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Abstract. In this paper we consider the ruin probability for a storage process. This
process has two phases, the inflow phase and the outflow one, and the switchover of
which is controlled by a certain storage level. In these phases the storage increases
or decreases at each rate dependent on the present level. Furthermore the large scale
demand for the system may happen in both phases according to Poisson process. The
limiting probability distribution for the storage level and the ruin probability are given
by the solution of a system of renewal equations.

1 Introduction The storage process considered in this paper is that arising from stochas-
tic models for queues, inventories, dams, insurance risk, nursing-insurance risk and so on. It
is most important problem to get the ruin probability for the process because, for example,
the insurance company wishes to avoid the ruin.

This paper investigates the ruin probability for the storage process with upper boundary
which has two phases, called as the inflow and outflow phases, and the switch over of these
phases is controlled by a certain storage level.

In the inflow phase the storage is increasing and in the outflow phase the storage is
decreasing. Assume that the storage increases or decreases at each rate dependent on the
present phase and level, and that the inflow has two different increasing rates. In both
phases the large scale demand for the system may occur according to Poisson process. We
present the analytical solution for the steady-state probabilities of storage levels and the
ruin probability incurred the first epoch at which the storage level drops down below the
zero level.

For this process Doi and Ōsawa [1] have studied numerically on the steady-state proba-
bilities of storage levels and Doi [2] has got the mean ruin time. For the simple process with
increasing rate, Doi [3] has studied on the mean ruin time and Doi, Nagai and Ōsawa [4]
have got the ruin probability.

2 The Mathematical Model Let X(t) be the storage level at time t. Assume that
it has boundaries L and zero, that is, 0 ≤ X(t) ≤ L . We define a time interval in which
X(t) is increasing as an inflow phase, and during this phase X(t) has an inflow rate α1(x)
given that X(t) = x for 0 < x < L . We also define a time interval in which X(t) is
decreasing as an outflow phase having a rate α0(x) (l < x < L). Once X(t) reaches the
upper bound L, it remains at the level in a certain period whose length is exponentially
distributed with parameter νL. Immediately after this period, the phase changes to the
outflow one and X(t) is controlled according to the outflow rate α0(x) given that X(t) = x
for l < x < L.

Throughout these phases, the large scale demand for the system may occur according
to the Poisson process, that is, the inter-occurrence time has an exponential distribution

2000Mathematics Subject Classification. 37A50, 46N30.
Key words and phrases. Ruin probability, storage process, large scale demands.



596 MAKOTO DOI

with parameter λ. Let the amount of each demand has a distribution function F (x) with
the density function f(x) having the finite mean.

There are two cases for the switch over from the outflow phase to the inflow one. First,
if X(t) decreases to the level l continuously, the phase instantaneously changes to the inflow
one. Second, if X(t) drops down into a domain (0, l) because of a large scale demand for
the system, the phase instantaneously changes to the inflow one. In two cases stated above
the system can be switched without any loss of time. When the demand larger than the
present level occurs, the storage becomes empty and the system is ruined. If a large scale
demand happens in the inflow phase, the inflow phase is continued except the case of large
scale demand dropping down below the zero level. Once the ruin occurs, X(t) remains at
the level zero in a certain period according to an exponential distribution with parameter
ν0. Immediately after that period, the inflow phase begins.

There are many applications analyzed by the mathematical model described in this
section, for example, production-inventory problems, production systems with shocks, fi-
nite capacity queueing-inventory problem, M/G/1 queueing systems with removable server
(H.C.Tijms [5]), insurance and nursing insurance risk problems. For the mean ruin time
for this process Doi [2] has studied.

For this process, in the next section, we define the Markov process and constitute the
integro-differential equations.

3 Integro-Differential Equations For the model above, the states of the storage pro-
cess are classified into four categories:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(ξ(t),X(t)) = (1, x) if the process is in inflow phase and the storage level is
x at time t, (0 < x < L) ,

(ξ(t),X(t)) = (0, x) if the process is in outflow phase and the storage level is
x at time t, (l < x < L) .

(ξ(t),X(t)) = 0 if the storage process is ruined at time t ,
(ξ(t),X(t)) = L if the storage is full at time t ,

where ξ(t) indicates the present phase.

Thus we constitute the Markov process {(ξ(t),X(t)) : t ≥ 0}.
Now, we define its probability distribution for i = 0, 1 and t ≥ 0 :

pt(i, x) = P [(ξ(t),X(t)) = (i, x)] ,
Pt(0) = P [(ξ(t),X(t)) = 0] ,
Pt(L) = P [(ξ(t),X(t)) = L] .

We have the following Kolmogorov’s forward equations with respect to pt(i, x).

