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Abstract. In this paper, we introduce and investigate three classes of subsets called
ξ-closed sets, ξ∗- closed sets and ξ∗∗-closed sets in topological spaces. As applications
we introduce two separation axioms Tξ and Tξ∗∗ of topological spaces and we construct
a group of ρc-homeomorphisms which contains the group of all homeomorphisms as
a subgroup, where ρ ∈ {ξ, ξ∗, ξ∗∗}. A discussion of ρ-closed sets in the digital plane
concludes the paper, where ρ ∈ {ξ, ξ∗∗}. The digital plane is a Tξ-space; it is not Tξ∗∗ .

1 Introduction In 1970, Levine [15] introduced and investigated the notion of gen-
eralized closed sets in a topological space and one of T1/2-spaces. By [15, Theorem 5.3,
Corollary 5.6], it was shown that the class of the T1/2-spaces is placed between the class
of the T0-spaces and one of the T1-spaces. In 1977, Dunham [9, Theorem 2.5] proved that
a topological space is T1/2 if and only if every singleton is open or closed. We know that
the digital line is a typical example of the T1/2-spaces (eg.[8, Example 4.6], [12]). Using
the concept of α-sets (= α-open sets) [21], in 1993 Balachandran, Devi and Maki defined
the concept of generalized ρ-closed sets (cf. Definition 2.1(ii)-(iii)) analogous to generalized
closed sets [15], where ρ ∈ {α, α∗, α∗∗}. Recently, Devi, Bhuvaneswari and Maki define a
weak form of generalized ρ-closed sets and investigate their behaviours in the digital plane,
where ρ ∈ {α, α∗, α∗∗}. Moreover, Veera Kumar [27] define and investigate the notion of
g∗-closed sets (cf.Definition 2.1(vi)) which is placed between the class of the closed sets and
one of the generalized closed sets [15].

In Section 2 of this paper, we introduce a new class of generalized closed sets which
is called ξ-closed sets (cf.Definition 2.2) and investigate some basic properties of them. In
Section 3, ξ∗-closed sets and ξ∗∗-closed sets are introduced. Some implications of their
generalized closed sets (cf. Remark 3.4) and some properties of their behabiours to a sub-
space are investigated. In Section 4, new topologies induced from families of ρ-closed sets,
where ρ ∈ {ξ, ξ∗, ξ∗∗}. In Section 5, we introduce new separation axioms Tξ and Tξ∗∗

analogous to the axiom T1/2 [15]. The digital plane is an example of Tξ-spaces; it is not
a Tξ∗∗ -space (cf.Remark 5.6; Theorem 7.1 and Remark 7.2 in Section 7). In Section 6,
using ρ-closed sets, where ρ ∈ {ξ, ξ∗, ξ∗∗}, new classes of functions and some groups are
introduced (cf.Definition 6.1, Definition 6.6). Their groups are new topological invariants
(cf.Corollary 6.8(ii)). In Section 7, it is proved that the digital plane is a Tξ-space (Theo-
rem 7.1); a discussion of ξ-closed sets and ξ∗∗-closed sets in the digital plane concludes the
paper.

Throughout this paper, (X, τ) and (Y, σ) represent nonempty topological spaces on
which no separation axioms are assumed, unless otherwise mentioned. Throughout this
paper, ”a space” means a topological space. For some undefined or related concepts, the
reader is reffered to [11], [20] in TOPOLOGY ATLAS, URL:http://at.yorku.ca./topology/.
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2 On ξ-closed sets The purpose of this section is to introduce and investigate the notion
of the ξ-closed sets and some relationships between well known generalized closed sets. A
subset A is called α-open [21] in (X, τ) if A ⊆ Int(Cl(Int(A))) holds; the complement of
an α-open set is called α-closed. The family of all α-open sets in (X, τ) is denoted by τα.
The α-closure of a subset A is denoted by τα-Cl(A) = ∩{F |X \ F ∈ τα and A ⊆ F }.
Definition 2.1 We recall the following definitions which are used in this paper. Let A be
a subset of (X, τ).

(i) The set A is called generalized closed [15] (briefly, g-closed) in (X, τ), if Cl(A) ⊆ U
whenever A ⊆ U and U is open in (X, τ); the complement of a g-closed set of (X, τ) is called
g-open in (X, τ). (ii) A is called gα-closed [16] (resp. gα∗-closed, gα∗∗-closed ) in (X, τ),
if τα-Cl(A) ⊆ U (resp. τα-Cl(A) ⊆ Int(U), τα-Cl(A) ⊆ Int(Cl(U))) whenever A ⊆ U
and U is α-open in (X, τ). (iii) The complement of a gα-closed set (resp. gα∗-closed set,
gα∗∗-closed set) of (X, τ) is called gα-open (resp. gα∗-open, gα∗∗-open) in (X, τ). (iv) A is
called αg-closed [17] in (X, τ), if τα-Cl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).
(v) A is called gs-closed [3] in (X, τ), if sCl(A) ⊆ U whenever A ⊆ U and U is open in
(X, τ), where sCl(A) = ∩{F |F is a semi-closed set of (X, τ) such that A ⊆ F } is the
semi-closure of A. A subset F is called semi-closed [14] in (X, τ), if Int(Cl(F )) ⊆ F holds
in (X, τ). (vi) A is called g∗-closed [27] in (X, τ), if Cl(A) ⊆ U whenever A ⊆ U and U is
g-open in (X, τ). Every closed set is g∗-closed; every g∗-closed set is g-closed [27, Theorems
3.2, 3.4].

Definition 2.2 A subset A is called ξ-closed in (X, τ) if τα-Cl(A) ⊆ U whenever A ⊆ U
and U is a gα-open set of (X, τ) (cf.Definition 2.1(iii)). The complement of a ξ-closed set
of (X, τ) is called ξ-open in (X, τ).

Theorem 2.3 (i) Every closed set and every α-closed set is ξ-closed.
(ii) Every ξ-closed set is gα-closed, gα∗∗-closed, αg-closed and gs-closed. �

Remark 2.4 The converse of Theorem 2.3(i) (resp. (ii)) is not true in general by the
following example (i) (resp. (ii)). (i) Let X = {a, b, c, d} and τ = {∅, {c, d}, X}. For
a space (X, τ), a subset {a, b, c} is ξ-closed; it is neither closed nor α-closed. Indeed,
τα = {∅, {c, d}, {b, c, d}, {a, c, d}, X}. (ii) Let X = {a, b, c} and τ = {∅, {b}, {a, c}, X}. For
a space (X, τ), a subset {a} is gα-closed, gα∗∗-closed, αg-closed and gs-closed; it is not
ξ-closed.

Remark 2.5 By Theorem 2.3, we obtain the following diagram of implications. Remark 2.4
shows that implications are not reversible.

closed → α-closed → ξ-closed → gα-closed

Remark 2.6 The following examples show that the ξ-closedness is independent from the
gα∗-closedness, g-closedness and g∗-closedness. (i) In the same space (X, τ) of Remark 2.4(ii),
a subset {a} is gα∗-closed; it is not ξ-closed. (ii) In the same space (X, τ) of Remark 2.4(i), a
subset {a} is ξ-closed; it is not gα∗-closed. (iii) Let X = {a, b, c} and τ = {∅, {b}, {a, b}, X}.
For a space (X, τ), a subset {a} is ξ-closed;it is neither g-closed nor g∗-closed. A subset
{b, c} is g-closed and g∗-closed; it is not ξ-closed.

Theorem 2.7 A subset A of X is ξ-closed in (X, τ) if and only if A is g∗-closed in a space
(X, τα).

Proof. We recall that a subset B is gα-open in (X, τ) if and only if B is g-open in (X, τα)
([16, Theorem 2.3], cf.Definition 2.1(iii)). Thus, Theorem 2.7 is proved by definitions. �
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Remark 2.8 t26 By using Theorem 2.7, we can translate theorems in [27] into ξ-closedness
version. For examples, we have the following:

(i) A set A is ξ-closed in (X, τ) if and only if τα-Cl(A) \ A does not contains any
non-empty gα-closed set of (X, τ) ([27, Theorem 3.14]).

