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ON NEW CHARACTERIZATIONS OF SEMI-T;-SPACES, WHERE i =0,1/2
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ABSTRACT. In this paper, we characterize semi-To-spaces [11] and semi-T; /o-spaces
[3] by using the notion of semi-A-closed sets [6].

1 Introduction and results In 1997, Arenas, Dontchev and Ganster [2] introduced the
notion of A-closed sets in a topological space and using the A-closedness they characterized
T;-spaces, where ¢ € {0,1/4,1/2,1}. The purpose of this paper is to characterize two
separation axioms semi-Tq [11] and semi-T/o-spaces [3] by using the notion of semi-\-
closed sets [6]. Throughout this paper, ”a space” means a topological space which lacks any
separation axioms unless explicitely stated. Let (X, 7) be a space. Recall that a subset A of
X is said to be semi-open in (X, 1) if A C ClInt(A) holds. Let SO(X, ) be the family of all
semi-open sets in (X, 7). A set A is said to be semi-closedif X\ A € SO(X, 7). Let SC(X, )
be the family of all semi-closed sets of (X, 7). The semi-closure sCI(E) (resp. semi-kernel
sKer(E) ) of a subset E is defined by sCI(E) := {F|E C F,F € SC(X,7)} (resp.
sKer(E) = ({U|E Cc U,U € SO(X,7)}). It is well known that sCI(E) = EU IntCI(E)
holds for any subset E of (X,7) ([9, Lemma 1]). In [6], the notion of semi-A-closed sets
is introduced and investigated. A subset A of a space (X, 7) is semi-A-closed if and only
if A= sKer(A)NsCIl(A) ([6, Proposition 2.6]). The complement of a semi-A-closed set is
called semi-A-open. Let SLO(X,7) be the family of all semi-A-open sets of (X, 7). In [6,
p.263], it was stated that SLO(X,7) is always a topology on X.

A space (X, 1) is semi-Ty [11] if, for each z,y € X such that x # y there exists a semi-
open set containing  but not y or a semi-open set containing y but not x. A space (X, 7)
is called semi-Ty /o [3] if every sg-closed set is semi-closed. A space (X, 7) is semi-T 5 if
and only if every singleton of X is semi-open(=open) or semi-closed ([13, Theorem 4.8] [4,
Definition 3.2]). Using the concept of semi-A-closed sets [6], we characterize semi-T(-spaces
and semi-T /o-spaces. Main theorems are as follows:

Theorem 1.1 The following properties are equivalent:

(1) A space (X, 1) is semi-Tp;

(2) Every singleton of X is semi-A-closed in (X, T);

(3) Every finite subset of X is semi-A-closed in (X, 7);

(4) For every finite set F' of X and for every pointy ¢ F there exists a set V,, containing
F and disjoint from {y} such that V,, € SO(X,7) orV, € SC(X, ).

(5) An induced space (X, SLO(X,T)) is Ty.

Theorem 1.2 The following properties are equivalent:
(1) A space (X, 7) is semi-T} j2;
(2) Every subset of X is semi-A-closed in (X, 7);
(3) SLO(X,7) = P(X) holds.
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2 A lemma and a corollary We first prepare a lemma from a generalized point of
view in the light of [7]. We recall the following concepts from [7, Section 4]: For a space
(X,7), let £x and % be subfamilies of the power set P(X) of X satisfying the following
properties:

(A) {0,X}C Ex and {0, X} C Ex.

Sometimes, £x and £% are denoted by £ and &', respectively. Then, for a subset A of
X, the following two sets are well defined:

Ex-Ker(A) =({U|IACU,U € &},

Ex-Cl(A):=({FIACF,X\Feé&x}

A subset A is said to be an Ex-closed in (X, 7) if X\ A € Ex. A subset B is said to be
an Ex-A-set in (X, 1) if B = Ex-Ker(B). We note that, in [7, p.63], the above teminology,
7Ex-A-sets” was used as "Ex-A-sets”. For an ordered pair (£x,E%), a subset A is said to
be (Ex,E%)-A-closed in (X,7) if A is an intersection of an Ex-A-set and an & -closed set.
The following (i) and (ii) are useful for the present paper (|7, Theorem 4.1]).

(i) Let (Ex,E%) be an ordered pair of given subfamilies of P(X) satisfying (A). If a
subset A is (Ex,E%)-A-closed in (X, 7), then A= Ex-Ker(A)NEY-CI(A) holds.

