from X into itself, namely

‖S(t∗)U − S(t∗)V ‖ ≤ δ‖U − V ‖, U, V ∈ X(4.1)

with some constant 0 < δ < 1. When a semigroup S(t) satisfies this condition, the semi-
group is called a contraction semigroup.

By the fixed point theorem of Banach, there exists a unique fixed point U of S = S(t∗)
in X. Furthermore, it holds that

‖SnU − U‖ = ‖SnU − SnU‖ ≤ δn‖U − U‖ ≤ Rδn, U ∈ X

for all integers n ≥ 0, where R = δ(X) is the diameter of X.
We then verify that U is an equilibrium of S(t). Indeed, for any t > 0, SS(t)U =

S(t∗+t)U = S(t)SU = S(t)U ; that is, S(t)U is also a fixed point of S; therefore, S(t)U = U .
Furthermore, let t = nt∗ + τ with integer n ≥ 0 and 0 ≤ τ < t∗. Then,

‖S(t)U − U‖ = ‖SnS(τ)U − U‖ ≤ Rδ
t−τ
t∗ ≤ Rδ

t−t∗
t∗ = Rδ−1e−( 1

t∗ log δ−1)t, U ∈ X.

Thus we have proved the following result.
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Theorem 4.1. Let the phase space X be closed and bounded in X. Let, for some t∗ > 0,
(4.1) be satisfied with 0 < δ < 1. Then, (S(t),X, X) has a unique equilibrium U which
attracts X exponentially.

5 Compact Perturbation of Contraction Semigroup Consider now a dynamical
system (S(t),X, X), where the phase space X is a compact set of X . We assume that, for
some t∗ > 0, S(t∗) is decomposed as

S(t∗) = S = S0 + K.(5.1)

Here, K is a mapping from X into a second Banach Z which is compactly embedded in X
and satisfies the Lipschitz condition

‖KU − KV ‖Z ≤ L‖U − V ‖X , U, V ∈ X.(5.2)

The operator S0 is a contraction mapping such that

‖S0U − S0V ‖X ≤ δ‖U − V ‖X , U, V ∈ X(5.3)

with 0 ≤ δ < 1
2 . The conditions (5.2) and (5.3) are called the compact squeezing property

of S(t∗).
Then, the compact squeezing property implies the existence of exponential attractors

for the discrete dynamical system (Sn, X, X).

Theorem 5.1. Let (5.2) and (5.3) be satisfied with 0 ≤ δ < 1
2 . Let θ be any exponent such

that 0 < θ < 1−2δ
2L . Then there exists an exponential attractor M∗

θ, A∗ ⊂ M∗
θ ⊂ X, with the

following properties:

1. M∗
θ is a compact subset of X with finite fractal dimension

dF (M∗
θ) ≤

log Kθ

log 1
aθ

;

2. SM∗
θ ⊂ M∗

θ;

3. h(SnX, M∗
θ) ≤ Ran

θ for all integers n ≥ 0.

Here, R = δ(X) is a diameter of X, 0 < aθ < 1 is an exponent given by aθ = 2{δ + Lθ} and
Kθ is the minimal number of balls with radii θ which cover the unit ball B

Z
(0; 1) in X.

Proof. For the proof of this theorem, we can argue as in [5] (cf. also [13, Theorem 2.1]).
For n = 0, 1, 2, . . . , let us define inductively a finite covering of SnX such that

SnX ⊂
Kn

θ⋃
i=1

B(Wn,i; Ran), where a = aθ,(5.4)

with centers Wn,i ∈ SnX, 1 ≤ i ≤ Kn
θ .

For n = 0, it is clear that

S0X = X ⊂ B(W0; R)

with an arbitrarily fixed W0 ∈ X.
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Assume that the covering (5.4) is defined for n − 1. Then we have

SnX = S(Sn−1X) ⊂
Kn−1

θ⋃
i=1

S
(
B(Wn−1,i; Ran−1) ∩ Sn−1X

)
.

So it suffices to cover each S
(
B(Wn−1,i; Ran−1)∩ Sn−1X

)
by Kθ-closed balls with a radius

Ran.
¿From (5.2) we see that

K
(
B(Wn−1,i; Ran−1) ∩ Sn−1X

) ⊂ B
Z
(KWn−1,i; LRan−1).