(ii) The union of two ξ-closed sets is ξ-closed ([27, Remark 3.12]).

We have an alternative characterization of ξ-closed sets (cf.Theorem 2.10 below). We
prepare the following notations: GαO(X, τ) := {U | U is gα-open in (X, τ)}; GαC(X, τ) :=
{F | F is gα-closed in (X, τ)}; XGαC := {x| {x} ∈ GαC(X, τ)}; XξO := {x| {x} is ξ-open in
(X, τ)}; GαO(X, τ)-Ker(A) = ∩{U | U is gα-open in (X, τ) and A ⊆ U} for a subset A of
X (briefly, GαO-Ker(A)).

Lemma 2.9 For any space (X, τ),X = XGαC ∪ XξO holds.

Proof. Let x ∈ X . Suppose that {x} is not gα-closed in (X, τ) (i.e.X \ {x} is not
gα-open). Then, X is a unique gα-open set containing X \ {x}. Thus X \ {x} is ξ-closed
in (X, τ) and so {x} is ξ-open. Therefore, x ∈ XGαC ∪ XξO holds. �

Theorem 2.10 For a subset A of (X, τ), the following properties are equivalent:
(1) A is ξ-closed;
(2) τα-Cl(A) ⊆ GαO-Ker(A) holds;
(3) (i) τα-Cl(A) ∩ XGαC ⊆ A and (ii) τα-Cl(A) ∩ XξO ⊆ GαO-Ker(A) hold.

Proof. (1)⇒(2) Let x �∈ GαO-Ker(A). Then, there exists a set U ∈ GαO(X, τ) such
that x �∈ U and A ⊆ U . Since A is ξ-closed, τα-Cl(A) ⊆ U and so x �∈ τα-Cl(A). (2)⇒(3)
(i) First we claim that GαO-Ker(A)∩XGαC ⊆ A. Indeed, let x ∈ GαO-Ker(A)∩XGαC and
assume that x �∈ A. Since the set X \ {x} ∈ GαO(X, τ) and A ⊆ X \ {x}, GαO-Ker(A) ⊆
X \{x}. Then, we have that x ∈ X \{x} and so this is a contradiction. Thus, we show that
τα-Ker(A)∩ XGαC ⊆ A. By using (2), τα-Cl(A)∩ XGαC ⊆ GαO-Ker(A) ∩XGαC ⊆ A. (ii)
It is obtained by (2). (3)⇒(2) By Lemma 2.9 and (3), τα-Cl(A) = τα- Cl(A) ∩ X = τα-
Cl(A)∩(XGαC∪XξO) = (τα-Cl(A)∩XGαC)∪(τα-Cl(A)∩XξO) ⊆ A∪GαO-Ker(A) = GαO-
Ker(A). That is, τα-Cl(A) ⊆ GαO-Ker(A) holds. (2)⇒(1) Let U ∈ GαO(X, τ) such that
A ⊆ U . Then, we have that GαO-Ker(A) ⊆ U and so, by (2), τα-Cl(A) ⊆ U . Therefore,
A is ξ-closed. �

Corollary 2.11 Let P := {A|τα-Cl(A) ∩ XξO ⊆ GαO-Ker(A)}.
(i) If ∩i∈ΣAi ∈ P and Ai is ξ-closed set in (X, τ) for each i ∈ Σ, then ∩i∈ΣAi is ξ-closed

in (X, τ).
(ii) If P = P (X) and Ai is ξ-closed set in (X, τ) for each i ∈ Σ, then ∩i∈ΣAi is ξ-closed

in (X, τ).
(iii) If XξO = ∅ and Ai is ξ-closed set in (X, τ) for each i ∈ Σ, then ∩i∈ΣAi is ξ-closed

in (X, τ).
(iv) If τα-Cl(Ai) ∩ XξO ⊆ Ai and Ai is a ξ-closed set in (X, τ) for each i ∈ Σ, then

∩i∈ΣAi is ξ-closed in (X, τ).

Proof. (i) By Theorem 2.10, τα-Cl(Ai) ∩ XGαC ⊆ Ai for each i ∈ Σ. Then, we have
that τα-Cl(∩i∈ΣAi) ∩ XGαC ⊆ ∩i∈ΣAi. Using assumption and Theorem 2.10(3), ∩i∈ΣAi is
ξ-closed. (ii)-(iv) By (i), they are proved. �

The following theorem is concerned on a property of g∗-closedness in a subspace. As a
corollary, we have a property of ξ-closedness in a subspace (cf. Corollary 2.13 below).
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We recall the following notations and some properties. For a space (X, τ) and a subset
H of (X, τ), GO(X, τ) := {U | U is g-open in (X, τ)}; GO(H, τ |H) := {V | V is g-open in
(H, τ |H)}. If U ∈ GO(X, τ) and V ∈ GO(X, τ), then U ∩ V ∈ GO(X, τ) ([15, Theorem
2.4]). If U ∈ GO(X, τ),H ∈ τ and X \ H ∈ τ , then U ∩ H ∈ GO(H, τ |H) ([24, Lemma
2.10(ii)]). If U ∈ GO(X, τ) and V ∈ τ , then U ∪ V ∈ GO(X, τ) ([15, Corollary 2.7]).

Theorem 2.12 Let B and H be subsets in (X, τ) such that B ⊆ H.
(i) If B is g∗-closed in (H, τ |H) and H is open and closed in (X, τ), then B is g∗-closed

in (X, τ).
(ii) Suppose that, for (X, τ) and H,
(∗) GO(H, τ |H) ⊆ {H ∩ O| O ∈ GO(X, τ)} holds.
If B is g∗-closed in (X, τ), then B is g∗-closed in (H, τ |H).

Proof. (i) Let O ∈ GO(X, τ) such that B ⊆ O. We have that H ∩O ∈ GO(H, τ |H) and
B ⊆ H∩O. Then, H∩Cl(B) ⊆ H∩O holds. It is shown that H ⊆ O∪(X \Cl(B)) and the
subset O∪(X \Cl(B)) ∈ GO(X, τ). Since H is g∗-closed in (X, τ), Cl(H) ⊆ O∪(X \Cl(B))
and so Cl(B) ⊆ O∪ (X \Cl(B)). Therefore, we have that Cl(B) ⊆ O and so B is g∗-closed
in (X, τ). (ii) Let V ∈ GO(H, τ |H) such that B ⊆ V . Using assumption (∗), there exists
a subset O ∈ GO(X, τ) such that V = H ∩ O. Then, we have that Cl(B) ⊆ O and so
(τ |H)-Cl(B) = Cl(B) ∩ H ⊆ O ∩ H = V . Therefore, B is g∗-closed in (H, τ |H). �

Using Theorem 2.12 for (X, τα) and Theorem 2.7 , we prove the following property on
ξ-closedness in a subspace.

Corollary 2.13 Let B and H be subsets of (X, τ) such that B ⊂ H.
(i) If B is ξ-closed in (H, τ |H) and H is open and closed in (X, τ), then B is ξ-closed

in (X, τ).
(ii) Suppose that, for (X, τα) and H,
(∗∗) GO(H, τα|H) ⊆ {H ∩ O| O ∈ GO(X, τα)} holds.
If B is ξ-closed in (X, τ) and H is open in (X, τ), then B is ξ-closed in (H, τ |H).

Proof (i) Using Theorem 2.7, we have that B is ξ-closed in (H, τ |H) if and only if B is
g∗-closed in (H, (τ |H)α). Then, the set B is g∗-closed in (H, τα|H), because (τ |H)α = τα|H
holds if H ∈ τ (eg.[16, Lemma 2.4 (ii)]). Using Theorem 2.12(i) for (X, τα), B is g∗-closed
in (X, τα) because H is open and closed in (X, τα). Therefore, using Theorem 2.7, B is
ξ-closed in (X, τ). (ii) By Theorem 2.12(ii) for (X, τα), it is shown that B is g∗-closed in
(H, τα|H) and so B is g∗-closed in (H, (τ |H)α). Therefore, using Theorem 2.7 B is ξ-closed
in (H, τ |H). �

3 On ξ∗-closed sets and ξ∗∗-closed sets We introduce two classes of ”ξ-closed sets”
and investigate some properties.

Definition 3.1 (i) A subset A is called ξ∗-closed in (X, τ) if τα-Cl(A) ⊆ Int(U) whenever
A ⊆ U and U is gα-open in (X, τ).