(ii) Let (Ex,E%) be an ordered pair satisfying (A) and the following property:

(B)g:  The union of any family of subsets belonging to E% belongs to .

Then, the converse of (i) is true, i.e. a subset A is (Ex,E%)- A-closed in (X, T) if and
only if A= Ex-Ker(A)NEX-CI(A) holds.

Indeed, the property (B)g: is equivalent to the property (C)g: in [7, Theorem 4.1] and
so (ii) is obtained from [7, Theorem 4.1].

(iii) Under the assumptions (A) and (B)g, a subset B is Ex-closed if and only if Ex-
CU(B) = B holds.

Example 2.1 (i) In the above, let £ = & = 7, then we have 7-Ker(4) = Ker(A), 7-
Cl(A) = CI(A), (1, 7)-A-closed set= A-closed set. We note that (LA) and (B), are satisfied
in (X,7). (ii) Let £ = & = SO(X,7), then we have SO(X,7)-Ker(A) = sKer(4),
SO(X,T1)-Cl(A) = sCIl(A), (SO(X,T),SO(X, T))-A-closed set =semi-A-closed set. We note
that (A) and (B)so(x,r) are satisfied in (X, 7); and so a subset A is semi-A-closed in (X, 7)
if and only if A = sKer(A) N sCI(A) holds.

Lemma 2.2 Let (Ex,EY%) be an ordered pair of given subfamilies of P(X) satisfying (A)
and (B)g::

(A) {0,X} CEx and {0, X} C E;

(B)e:  The union of any family of subsets belonging to E% belongs to &Y.

Then, for a space (X, 7) and a subset F' of X, the following properties are equivalent:

(1) For every pointy € F, there exists a set V,, containing F' and disjoint from {y} such
that V, € Ex or X \'V,, € &

(2) The subset F is (Ex,E%)- A-closed in (X, 7).

Proof. (1)=(2) For each point y ¢ F, there exists a set V,, such that V, N {y} =0, F C V,,
and V, € Ex or X\ V, € E. Set L:={V,|V, € Ex, y ¢ F } and C := {V, | X \ V, € &%,
ygF } Let Li=({VIVeLltifLAO, L:=XifL=0and C:=N{V|V €C}if C £,
C := X if C = (). Then, it is shown that F' = LNC holds, L is an Ex-A-set and X \ C € &%
because (B)g is assumed. Hence, F is (€x,&%)-A-closed in (X, 7). (2)=(1) Let y be a
point of X such that y ¢ F'. It follows from assumption and (i) above [7, Theorem 4.1] that
F =&x-Ker(F)NEY-CI(F).

Case 1. y € E5-CU(F): Let V,, := E5-CI(F). Then, by (B)g/, X\ V, € %, F C V,, and
V, N{y} = 0 hold.
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Case 2. y € E-CI(F): Since y &€ Ex-Ker(F), there exists a subset U € Ex such that
y¢ U and FF C U. Thus, let V,, :=U.
Therefore, we show (1) for both cases. O

In Lemma 2.2 above, let Ex = &% = SO(X, 7) for a space (X, 7). Then, we finally have
the following lemma as a corollary (cf. Example 2.1(ii)).

Corollary 2.3 For a space (X, 7) and a subset F' of X, the followings are equivalent:

(1) For every pointy € F, there exists a set V,, containing F' and disjoint from {y} such
that V, € SO(X, 1) or'V, € SC(X,1);

(2) F is semi-\-closed in (X, 7). O

3 Proofs of Theorem 1.1 and Theorem 1.2 We first recall the following properties:

Theorem 3.1 ([6, Theorem 2.7]) A subset A of (X,7) is semi-A-closed if and only if
XoNsCI(A) C A, where Xo := {x € X|{z} is preopen }.

The proof of the following theorem was not given in [6] and this fact is used in the present
paper. We give a sketch of the proof.

Theorem 3.2 ([6, p.263]) For any space (X,7), SLO(X,T) is a topology on X.

Proof. Tt is evident that ) and X are semi-A-closed. We first claim that if A and B
are semi-A-closed then A U B is semi-A-closed. Let x € X2 N sCI(AU B). We have that
x € IntCl({z}) C IntClIntCl(AU B) C IntCl(AU B) C IntCl(A) U CIl(B). We consider
the following two cases:

Case 1. z € IntCIl(A): Since XoNsCl(A) = XoN(AUIntCIl(A)) C A by Theorem 3.1,
we have that z € A.