For pt(1, x) (0 < x < L)

∂pt(1, x)
∂t

+ α1(x)
∂pt(1, x)

∂x
= −λ{pt(1, x) −

∫ L−x

0

pt(1, x + y)dF (y)}(1)

+ λI(0,l)(x){Pt(L)f(L − x) +
∫ L−x

0

pt(0, x + y)dF (y)} ,

and for pt(0, x) (l < x < L)
∂pt(0, x)

∂t
− α0(x)

∂pt(0, x)
∂x

= −λ{pt(0, x) − Pt(L)f(L − x)(2)
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−
∫ L−x

0

pt(0, x + y)dF (y)}
where I(0,l)(x) = 1 if x ∈ (0, l);= 0 otherwise.

Assuming that lim
t→∞ pt(i, x) = p(i, x) (i = 0, 1), lim

t→∞ Pt(0) = P0 and lim
t→∞Pt(L) = PL exist,

we consider the steady state of this process.
Hence we have the following integro-differential equations from (1) and (2).

For p(1, x) (0 < x < L)

α1(x)
dp(1, x)

dx
= −λ{p(1, x)−

∫ L−x

0

p(1, x + y)dF (y)}(3)

+ λI(0,l)(x){PL · f(L − x) +
∫ L−x

0

p(0, x + y)dF (y)} ,

and for p(0, x) (l < x < L)

α0(x)
dp(0, x)

dx
= λ{p(0, x) − PL · f(L − x) −

∫ L−x

0

p(0, x + y)dF (y)}(4)

To solve these equations, we need the boundary conditions:

ν0P0 = λ

∫ L

0

{I(l,L)(y)p(0, y) + p(1, y)}{1 − F (y)}dy + λPL{1 − F (L)} ,(5)

(νL + λ)PL = α1(L−)p(1, L−) ,(6)
νLPL = α0(L−)p(0, L−) ,(7)

p(0, l+) + p(1, l−) =
∫ L−l

0

{p(0, l + u) + p(1, l + u)}dF (u)(8)

+ PL · f(L − l) .

Note that we suppose p(0, x) = 0 for 0 < x < l.

4 Analytical Solutions In this section, similarly in [1] and [2], we take the outflow
rate as α0(x) = α0 for l < x < L and the inflow rates, acording to the storage level, as
α1(x) = α1 for l < x < L and α1(x) = α2 for 0 < x < l (α1 < α2). First we have the
following Theorem concerning p(0, x) in the outflow phase.

Theorem 1 If we take α0(x) = α0 for l < x < L then p(0, x) is obtained as follows:

p(0, x) = B(x) +
∫ L−x

0

eδ0yB(x + y)dM0(y)(9)

where

B(x) = A0(x) − λ

α0

∫ L−x

0

A0(x + y){1 − F (y)}dy ,(10)

A0(x) =
1
α0

{νL + λF (L − x)}PL ,(11)

M0(y) =
∞∑

n=1

H2n∗
0 (y),H0(y) =

λ

α0

∫ y

0

e−δ0y{1 − F (y)}dy(12)
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and δ0 is the unique solution of the equation∫ ∞

0

λ

α0
e−δ0x{1 − F (x)}dx = 1.(13)

(H2n∗
0 (y) is the 2n-th fold convolution of H0(y).)

Proof
To evaluate the right hand side of (4), we note the following relation.

−p(0, x) +
∫ L−x

0

p(0, x + y)dF (y)(14)

=
d

dx

∫ L−x

0

p(0, x + y){1 − F (y)}dy

Using this relation we rewrite (4) as:

p(0, x) = A0(x) − λ

α0

∫ L−x

0

p(0, x + y){1 − F (y)}dy(15)

where
A0(x) = p(0, L−) +

λ

α0
F (L − x)PL .(16)

Note that
p(0, L−) =

νL

α0
PL .(17)

Since it is not the proper renewal function, we need the Tijms’ method [5].
Using δ0 defined by (13), we define the distribution function:

H0(x) =

⎧⎪⎨
⎪⎩

λ

α0

∫ x

0

e−δ0y{1 − F (y)}dy (x > 0),

0 (x ≤ 0) .

(18)

Then we have the standard renewal equation from (15) with concern to eδ0xp(0, x) by use
of δ0 and H0(x) as follows:

eδ0xp(0, x) = eδ0xA0(x) −
∫ L−x

0

eδ0(x+y)p(0, x + y)dH0(y)(19)

= eδ0xB(x) +
∫ L−x

0

eδ0(x+y)p(0, x + y)dH2∗
0 (y) .

From the solution of this equation we have (9). �

Next we have the following Theorem concerning p(1, x) (l < x < L) in the inflow phase.