(ii) A subset A is called ξ∗∗-closed in (X, τ) if τα-Cl(A) ⊆ Int(Cl(U)) whenever A ⊆ U
and U is gα-open in (X, τ).

(iii) The complement of a ξ∗-closed set (resp. ξ∗∗-closed set) of (X, τ) is called a ξ∗-open
(resp. ξ∗∗-open) set in (X, τ).

Theorem 3.2 (i) Every ξ∗-closed set is ξ-closed.
(ii) Every ξ-closed set is ξ∗∗-closed.
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Proof. (i) The proof is obvious. (ii) Let A be a ξ-closed set of a space (X, τ). Let U be
a gα-open set of (X, τ) such that A ⊆ U . Then, we have that τα-Cl(A) ⊆ U . We recall
that every gα-closed set is wgα-closed (=preclosed) and so every gα-open set is preopen
([6, Theorems 2.2, 2.3(ii), Remark 2.4], cf.Definition 2.1(iii)). Therefore, we have that
τα-Cl(A) ⊆ U ⊆ Int(Cl(U)) and so A is ξ∗∗-closed. �

Remark 3.3 (i) The converses of Theorem 3.2 are not true in general by the following
examples. Let (X, τ) be a space such that X = {a, b, c} and τ = {∅, X, {a}}. Then, a
subset {b} is ξ-closed; it is not ξ∗-closed. A subset {a} is ξ∗∗-closed;it is not ξ-closed.
(ii) The following examples show that α-closedness and ξ∗∗-closedness are independent. Let
(X, τ) be a space of (i) above. A subset {b} is α-closed; it is not ξ∗-closed. Let (X, τ) be a
space in Remark 2.4(i). A subset {a, b, c} is ξ∗-closed; it is not α-closed.

Remark 3.4 Theorem 3.2, Theorem 2.3 and Remark 3.3 show the following diagram of
implications. Remark 3.3 and Remark 2.4(i) show that all implications are not reversible.

α-closed
↘

�↓�↑ ξ-closed → ξ∗∗-closed
↗

ξ∗-closed

Theorem 3.5 Let A be a subset of (X, τ).
(i) The union of two ρ-closed sets is ρ-closed, where ρ ∈ {ξ∗, ξ∗∗}.
(ii) If A is ρ-closed in (X, τ) and A ⊆ B ⊆ τα-Cl(A), then B is ρ-closed, where ρ ∈

{ξ∗, ξ∗∗}.
(iii) If A is ξ∗-closed (resp. ξ∗∗-closed), then τα-Cl(A) \ A does not contain non-empty

gα-closed set (resp. gα-closed and semi-open set).
(iv) For each x ∈ X, {x} is gα-closed or its complement X \ {x} is ξ∗-closed in (X, τ).
(v) For each x ∈ X, {x} is gα-closed and open, or its complement X \ {x} is ξ∗∗-closed

in (X, τ).

Proof. (i)-(iii) The proofs are obvious. (iv) Suppose that {x} is not gα-closed in (X, τ)
(i.e.X \ {x} is not gα-open). Then, X is a unique gα-open set containing X \ {x}. Thus
X \ {x} is ξ∗-closed in (X, τ). (v) Suppose that {x} is not gα-closed in (X, τ). By similar
argument of the proof of (iv), it is shown that X \ {x} is ξ∗∗-closed in (X, τ). Suppose
that {x} is not open. Let U be a gα-open set containing X \ {x}. If U = X , then τα-
Cl(X \ {x}) ⊆ Int(Cl(U)) = X . If U = X \ {x}, then τα-Cl(X \ {x}) ⊆ X = Int(X) =
Int(Cl(U)). Thus, X \ {x} is ξ∗∗-closed in (X, τ). �

We have the following property on ξ∗-closedness and ξ∗∗-closedness in a subspace, re-
spectively.

Theorem 3.6 Let B and H be subsets of (X, τ) such that B ⊂ H.
(i) If B is ρ-closed in (H, τ |H) and H is open and closed in (X, τ), then B is ρ-closed

in (X, τ), where ρ ∈ {ξ∗, ξ∗∗}.
(ii) Suppose that, for (X, τα) and H,
(∗∗) GO(H, τα|H) ⊆ {H ∩ O| O ∈ GO(X, τα)} holds.
If B is ρ-closed in (X, τ) and H is open in (X, τ), then B is ρ-closed in (H, τ |H), where

ρ ∈ {ξ∗, ξ∗∗}.
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Proof (i) Case 1. ρ = ξ∗: Let U be a gα-open set in (X, τ) (i.e.U ∈ GO(X, τα),
cf. [16, Theorem 2.3] Definition 2.1(iii)) such that B ⊆ U . Then, we have that U ∩ H ∈
GO(H, (τ |H)α), because U ∈ GO(X, τα) and τα|H = (τ |H)α for H ∈ τ (eg.[4, Lemma
2.4(ii)]). Since B is ξ∗-closed in (H, τ |H) and B ⊆ U∩H , (τ |H)α-Cl(B) ⊆ (τ |H)-Int(U∩H)
and so (τα-Cl(B) ∩ H ⊆ Int(U ∩ H) ∩ H . Put V := Int(U ∩ H) ∪ (X \ τα-Cl(B)). Then,
it is shown that H ⊆ V and V ∈ τα and so V is gα-open in (X, τ). It follows from
assumption that τα-Cl(B) ⊆ τα-Cl(H) ⊆ V ⊆ Int(U) ∪ (X \ τα-Cl(B)) and hence τα-
Cl(B) ⊆ Int(U) holds (i.e., B is ξ∗-closed in (X, τ)). Case 2. ρ = ξ∗∗: Let U be a gα-open
set (i.e. U ∈ GO(X, τα)) such that B ⊆ U . Since U ∩H ∈ GO(H, (τ |H)α) and B ⊆ U ∩H ,
we have that H ∩ τα-Cl(B) = (τα|H)-Cl(B) ⊆ (τ |H)-Int((τ |H)-Cl(H ∩ U)) = (τ |H)-
Int(H ∩ Cl(H ∩ U)) = H ∩ Int(H ∩ Cl(H ∩ U)) ⊆ H ∩ (Int(Cl(H ∩ U))) hold. Put
W := Int(Cl(H ∩ U)) ∪ (X \ τα-Cl(B)). Then, H ⊆ W and W ∈ τα and so W is gα-open
in (X, τ). Since H is ξ-closed, τα-Cl(B) ⊆ τα-Cl(H) ⊆ W ⊆ Int(Cl(U)) ∪ (X \ τα-Cl(B))
and hence τα-Cl(B) ⊆ Int(Cl(U)) holds (i.e.B is ξ∗∗-closed in (X, τ)).

(ii) Case 1. ρ=ξ∗: Let V be a gα-open set of (H, τ |H) (i.e., V ∈ GO(H, (τ |H)α))
such that B ⊆ V . Then, V ∈ GO(H, τα|H). Using (∗∗), there exists a set O ∈ GO(X, τα)
such that V = O ∩ H . Since B ⊆ O and B is ξ∗-closed in (X, τ), we have that (τ |H)α-
Cl(B) = (τα|H)-Cl(B) = H ∩ τα-Cl(B) ⊆ H ∩ Int(O) = H ∩ Int(H ∩ Int(O)) = (τ |H)-
Int(H ∩Int(O)) ⊆ (τ |H)-Int(V ) and so B is ξ∗-closed in (H, τ |H). Case 2. ρ=ξ∗∗: Let V
be a gα-open set of (H, τ |H) (i.e. V ∈ GO(H, (τ |H)α)) such that B ⊆ V . Then, using (∗∗),
there exists a set O ∈ GO(X, τα) such that V = O∩H . Since B ⊆ O and B is ξ∗∗-closed in
(X, τ), we have that τα-Cl(B) ⊆ Int(Cl(O)). Then, we have that (τ |H)α-Cl(B) = H ∩ τα-
Cl(B) ⊆ H ∩ Int(Cl(O)) = H ∩ Int(H ∩ Cl(O)) = (τ |H)-Int(H ∩ Cl(O)) = (τ |H)-
Int(H ∩ H ∩ Cl(O)) ⊆ (τ |H)-Int(H ∩ Cl(H ∩ O)) ⊆ (τ |H)-Int((τ |H)-Cl(V )) and so
(τ |H)α-Cl(B) ⊆ (τ |H)-Int((τ |H)-Cl(V )) and so B is ξ∗∗-closed in (H, τ |H). �

4 Topologies induced from families of ρ-closed sets, where ρ ∈ {ξ, ξ∗, ξ∗∗} We
can introduce topologies from ρ-closed sets, where ρ ∈ {ξ, ξ∗, ξ∗∗}.