Moreover, by the compactness of closed bounded balls of Z in X , the last ball can be covered
by Kθ-closed balls of X in such a way that

B
Z
(KWn−1,i; LRan−1) ⊂

Kθ⋃
j=1

B(W̃n−1,i,j ; θLRan−1)

with centers W̃n−1,i,j ∈ X, 1 ≤ j ≤ Kθ and a radius θLRan−1. Therefore we obtain that

K
(
B(Wn−1,i; Ran−1) ∩ Sn−1X

) ⊂
Kθ⋃
j=1

B(W̃n−1,i,j ; θLRan−1).(5.5)

Here we are allowed to assume that

K
(
B(Wn−1,i; Ran−1) ∩ Sn−1X

) ∩ B(W̃n−1,i,j ; θLRan−1) �= ∅

for every j, since, if not for some j’s, we can exclude balls centered at those points from the
covering. Hence, there exist Kθ-vectors Wn−1,i,j such that

Wn−1,i,j ∈ B(Wn−1,i; Ran−1) ∩ Sn−1X,

KWn−1,i,j ∈ B(W̃n−1,i,j ; θLRan−1).

In particular,

B(W̃n−1,i,j ; θLRan−1) ⊂ B(KWn−1,i,j ; 2θLRan−1).(5.6)

Let us now verify that

S
(
B(Wn−1,i; Ran−1) ∩ Sn−1X

) ⊂
Kθ⋃
j=1

B(SWn−1,i,j ; Ran).(5.7)

In fact, if U ∈ B(Wn−1,i; Ran−1) ∩ Sn−1X, then from (5.5) and (5.6), there is some j such
that KU ∈ B(KWn−1,i,j ; 2θLRan−1). From (5.1)-(5.3) it is verified that

‖SU − SWn−1,i,j‖X ≤ δ‖U − Wn−1,i,j‖X + ‖KU − KWn−1,i,j‖X

≤ 2δRan−1 + 2LθRan−1 = Ran.

Hence (5.7) has been shown.
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Since the covering (5.7) can be constructed for each 1 ≤ i ≤ Kn−1
θ , the desired covering

(5.4) for n is obtained by locating central points as

{Wn,i; 1 ≤ i ≤ Kn
θ } = {SWn−1,i,j ; 1 ≤ i ≤ Kn−1

θ , 1 ≤ j ≤ Kθ} ⊂ SnX.

Let

P = {Wn,i; 0 ≤ n < ∞, 1 ≤ i ≤ Kn
θ }

be a collection of all central points of the covering (5.4). And set M∗
θ in such a way that

M∗
θ =

∞⋃
n=0

SnP.

Then M∗
θ is shown to be an exponential attractor for (Sn, X, X). As the proof is the same

as that of [13, Theorem 2.1], we may omit it.

Let us return to the continuous dynamical system (S(t),X, X). For proving the existence
of exponential attractors, we need to assume in addition to (5.2) and (5.3) the Lipschitz
condition

‖S(t)U − S(s)V ‖X ≤ C(|t − s| + ‖U − V ‖X), t, s ∈ [0, t∗], U, V ∈ X(5.8)

with some constant C > 0. Then by the similar argument as in [13, Theorem 3.1], we can
immediately conclude the following result.

Theorem 5.2. Let (5.1)-(5.3) be satisfied with 0 ≤ δ < 1
2 , and let (5.8) be satisfied. Then,

for any 0 < θ < 1−2δ
2L , there exists an exponential attractor Mθ, A ⊂ Mθ ⊂ X, of fractal

dimension dF (Mθ) ≤ dF (M∗
θ) + 1. And Mθ attracts S(t)X at the rate

h(S(t)X, Mθ) ≤ Ra−1
θ e−( 1

t∗ log a−1
θ )t, 0 ≤ t < ∞.

Here, R = δ(X) is a diameter of X, M∗
θ is the exponential attractor constructed in Theorem

5.1 for the discrete dynamical system and aθ = 2{δ + Lθ}.
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