Theorem 2 If we take α1(x) = α1 for l < x < L then p(1, x) is obtained as follows:

p(1, x) =
νL + λ

α1
{1 +

∫ L−x

0

eδ1ydM1(y)}PL ,(20)

where

M1(y) =
∞∑

n=1

Hn∗
1 (y),H1(y) =

λ

α1

∫ y

0

e−δ1y{1 − F (y)}dy(21)

and δ1 is the unique solution of the equation∫ ∞

0

λ

α1
e−δ1x{1 − F (x)}dx = 1.(22)
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Proof
We have the relation:

−p(1, x) +
∫ L−x

0

p(1, x + y)dF (y) =
d

dx

∫ L−x

0

p(1, x + y){1 − F (y)}dy .(23)

Then (3) (l < x < L) is reduced to

p(1, x) = p(1, L−) +
λ

α1

∫ L−x

0

p(1, x + y){1 − F (y)}dy.(24)

We define the distribution function:

H1(x) =

⎧⎪⎨
⎪⎩

λ

α1

∫ x

0

e−δ1x{1 − F (y)}dy (x > 0),

0 (x ≤ 0) .

(25)

Then we have the standard renewal equation from (24) with concern to
eδ1xp(1, x) (l < x < L).

eδ1xp(1, x) = eδ1xp(1, L−) +
∫ L−x

0

eδ1(x+y)p(1, x + y)dH1(y) .(26)

Thus we have (20). Note that

p(1, L−) =
νL + λ

α1
PL .

�

Next we have p(1, x) for 0 < x < l.

Theorem 3 If we take α1(x) = α2 for 0 < x < l then p(1, x) is obtained as follows:

p(1, x) = A1(x) +
∫ l−x

0

eδ2yA1(x + y)dM2(y) ,(27)

where

A1(x) = p(1, l−)− λ

α2
PL{F (L − l) − F (L − x)}(28)

− λ

α2

∫ l

x

∫ L

l

{p(0, u) + p(1, u)}dF (u − v)dv ,

M2(y) =
∞∑

n=1

Hn∗
2 (y),H2(y) =

λ

α2

∫ y

0

e−δ2y{1 − F (y)}dy(29)

and δ2 is the unique solution of the equation

∫ ∞

0

λ

α2
e−δ2x{1 − F (x)}dx = 1.(30)
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Proof
Note that ∫ L−x

0

p(1, x + y)dF (y) =
∫ l−x

0

p(1, x + y)dF (y) +
∫ L

l

p(1, u)dF (u− x) ,

∫ L−x

0

p(0, x + y)dF (y) =
∫ L

l

p(0, u)dF (u− x) .

We rewrite (3) as

α2
dp(1, x)

dx
= −λ{p(1, x)−

∫ l

0

p(1, x + y)dF (y)}

+ λ[PL · f(L − x) +
∫ L

l

{p(0, u) + p(1, u)}dF (u− x)] .

In the same manner of obtaining (26) we have the following.

eδ2xp(1, x) = eδ2xA1(x) +
∫ l−x

0

eδ2(x+y)p(1, x + y)dH2(y) .

From this equation we have (27). �

5 The ruin probability In order to express p(1, l−) in (28) by PL, we use (8) and (9).
Thus we have

p(1, l−) =
∫ L−l

0

{p(0, l + u) + p(1, l + u)}dF (u) + PL · f(L− l)(31)

−
[
A0(l+) − λ

α0

∫ L−l

0

A0(l + y){1 − F (y)}dy +
∫ L−l

0

eδ0yA0(l + y)dM0(y)

− λ

α0

∫ L−l

0

eδ0y

∫ L−(l+y)

0

A0(l + u){1 − F (u)}dudM0(y)

]
.

Since the all probabilities are expressed by PL, we have the following theorem for the ruin
probability.

Theorem 4 If we set

p∗(0, x) =
p(0, x)

PL
, p∗(1, x) =

p(1, x)
PL

and P ∗
0 =

P0

PL
,

then the ruin probability is obtained as

P0 =
λPL

ν0

[∫ L

0

{I(l,L)(y)p∗(0, y) + p∗(1, y)}{1 − F (y)}dy + 1 − F (L)

]
,(32)

where

PL =

[∫ L

0

{p∗(0, x) + p∗(1, x)}dx + P ∗
0 + 1

]−1

.(33)
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Proof
From (5) P ∗

0 is obtained by p∗(0, x) and p∗(1, x) as follows:

P ∗
0 =

λ

ν0

[∫ L

0

{I(l,L)(y)p∗(0, y) + p∗(1, y)}{1 − F (y)}dy + 1 − F (L)

]
.

Since we have

PL =

[∫ L

0

{I(l,L)(x)p∗(0, x) + p∗(1, x)}dx + P ∗
0 + 1

]−1

,

we obtain (32). �

6 Concluding remarks We have discussed the ruin probability with large scale demands
under the steady state condition. Next we will need to have the ruin probability in finite
time.
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