Definition 4.1 For a subset E of (X, τ), we define the following closures: ρCl#(E) :=
∩{A| A is a ρ-closed set in (X, τ) and E ⊆ A} for each ρ ∈ {ξ, ξ∗, ξ∗∗}.

Theorem 4.2 Let E and F be subsets of (X, τ).
(i) E ⊆ ξ∗∗Cl#(E) ⊆ ξCl#(E) ⊆ ξ∗Cl#(E)
and E ⊆ ξ∗∗Cl#(E) ⊆ ξCl#(E) ⊆ τα-Cl(E) ⊆ Cl(E) hold.
(ii) For each ρ ∈ {ξ, ξ∗, ξ∗∗}, ρCl#(∅) = ∅ and ρCl#(X) = X hold.
(iii) If E ⊆ F , then ρCl#(E) ⊆ ρCl#(F ) holds for each ρ ∈ {ξ, ξ∗, ξ∗∗}.
(iv) For each ρ ∈ {ξ, ξ∗, ξ∗∗}, ρCl#(E ∪ F ) = ρCl#(E) ∪ ρCl#(F ) holds.
(v) If E is ρ-closed, then ρCl#(E) = E holds, where ρ ∈ {ξ, ξ∗, ξ∗∗}.
(vi) For each ρ ∈ {ξ, ξ∗, ξ∗∗}, ρCl#( ρCl#(E)) = ρCl#(E) holds.
(vii) For each ρ ∈ {ξ, ξ∗, ξ∗∗}, ρCl#(•) is a Kuratowski closure operator on X.

Proof. (i) The implications are obtained by Theorem 2.3 and Theorem 3.2 respec-
tively. (ii)-(iii) They are obvious from definitions. (iv) By (iii), it is enough to prove that
ρCl#(E∪F ) ⊆ ρCl#(E)∪ ρCl#(F ) holds. Let x �∈ ρCl#(E)∪ ρCl#(F ). Then, there exist
ρ-closed subsets A and B such that x �∈ A, x �∈ B, E ⊆ A and F ⊆ B. By Remark 2.8 and
Theorem 3.5(i), it is obtained that A ∪B is ρ-closed. Since E ∪ F ⊆ A∪B and x �∈ A ∪B,
we have that x �∈ ρCl#(E ∪ F ). (v) It is obvious from definition. (vi) Using (i) it suffices
to prove an inclusion: ρCl#( ρCl#(E)) ⊆ ρCl#(E). Let x �∈ ρCl#(E). Then, there exists
a ρ-closed set A such that E ⊆ A and x �∈ A. Then, by (v), ρCl#(E) ⊆ A and hence
x �∈ ρCl#(E). (vii) It is obvious from (i),(ii),(iv) and (vi). �
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Definition 4.3 For a space (X, τ) and a ρ ∈ {ξ, ξ∗, ξ∗∗}, we define the following families:
ρτ# := {U | ρCl#(X \ U) = X \ U}.

Corollary 4.4 For any topology τ , the following properties hold.
(i) Three families of subsets ξτ#, ξ∗τ# and ξ∗∗τ# are topologies of X.
(ii) ξ∗τ# ⊆ ξτ# ⊆ ξ∗∗τ# = P (X) and τ ⊆ τα ⊆ ξτ#.

Proof. (i) By Theorem 4.2(vii), they are topologies of X . (ii) The inclusions are
obtained by Theorem 4.2 and Definition 4.3. We claim that P (X) ⊆ ξ∗∗τ# holds. Let
A ∈ P (X). Using Theorem 3.5(v), any singleton is gα -closed and open, or ξ∗∗-open in
(X, τ). Thus any singleton is ξ∗∗-open in (X, τ), because an open set is ξ∗∗-open in (X, τ)
(cf.Theorem 2.3(i),Theorem 3.2(ii)). Then, we have that {x} ∈ ξ∗∗τ# for each x ∈ A. By
(i), it is shown that A = ∪{{x}|x ∈ A} ∈ ξ∗∗τ# and so P (X) ⊆ ξ∗∗τ#. �

Remark 4.5 Let X = {a, b, c} and τ = {∅, {a}, {b}, {a, b}, X}. Then, a subset A = {a, c}
of a space (X, τ) is not a ξ∗∗-open set; A ∈ ξ∗∗τ# (cf. Corollary 4.4(ii)).

In the proof of the following proposition, we use the following notations: ξO(X, τ) =
{U | U is ξ-open in (X, τ)}; ξ∗∗O(X, τ) = {V | V is ξ∗∗-open in (X, τ)}. The example of
Remark 4.5 shows that ξ∗∗O(X, τ) �=ξ∗∗ τ#(= P (X)) in general.

Proposition 4.6 For any space (X, τ), the following properties hold.
(i) Every ξ-closed set is α-closed in (X, τ) if and only if ξτ# = τα.
(ii) Every ξ-closed set is closed in (X, τ) if and only if ξτ# = τ .
(iii) Every ξ∗∗-closed set is α-closed in (X, τ) if and only if τα = P (X).
(iv) Every ξ∗∗-closed set is closed in (X, τ) if and only if τ = P (X).

Proof.(i) (Necessity) Since every ξ-closed set is α-closed in (X, τ), we have that
ξO(X, τ) = τα and so, for any subset E of X , ξCl#(E) = ∩{F | E ⊆ F,X\F ∈ ξO(X, τ)} =
∩{F | E ⊆ F,X \ F ∈ τα} = τα-Cl(E) holds. Therefore, we have that ξτ# = τα.
(Sufficiency) Let A be a ξ-closed set of (X, τ). Then, A = ξCl#(A) and so X \A ∈ ξτ#.
By assumption, X \ A ∈ τα and hence A is α-closed in (X, τ). (ii) (Necessity) Since
every ξ-closed set is closed in (X, τ), we have that ξO(X, τ) = τ and so, for any subset
E of X , ξCl#(E) = ∩{F | E ⊆ F,X \ F ∈ ξO(X, τ)} = ∩{F | E ⊆ F,X \ F ∈ τ} = τ -
Cl(E) holds. Therefore, we have that ξτ# = τ . (Sufficiency) Let A be a ξ-closed set
of (X, τ). Then, A = ξCl#(A) and so X \ A ∈ ξτ#. By assumption, X \ A ∈ τ and
hence A is closed in (X, τ). (iii) (Necessity) Since every ξ∗∗-closed set is α-closed in
(X, τ), we have that ξ∗∗O(X, τ) = τα and so, for any subset E of X , ξ∗∗Cl#(E) = τα-
Cl(E) holds. Therefore, using Corollary 4.4, we have that τα = P (X). (Sufficiency)
Let A be a ξ∗∗-closed set of (X, τ). Then, A = ξ∗∗Cl#(A) and so X \ A ∈ ξ∗∗τ#. By
assumption, X \ A ∈ τα and hence A is α-closed in (X, τ). (iv) (Necessity) Since every
ξ∗∗-closed set is closed in (X, τ), we have that ξ∗∗O(X, τ) = τ and so, for any subset E of X ,
ξ∗∗Cl#(E) = ∩{F | E ⊆ F,X\F ∈ ξ∗∗O(X, τ)} = ∩{F | E ⊆ F,X\F ∈ τ} = τ -Cl(E) holds.
Therefore, using Corollary 4.4, we have that ξ∗∗τ# = τ and hence τ = P (X). (Sufficiency)
Let A be a ξ∗∗-closed set of (X, τ). Then, A = ξ∗∗Cl#(A) and so X \ A ∈ ξ∗∗τ#. By
assumption, X \ A ∈ τ and hence A is closed in (X, τ). �

The above Proposition 4.6 suggests new separation axioms Tξ and Tξ∗∗ which are defined
and investigated in the following section.
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5 New separation axioms Tξ and Tξ∗∗ In this section we also use the following
notations: ξO(X, τ) := {U |U is ξ-open in (X, τ)}; ξ∗∗O(X, τ) := {V | V is ξ∗∗-open in
(X, τ)}.
Definition 5.1 (i) A space (X, τ) is a Tξ-space if every ξ-closed set is α-closed (i.e.τα =
ξO(X, τ) ).