Case 2. = € CIl(B): We have that z € IntCl({z}) C IntCICI(B) = IntCIl(B).
Then, we show that € B, because X3 N sCIl(B) = Xo N (B U IntCI(B)) C B hold (cf.
Theorem 3.1).

Thus we show that XoNsCIl(AUB) C AUB and so AUB is semi-A-closed by Theorem 3.1.
Finally, we show that if A;,i € B, are semi-A-closed, then ({A;|i € B} is semi-A-closed,
where the index set B is not necessarily finite. We have that X, N sCI(("{A4:]: € B}) C
XoNsCl(A;) C A; for any i € B and so Xo N sCIU({A:li € B}) € N{A:li € B}. Therefore,
N{A:|i € B} is semi-A-closed (cf. Theorem 3.1). O

We have the proofs of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1

(1)=(2) Let z € X. Tt follows from the assumption that, for every point y # x there
exists a set U, containing x and disjoint {y} such that U, is semi-open or semi-closed. Let
L :={U,|\U, € SOX,7), y # x} and C := {U,|U, € SC(X, 1), y # x}. We define the
following sets L and C: L:=(({V|V e L}if L# D, L:= X if L=0 and C :={V|V € C}
if C £ 0 and C := X if C = (). Then, L is a semi-A-set and C' is a semi-closed set. It is shown
that LN C = {x} and hence {z} is semi-A-closed. (2)=-(1) Let « and y be two different
points of X. Since {z} is semi-A-closed, there exist a semi-A-set L and a semi-closed sets
C such that {z} = LNC.

Case 1. y & C: The set X \ C is a semi-open set containing y such that x ¢ X \ C.

Case 2. y € C: Since y ¢ L, there exists a semi-open set W, containing = such that
ygWw,.
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Therefore, (X, 7) is semi-Tp. O

For a subset E of a space (X, 7), let Esp = {z|x € E,{z} € SO(X,7)}.

Proof of Theorem 1.2

(1)=(2) We first recall that a space (X,7) is semi-T;, if and only if for each x €
X, {x} is semi-open(=open) or semi-closed ([13, Theorem 4.8]). Let A be a subset of X.
Set B := X\ (AU (X \ A)so). We define the following subsets L and C as follows:
L:=n{X \{z}|z € B} and C := n{X \ {y}ly € (X \ A)so}. Then, C is semi-closed.
Indeed, for any y € (X \ A)so, X \ {y} is a semi-closed set containing A. And, L is a
semi-A-set. Indeed, for any x € B, X \ {z} is a semi-open set containing AU (X \ A)so. It
is shown that A = L N C and hence A is semi-A-closed.

(2)=(1) Assume that {z} is not semi-open. We claim that {z} is semi-closed. Since
X \ {z} is not semi-closed and it is semi-A- closed, by [6, Proposition 2.6] we have that
X\ {z} =sKer(X \ {z})NsCl(X \ {z}) and hence X \ {z} = sKer(X \ {z}). It is shown
that {z} is semi-closed. Therefore, (X, 7) is semi-T} /9, by [13, Theorem 4.8]. (2)<(3) It
is evident. O

4 The digital plane is semi-T;,; In the present paper, the digital plane (ZQ,K2) is
the topological product of two copies of the digital line (Z,x), where Z? = Z x Z and
k% =k x r (eg. [5] [8] [12]; cf. [10, p.10]). The proof of the following proposition is done

using Theorem 1.2 (cf. Remark 4.2(i)).
Proposition 4.1 The digital plane (Z*, k?) is semi-T1 .

Proof. We first claime that

(¥) every singleton {x} of the digital plane (Z?, x?) is semi-A-open, that is, F is semi-\-
closed, where F := Z2\ {z}.

Case 1. =z = (2n,2m), where n,m € Z: Then, it is shown that € sCI(F) and so
Z? = sCI(F). Indeed, sCI(F) = FU IntCI(F) = F UZ? = Z?. By using Theorem 3.1, the
set F' is semi-A-closed. Indeed, (Z2)2 N sCI(F) = (Z?)2 N Z? = (Z?); C F, because {z} is
not preopen and so = ¢ (Z?)2, where (Z?)y = {y € Z*|{y} C IntCl({y})}.

Case 2. z = (2n + 1,2m + 1), where n,m € Z?: Since {z} is open, F is closed and so
it is semi-A closed.