(ii) A space (X, τ) is a Tξ∗∗-space if every ξ∗∗-closed set is α-closed (i.e.τα = ξ∗∗O(X, τ)).
(iii) [27, Definition 4.1] A space (X, τ) is a T ∗

1/2-space if every g∗-closed set is closed.

Theorem 5.2 For a space (X, τ), the following properties are equivalent:
(1) (X, τ) is a Tξ-space;
(2) ξτ# = τα holds;
(3) Every singleton of X is gα-closed or α-open in (X, τ);
(4) Every singleton of X is gα-closed or open in (X, τ);
(5) A space (X, τα) is T ∗

1/2.

Proof. (1) ⇔ (2) It is Proposition 4.6(i). (1) ⇒ (3) Let x ∈ X . Then, by Lemma 2.9,
X = XGαC ∪ XξO. Suppose that {x} is not gα-closed. Then x ∈ XξO(i.e.{x} ∈ ξO(X, τ)).
Using assumption that τα = ξO(X, τ), we have that {x} is α-open. (3) ⇔ (4) The proof is
obvious, because a singleton {x} is open if and only if it is α-open. (3) ⇒ (5) It is shown
that a subset A is gα-closed in (X, τ) if and only if A is g-closed in (X, τα) [16, Theorem
2.3]. Moreover, A is α-open in (X, τ) (i.e.A ∈ τα) if and only if A is open in (X, τα). Then,
by (3), every singleton {x} is g-closed or open in (X, τα). By [27, Theorem 4.15], (X, τα) is
T ∗

1/2. (5) ⇒ (1) We claim that every ξ-closed set is α-closed in (X, τ). Let A be a ξ-closed
set in (X, τ). Then, by Theorem 2.7 and (5), A is g∗-closed in (X, τα) and so A is closed
in (X, τα) (i.e.A is α-closed in (X, τ)). �

Every T3/4-space is a T1/2-space ([8, Corollary 4.7]). A space (X, τ) is called a T3/4-space
[8] if every δ-generalzed closed subset is δ-closed in (X, τ). A space (X, τ) is called a T1/2-
space [15] if every g-closed subset is closed in (X, τ). It is well known that a space (X, τ)
is T3/4 if and only if every singleton {x} is regular open or closed in (X, τ) ([8, Theorem
4.3]). Moreover, a space (X, τ) is T1/2 if and only if every singleton {x} is open or closed
in (X, τ) ([9, Theorem 2.6]). The digital line (Z, κ) is T3/4 ([8, Example 4.6;Theorem 4.3])
and so it is T1/2 ([8, Corollary 4.7]). A space (X, τ) is αT1/2 if an induced space (X, τα) is
T1/2 ([16]). Digital objects are related to some low separation axioms.

The following result (iii) of Corollary 5.3 is probably unexpected:

Corollary 5.3 (i) Every T1/2-space is Tξ.
(ii) Every Tξ∗∗-space is Tξ.
(iii) A space (X, τ) is Tξ∗∗ if and only if τ = P (X).

Proof. (i) Suppose that (X, τ) is T1/2. Then, for a point x ∈ X, {x} is closed or
open, by [9, Theorem 2.6]. Using Theorem 5.2,(X, τ) is Tξ. (ii) It is obvious from The-
orem 3.2 and Definition 5.1. (iii) A space (X, τ) is Tξ∗∗ if and only if τα = P (X) holds
(cf.Proposition 4.6(iii)). And, it is shown that τα = P (X) if and only if τ = P (X). �

Remark 5.4 Moreover, we have the following diagrams of implications: (i) αT1 →
αT1/2 → Tξ (cf.[16, Theorem 5.4(iii)], Theorem 5.2); a space (X, τ) is called an αT1 (resp.
αT1/2 ) [16] if an induced space (X, τα) is T1 (resp. T1/2). (ii) αTm → αT ∗

1/2 → αT1/2 →
Tξ (cf.(i) above, [16, Theorem 5.4]); a space (X, τ) is αT ∗

1/2 (resp. αTm) [16] if every
gα∗∗-closed set is α-closed (resp. closed).
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Theorem 5.5 If (X, τ) is Tξ and a subset H is open in (X, τ), then (H, τ |H) is Tξ.

Proof. Let x ∈ H . By Theorem 5.2, the singleton {x} is gα-closed or α-open in (X, τ) and
so {x} is g-closed or open in (X, τα). Then, using [15, Theorem 2.9], {x} is g-closed or open
in (H, τα|H). Therefore, by Theorem 5.2, (H, (τ |H)α) is Tξ, because τα|H = (τ |H)α for
H ∈ τ . �

Remark 5.6 (i) The digital line (Z, κ) is Tξ, because it is T1/2 (cf.[8, Example 4.6], Corol-
lary 5.3(i)). (ii) (cf.Theorem 7.1(i)) The digital plane (Z2, κ2) is a Tξ-space (cf.Section 7
below); it is not T1/2. Thus, the converse of Corollary 5.3(i) does not true in general. (iii)
The converse of Corollary 5.3(ii) does not true in general (cf.Remark 7.2).

6 Some functions and groups

Definition 6.1 Let f : (X, τ) → (Y, σ) be a function between spaces and ρ ∈ {ξ, ξ∗, ξ∗∗}.
A function f : (X, τ) → (Y, σ) is said to be:

(i) ρ-continuous if for every closed set F of (Y, σ), f−1(F ) is ρ-closed in (X, τ);
(ii)ρ-irresolute if for every ρ-closed set B of (Y, σ), f−1(B) is ρ-closed in (X, τ);
(iii) ρ-open if for every open set U of (X, τ), f(U) is ρ-open in (Y, σ);
(iv) ρ-closed if for every closed set C of (X, τ), f(C) is ρ-closed in (Y, σ);
(v) ρ-homeomorphism if f is a bijective ρ-continuous and f−1 is ρ-continuous;
(vi) ρc-homeomorphism if f is a bijective ρ-irresolute and f−1 is ρ-irresolute.

We recall the following definitions and properties: a function f : (X, τ) → (Y, σ) is said
to be α-continuous ([22], [19]) (resp. α-irresolute [18], gα-irresolute [4, Definition 2.1(ii)])
if for every closed (resp. α-closed, gα-closed) set F of (Y, σ), f−1(F ) is α-closed (resp. α-
closed, gα-closed) in (X, τ). In [22], the α-continuous function was firstly called strongly
semi-continuous (cf. [23]). It is easily shown that f : (X, τ) → (Y, σ) is gα-irresolute if and
only if for every gα-open set U of (Y, σ), f−1(U) is gα-open in (X, τ).

Lemma 6.2 (i)([23, Theorem 4.13]) If f : (X, τ) → (Y, σ) is almost-open and α-continuous,
then f is α-irresolute.

(ii) Especially, if f : (X, τ) → (Y, σ) is open and continuous, then f is α-irresolute.
(iii) If f : (X, τ) → (Y, σ) is a homeomorphism, then f : (X, τ) → (Y, σ) and f−1 :

(Y, σ) → (X, τ) are α-irresolute and gα-irresolute.

Proof. (i) This is Theorem 4.13 in [23]. We recall definition of almost-open functions
[26]: a function f : (X, τ) → (Y, σ) is almost-open if f(U) is open in (Y, σ) for every regular
open set U of (X, τ) (eg.[23, p.124]). (ii) Every open function is almost-open and every
continuous function is α-continuous. Thus (ii) is obtained by (i). (iii) Since f and f−1

are open and continuous, by (ii) f : (X, τ) → (Y, σ) and f−1 : (Y, σ) → (X, τ) are α-
irresolute. Thus, the induced functions f : (X, τα) → (Y, σα) and f−1 : (Y, σα) → (X, τα)
are homeomorphisms. By [15, Theorem 6.1], f(A) is g-closed in (Y, σα) for every g-closed
set A of (X, τα). And, by [15, Theorem 6.3], f−1(B) is g-closed in (X, τα) for every g-
closed set B of (Y, σα). Thus we have that the set f(A) is gα-closed in (Y, σ) for every
gα-closed set A of (X, τ) and f−1(B) is gα-closed in (X, τ) for every gα-closed set B of
(Y, σ). Therefore, f : (X, τ) → (Y, σ) and f−1 : (Y, σ) → (X, τ) are gα-irresolute. �

Theorem 6.3 (i) Every α-continuous function is ξ-continuous.
(ii) Every ξ∗-continuous function is ξ-continuous.
(iii) Every ξ-continuous function is ξ∗∗-continuous.
(iv) Every ρ-irresolute function is ρ-continuous for each ρ ∈ {ξ, ξ∗∗}.
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(v) If functions f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) are ρ-irresolute, then the
composition g ◦ f : (X, τ) → (Z, η) is ρ-irresolute, for each ρ ∈ {ξ, ξ∗, ξ∗∗}.

(vi) The following properties are equivalent for a bijection f : (X, τ) → (Y, σ) and
ρ ∈ {ξ, ξ∗, ξ∗∗}.

(1) f is ρ-open and ρ-continuous;
(2) f is a ρ-homeomorphism;
(3) f is ρ-closed and ρ-continuous.
(vii) If f : (X, τ) → (Y, σ) is a homeomorphism, then f : (X, τ) → (Y, σ) and f−1 :

(Y, σ) → (X, τ) are ρ-irresolute (i.e. f : (X, τ) → (Y, σ) is a ρc-homeomorphism) for each
ρ ∈ {ξ, ξ∗, ξ∗∗}.

(viii) If f : (X, τ) → (Y, σ) is a ρc-homeomorphism, then f : (X, τ) → (Y, σ) is a
ρ-homeomorphism for each ρ ∈ {ξ, ξ∗∗}.

Proof. (i) Suppose that f is α-continuous. Let F be a closed set in (Y, σ). Then, by
Theorem 2.3(i), f−1(F ) is ξ-closed and so f is ξ-continuous. (ii)-(vi) They are obvious
from definitions.

(vii) Let f : (X, τ) → (Y, σ) be a homeomorphism. First, we claim that f−1 : (Y, σ) →
(X, τ) is ρ-irresolute for each ρ ∈ {ξ, ξ∗, ξ∗∗}.

Case 1. ρ = ξ∗∗: Let A be a ξ∗∗-closed set of (X, τ). To prove that f(A) is ξ∗∗-closed
in (Y, σ), let U be a gα-open set in (Y, σ) such that f(A) ⊆ U . Then, by Lemma 6.2(iii),
f−1(U) is gα-open in (X, τ). Thus, we have that f(τα-Cl(A)) ⊆ f(Int(Cl(f−1(U)))). Since
f : (X, τ) → (Y, σ) is a homeomorphism and τα-Cl(B) = A∪Cl(Int(Cl(B))) for any subset
B of (X, τ)([2, Theorem 1.5(c)]), we have that σα-Cl(f(A)) ⊆ Int(Cl(U)). Thus, f(A) is
ξ∗∗- closed in (Y, σ).

Case 2. ρ = ξ∗: Let A be a ξ∗-closed set of (X, τ). Let U be a gα-open set in (Y, σ)
such that f(A) ⊆ U . Then, by Lemma 6.2(iii), f−1(U) is gα-open in (X, τ). Thus, we have
that f(τα-Cl(A)) ⊆ f(f−1(Int(U))). Since f : (X, τ) → (Y, σ) is a homeomorphism, we
have that σα-Cl(f(A)) ⊆ Int(U) and so f(A) is ξ∗-closed in (Y, σ).

Case 3. ρ = ξ: Let A be a ξ-closed set of (X, τ). Let U be a gα-open set in (Y, σ) such
that f(A) ⊆ U . Then, by Lemma 6.2(iii), f−1(U) is gα-open in (X, τ). Thus, we have that
f(τα-Cl(A)) ⊆ f(f−1(U)) and so σα-Cl(f(A)) ⊆ U . Then, f(A) is ξ- closed in (Y, σ).

Therefore, we claimed that f−1 : (Y, σ) → (X, τ) is ρ-irresolute for each ρ ∈ {ξ, ξ∗, ξ∗∗}.
Since f−1 : (Y, σ) → (X, τ) is a homeomorphism, we show similarly that f : (X, τ) → (X, τ)
is ρ-irresolute and hence f is a ρc-homeomorphism for each ρ ∈ {ξ, ξ∗, ξ∗∗}.

(viii) Assume that ρ = ξ (resp. ξ∗∗). Let F be a closed set of (Y, σ). Then, F is ξ-closed
(resp. ξ∗∗-closed) of (Y, σ) (cf. Theorem 2.3(i) (resp. Theorem 3.2(ii)). Then, f−1(F ) is
ξ-closed (resp. ξ∗∗-closed) in (Y, σ), because f : (X, τ) → (Y, σ) is ξ-irresolute (resp. ξ∗∗-
irresolute). Thus, we have that f : (X, τ) → (Y, σ) is ξ-continuous (resp. ξ∗∗-continuous).
Similarly, it is shown that f−1 : (Y, σ) → (X, τ) is ξ-continuous (resp. ξ∗∗-continuous). �

Remark 6.4 (i) The following example shows that the converse of Theorem 6.3(i) need
not to be true. Let X = {a, b, c, d}, τ = {∅, {c, d}, X}, Y = {p, q} and σ = {∅, {p}, Y }.
Let f : (X, τ) → (Y, σ) be a function defined by f(a) = f(b) = f(c) = q and f(d) = p.
Then, f is ξ∗-continuous (and so ξ-continuous); it is not α-continuous. (ii) The converse
of Theorem 6.3(ii) need not to be true. Indeed, let X = Y = {a, b, c}, τ = {∅, {a}, X} and
σ = {∅, {a, c}, Y }. Let f : (X, τ) → (Y, σ) be a function defined by f(x) = x for any x ∈ X .
Then, f is α-continuous (and so ξ-continuous); it is not ξ∗-continuous. (iii) The converse of
Theorem 6.3(iii) need not to be true. Indeed, let X = Y = {a, b, c}, τ = {∅, {a}, {b, c}, X}
and σ = {∅, {a, c}, Y }. Then, a function f : (X, τ) → (Y, σ) defined by f(x) = x for any
x ∈ X , is ξ∗∗-continuous; it is not ξ-continuous. (iv) The above (i) and (ii) show that
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the α-continuity and the ξ∗-continuity are independent to each others. (v) The above (i)-
(iv) and Theorem 6.3(i)-(iii) show that the following diagram of implications holds and all
implications are not reversible.

α-continuous
↘

�↓�↑ ξ-continuous → ξ∗∗-continuous
↗

ξ∗-continuous

The following theorem is a pasting lemma for ρ-continuous (resp. ρ-irresolute) functions
for each ρ ∈ {ξ, ξ∗, ξ∗∗}. Let X = A∪B and f : A → Y and h : B → Y be two functions. It
is called that f and h are compatible if f(x) = h(x) for every x ∈ A ∩B. The combination
f∇h : X → Y is defined by (f∇h)(x) = f(x) for every x ∈ A and (f∇h)(x) = h(x) for
every x ∈ B.