Case 3. © = (2n,2m + 1), where n,m € Z: Let U be an open set containing x. Then,
U(z) :={2n—1,2n,2n+1} x {2m+1} € k? and z € U(x) C U. Because (2n+1,2m+1) €
FNU, we have that CI(F) = Z?;sCI(F) = F U IntCI(F) = Z*. By using Theorem 3.1, F
is semi-A-closed because {z} is not preopen and so (Z?)2 N sCI(F) C F holds.

Case 4. x = (2n + 1,2m), where n,m € Z: By an argument similar to that in Case 3
above, it is shown that F' is semi-\-closed.

Thus, we have that the set F' is semi-A-closed; so every singleton {x} is semi-A-open,
that is, {x} € SLO(Z?, k?). We finally have that, for every subset E of Z%, E = U{{z}|z €
E} € SLO(Z?, k%) (cf. Theorem 3.2 and (*) above). We now conclude as follows: (Z?, k?)
is semi-T7 /5 (cf. Theorem 1.2). O

Remark 4.2 (i) We have an alternative proof of Proposition 4.1 using a fact that a topo-
logical space is semi-T} /5 if and only if every singleton is semi-open or semi-closed ([13,
Theorem 4.8]).  (ii) The digital plane (Z2, k?) is not Tq,4 (cf.[1]); so it is not Ty 5. Every
T /2-space is semi-T' /5 [3]. The Proposition 4.1 shows that the converse of an implication
above is not true.

(iii) Using Theorem 1.1, [2, Theorem 2.6] and definitions, we obtain the following dia-
gram of implications.
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semi-Ty /o — semi-Tp
N
7 T To
/
T2 — T4

All implications are not reversible (cf. (ii) above and well known facts).

REFERENCES

[1] N.Araki, M.Ganster, H.Maki and A.Nishi, Properties of T} 4 spaces, (submitting).

[2] F.G.Arenas, J.Dontchev and M.Ganster, On A-sets and the dual of generalized continuity,
Questions Answers in Gen. Topology,15(1997),3-13.

[3] P.Bhattacharyya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian
J.Math.,29(1987),376-382.

[4] J.Cao, M.Ganster, I.Reilly and M.Steiner §-closure, 6-closure and generalized closed sets, Ap-
plied General Topology, 6 (2005), 79-86.

[5] R.Devi, K.Bhuvaneswari and H.Maki, Weak form on gp-closed sets, where p € {a,a",a™"},
and digital planes, Mem. Fac. Sci. Kochi Univ. (Math.), 25 (2004), 37-54.

[6] J.Dontchev and H.Maki, On sg-closed sets and semi-A-closed sets, Questions Answers in Gen.
Topology, 15 (1997), 259-266.

[7] J.Dontchev and H.Maki, On the behavior of gp-closed sets and their generalizations, Mem.
Fac. Sci. Kochi Univ. (Math.), 19 (1998), 57-72.

[8] M.Fujimoto, H.Maki, T.Noiri and S.Takigawa, The digital plane is quasi-submaximal, Ques-
tions Answers in Gen. Topology, 22 (2004), 163-168.

[9] D.S.Jankovi¢ and I.L.Reilly, On semi separation properties, Indian J. Pure Appl. Math., 16(9)
(1985), 957-964.

[10] E.D.Khalimsky, R.Kopperman and P.R.Meyer, Computer graphics and connected topologies
in finite ordered sets, Topology Appl., 36(1990),1-17.

[11] S.N.Maheshwari and R.Prasad, Some new separation axioms, Ann. Soc. Sci.
Bruzelles,89(1975),395-402.

[12] K.Néno, R.Devi, M.Devipriya, K.Muthukumarraswamy and H. Maki, On g™ a-closed sets and
the digital plane, Bull. Fukuoka Univ. Ed. Part I11,53(2004),15-24.

[13] P. Sundaram, H. Maki and K. Balachandran, Semi-generalized continuous maps and semi-T} /;
spaces, Bull. Fukuoka Univ. Ed. Part 111,40(1991),33-40.

Nobuyuki ARAKI; Department of Mathematics, Chienkan High School, Saga, 849-0915

Japan

Maximilian GANSTER; Department of Mathematics, Graz University of Technology,
Steyrergasse 30, A-8010, Graz, Austria

Haruo Mak1; Wakagidai 2-10-13, Fukutsu-shi, Fukuoka-ken, 811-3221, Japan
e-mail: makih@popl2.odn.ne.jp

Akihiro NisH1; Department of Mathematics, Faculty of Culture and Education, Saga
University, Saga, 840-8502 Japan