Theorem 6.5 Let ρ ∈ {ξ, ξ∗, ξ∗∗}. Suppose that A and B are open and closed subset of
(X, τ) such that X = A ∪ B. Let f : (A, τ |A) → (Y, σ) and h : (B, τ |B) → (Y, σ) be
compatible functions.

(i) If f and h are ρ-continuous, then its combination f∇h : (X, τ) → (Y, σ) is also
ρ-continuous.

(ii) If f and h are ρ-irresolute, then its combination f∇h : (X, τ) → (Y, σ) is also
ρ-irresolute.

Proof. (i) Let F be a closed set of (Y, σ). Then, (f∇h)−1(F ) = f−1(F ) ∪ h−1(F ) and
f−1(F ) (resp. h−1(F )) is ρ-closed in (A, τ |A) (resp. (B, τ |B)). By Corollary 2.13(i) and Re-
mark 2.8(ii) for ρ = ξ; Theorem 3.6(i) and Theorem 3.5(i) for each ρ ∈ {ξ∗, ξ∗∗}, (f∇h)−1(F )
is ρ-closed in (X, τ). Therefore, f∇h is ρ-continuous. (ii) Let F be a ρ-closed set of (Y, σ).
Since f−1(F ) (resp. h−1(F )) is ρ-closed in (A, τ |A) (resp. (B, τ |B)), (ii) is proved by an
argument similar to that in (i) above. �

We construct some groups corresponding to a space (X, τ).

Definition 6.6 For a space (X, τ) and ρ ∈ {ξ, ξ∗, ξ∗∗}, we define the following collections
of functions:

(i) ρh(X, τ) = {f | f : (X, τ) → (X, τ) is a ρ-homeomorphism};
(ii) ρch(X, τ) = {f | f : (X, τ) → (X, τ) is a ρc-homeomorphism};
(iii) h(X, τ) = {f | f : (X, τ) → (X, τ) is a homeomorphism}.

Theorem 6.7 (i) For each ρ ∈ {ξ, ξ∗, ξ∗∗}, h(X, τ) ⊆ ρch(X, τ) holds.
(ii) For each ρ ∈ {ξ, ξ∗∗}, ρch(X, τ) ⊆ ρh(X, τ) holds.
(iii) The set ρch(X, τ) forms a group containing h(X, τ) as its subgroup for each ρ ∈

{ξ, ξ∗, ξ∗∗}.

Proof. (i) (resp. (ii)) It is obtained by Theorem 6.3(vii) (resp. Theorem 6.3(viii)). (iii)
A binary operation β : ρch(X, τ)× ρch(X, τ) → ρch(X, τ) is well defined by β(u, v) = u ◦ v
(the composition of functions) for any u, v ∈ ρch(X, τ) (cf.Theorem 6.3(v)). Then, it is
shown that ρch(X, τ) forms a group under β. Using (i), h(X, τ) is a subgroup of ρch(X, τ).
�
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Corollary 6.8 Assume ρ ∈ {ξ, ξ∗, ξ∗∗}.
(i) If there exists a ρc-homeomorphism f : (X, τ) → (Y, σ), then there exists a group

isomorphism: ρch(X, τ) ∼= ρch(Y, σ) holds.
(ii) Especially, if there exists a homeomorphism f : (X, τ) → (Y, σ), then there exists a

group isomorphism: ρch(X, τ) ∼= ρch(Y, σ) holds.

Proof. (i) Let f : (X, τ) → (Y, σ) be a ρc-homeomorphism. Then, a group isomorphism
f∗ : ρch(X, τ) ∼= ρch(Y, σ) is well defined by f∗(u) := f ◦ u ◦ f−1, using Theorem 6.3(v).
(ii) It is obvious by (i) and Theorem 6.3(vii). �

In the below remark, we use the following notations: for a space (X, τ), ρC(X, τ) =
{F | F is ρ-closed in (X, τ)} where ρ ∈ {ξ, ξ∗, ξ∗∗}.
Remark 6.9 For the following spaces (X, τ) and (Y, σ), we get the group structures of
ρch(X, τ) and ρch(Y, σ), where ρ ∈ {ξ∗, ξ, ξ∗∗}. Let X = Y = {a, b, c, d}, τ = {∅, {a}, {c},
{a, c}, X} and σ = {∅, {b}, {c}, {b, c}, {b, c, d}, Y}.

(i) ξ∗ch(X, τ) = ξch(X, τ) = ξ∗∗ch(X, τ) = h(X, τ) = {1X , h1, h2, h3} and h2
i = 1(i =

1, 2, 3) hold, where h1, h2, h3 : (X, τ) → (X, τ) are functions defined by h1(a) = c, h1(c) =
a, h1(x) = x for x ∈ {b, d}; h2(x) = x for any x ∈ {a, c}, h2(b) = d, h2(d) = b; h3(a) =
c, h3(b) = d, h3(c) = a, h3(d) = b and 1X : (X, τ) → (X, τ) is the identity.

(ii) ξ∗ch(Y, σ) = h(Y, σ) = {1Y , h4} ∼= Z2; ξch(Y, σ) = ξ∗∗ch(Y, σ) = {1Y , h4, h5, h6}
and h2

i = 1(i = 4, 5, 6) hold, where h4(x) = x for any x ∈ {a, d}, h4(b) = c, h4(c) =
b; h5(x) = x for any x ∈ {b, c}, h5(a) = d, h5(d) = a; h6(a) = d, h6(b) = c, h6(c) = b, h6(d) =
a and 1Y : (Y, σ) → (Y, σ) is the identity.

Indeed, we have the following properties:
ξ∗C(X, τ) = {∅, {b, d}, {b, c, d}, {a, b, d}, X};
ξC(X, τ) = {∅, {b}, {d}, {b, d}, {a, b, d}, {b, c, d}, X};
ξ∗∗C(X, τ) = P (X) \ {{a}, {c}} and
ξ∗C(Y, σ) = {∅, {a}, {a, d}, {a, c, d}, {a, b, d}, Y };
ξC(Y, σ) = {∅, {a}, {d}, {a, d}, {a, c, d}, {a, b, d}, Y };
ξ∗∗C(Y, σ) = P (Y ) \ {{b}, {c}}.

Remark 6.10 The converse of Corollary 6.8 is not true. Let (X, τ) and (Y, σ) be the spaces
of Remark 6.9 above. Let f : (X, τ) → (Y, σ) be a function defined by f(x) = x for any
x ∈ {a, b}, f(c) = d, f(d) = c. Then, we observe that, for each ρ ∈ {ξ, ξ∗∗}, f induces an
isomorphism f∗ : ρch(X, τ) ∼= ρch(Y, σ) such that f∗(h1) = h5, f∗(h2) = h4, f∗(h3) = h6.
Moreover, it is observed that f is not a ρc-homeomorphism, where ρ ∈ {ξ∗, ξ, ξ∗∗}, and f
is not a homeomorphism.

Remark 6.11 (i) The following examples show that the continuity and ξ∗-continuity (cf.
Definition 6.1(i)) are independent. Let X = {a, b, c} and τ = {∅, {a}, {a, b}, X}. Let
f : (X, τ) → (X, τ) be a continuous function defined by f(a) = f(b) = b, f(c) = c. Then,
f is not ξ∗-contiuous. Let g : (X, τ) → (X, τ) be a function defined by g(a) = a, g(b) =
c, g(c) = b. Then, g is not continuous; it is ξ∗-continuous. Indeed, it is observed that
ξ∗C(X, τ) = {∅, {b}, {b, c}, X}.

(ii) The following functions f : (X, τ) → (Y, σ) and g : (X, τ) → (Y, σ) show that the
converse of Theorem 6.3(iv) is not true.

Case 1. ρ = ξ: Let X = Y = {a, b, c}, τ = {∅, {a, b}, X} and σ = {∅, {a}, {a, b}, Y }.
Let f : (X, τ) → (Y, σ) be a function defined by f(x) = x for any x ∈ X . Then, f
is not ξ-irresolute; it is ξ-continuous. Indeed, ξC(X, τ) = {∅, {c}, {b, c}, {a, c}, X} and
ξC(Y, σ) = {∅, {b}, {c}, {b, c}, Y } hold.
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Case 2. ρ = ξ∗∗: Let (X, τ) and (Y, σ) be topological spaces defined in Remark 6.9 and
g : (X, τ) → (Y, σ) a function defined as g(a) = b, g(b) = a, g(c) = d, g(d) = c. Then, g is
not ξ∗∗-irresolute; it is ξ∗∗-continuous.

(iii) The converse of Theorem 6.3(vii) for ρ ∈ {ξ, ξ∗∗} need not to be true. Let (Y, σ)
be a space of Remark 6.9 and f : (Y, σ) → (Y, σ) a function defined by f(a) = d, f(d) =
a, f(x) = x for any x ∈ {b, c}. Then, f is ρc-homeomorphism, where ρ ∈ {ξ, ξ∗∗}; f is not a
homeomorphism. We note that f is not ξ∗-irresolute. (iv) The converse of Theorem 6.3(viii)
for ρ = ξ∗∗ need not to be true. Let (X, τ) and (Y, σ) be the spaces of Remark 6.9
and g : (X, τ) → (Y, σ) a function defined in (ii) Case 2 above. Then, g is not a ξ∗∗c-
homeomorphism; it is a ξ∗∗-homeomorphism.

7 ρ-closed sets of the digital plane where ρ ∈ {ξ, ξ∗∗} In this section, we show that
the digital plane (Z2, κ2) is a Tξ-space (cf. Remark 5.6(ii)) and investigate characterizations
of ξ-closed sets and ξ∗∗-closed sets of the digital plane. First, we recall related definitions
and some propeties of the digital plane. The digital line is the set of the integers, Z, equipped
with the topology κ having {{2m − 1, 2m, 2m + 1}|m ∈ Z} as a subbase. It is denoted by
(Z, κ). A singleton {2n+1} is open and a subset {2n−1, 2n, 2n+1} is the smallest open set
containing 2n, where s, n ∈ Z. The digital line (Z, κ) is a typical example of the T1/2-space
which is not T1 (cf.[15] [9]), because every singleton of (Z, κ) is open or closed. Furthermore,
it is shown, in [8, Example 4.6] that (Z, κ) is T3/4. Let (Z2, κ2) be the topological product
of two copies of the digital line (Z, κ), where Z2 = Z×Z and κ2 = κ×κ. In this paper, the
space (Z2, κ2) is called the digital plane (cf.[12, p.10], [13, p.907], [6, Section 6], [24, Section
5], [10]). This space is a mathematical model of the computer screen. Let (Z2)κ2 := {x| {x}
is open in (Z2, κ2)}. Then, (Z2)κ2 = {(2n + 1, 2m + 1)| n, m ∈ Z} and it is open and dense
in (Z2, κ2).

Theorem 7.1 t170 (cf. Remark 5.6(ii)) (i) The digital plane (Z2, κ2) is a Tξ-space.
(ii) A subspace (H,κ2|H) of (Z2, κ2) is a Tξ-space, where H = (Z2)κ2 .

Proof. (i) Let x be a point of (Z2, κ2).
Case 1. x = (2m + 1, 2n + 1), where n, m ∈ Z: The singleton {x} is open in (Z2, κ2).
Case 2. x = (2m, 2n), where n, m ∈ Z: The singleton {x} is closed in (Z2, κ2) and so

it is gα-closed (cf. Theorem 2.3(ii)).
Case 3. x = (2m, 2n + 1), where n, m ∈ Z: The singleton {x} is gα-closed in (Z2, κ2).

Indeed, it is shown that, for any gα-open set U including {x}, (κ2)α-Cl({x}) = {x} ∪
Cl(Int(Cl({x}))) = {x} ∪ Cl(Int({2m} × {2n, 2n + 1, 2n + 2})) = {x} ∪ Cl(∅) = {x} ⊆ U
and so {x} is ξ-closed (cf. [2, Theorem 1.5(c)]). Then, by Theorem 2.3(ii), {x} is gα-closed
in (Z2, κ2).

Case 4. x = (2m + 1, 2n), where n, m ∈ Z: The proof for this case is similar to Case 3
above.

Thus we have that every singleton {x} of (Z2, κ2) is gα-closed or open. Therefore, using
Theorem 5.2, (Z2, κ2) is a Tξ-space. (ii) A singleton {(x1, x2)} is open in (Z2, κ2) if and
only if x1 and x2 are odd integers. Thus, H is open in (Z2, κ2). By (i) and Theorem 5.5,
(H,κ2|H) is Tξ. �

Remark 7.2 (cf.Remark 5.6(iii)) The converse of Corollary 5.3(ii) does not true in general.
By definition, Corollary 5.3(iii) and Theorem 7.1, it is shown that κ2 �= P (Z2) and so
(Z2, κ2) is not Tξ∗∗ ; it is Tξ.

We recall the following notations of families of subsets, definitions and a fact: For a
space (X, τ), PO(X, τ) (resp. ξO(X, τ), τα, SO(X, τ), GαO(X, τ)) denotes the family of
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all preopen (resp. ξ-open, α-open, semi-open, gα-open) subsets of (X, τ)) and PC(X, τ)
(resp. ξC(X, τ), SC(X, τ), GαC(X, τ)) denotes the family of all preclosed (resp. ξ-closed,
semi-closed, gα-closed) subsets of (X, τ). A subset A of (X, τ) is called preopen (resp. semi-
open) in (X, τ), if A ⊆ Int(Cl(A)) (resp. A ⊆ Cl(Int(A))) holds in (X, τ). It is well known
that τα = PO(X, τ) ∩ SO(X, τ) holds for any space (X, τ)([23, Lemma 3.1], [25]).

Theorem 7.3 For the digital plane (Z2, κ2), the following properties hold:
(i) ξO(Z2, κ2) = PO(Z2, κ2); ξC(Z2, κ2) = PC(Z2, κ2).
(ii) ξO(Z2, κ2) ⊆ SO(Z2, κ2); ξC(Z2, κ2) ⊆ SC(Z2, κ2).
(iii) ξO(Z2, κ2) = PO(Z2, κ2) = (κ2)α = GαO(Z2 , κ2).

Proof. (i) We recall that
(∗) GαO(Z2, κ2) = PO(Z2, κ2) = (κ2)α hold ([6, Theorem 6.1 (ii)]).
By Theorem 2.3(ii) and (∗), ξC(Z2, κ2) ⊆ GαC(Z2, κ2) = PC(Z2, κ2). Convercely, by

Theorem 2.3(i) and (∗), PO(Z2, κ2) = (κ2)α ⊆ ξO(Z2, κ2). Thus we have that ξC(Z2, κ2) =
PC(Z2, κ2) and ξO(Z2, κ2) = PO(Z2, κ2) hold. (ii) By [6, Theorem 6.1(i)], PO(Z2, κ2) ⊆
SO(Z2, κ2) holds. Thus, (ii) is obtained by (i). (iii) It is proved by using (i) (ii) above and
[6, Theorem 6.1(ii)]. �

To investigate further properties of ξ-closed sets and ξ∗∗-closed sets on the digital plane
(Z2, κ2), we prepare the following two propositions (Proposition 7.4, Proposition 7.5 below).
Let (X, τ) be a space and E a subset of (X, τ). First, we recall the following properties on
the preclosure pCl(A) := ∩{F |A ⊆ F,F is preclosed in (X, τ)}, the α-closure τα-Cl(A) and
the τ -closure Cl(A) in (X, τ): the following properties are known.

(∗) pCl(E) ⊆ τα-Cl(E) ⊆ Cl(E) hold for any subset E.
(∗∗) If E is α-open, then pCl(E) = τα-Cl(E) = Cl(E) hold; for an open set E, the

equality of (ii) is also true, because any open set is α-open.
(∗ ∗ ∗) If E is preopen, then τα-Cl(E) = Cl(E) hold; we note that pCl(E) �= Cl(E)

in general. Indeed, let (X, τ) be a space, where X = {a, b, c} and τ = {∅, {a, b}, X}. For
a preopen set E = {a}, pCl(E) = {a} ⊆ X = Cl(E) = τα-Cl(E) hold. However, for a
preopen set E of the digital plane (Z2, κ2), we have the following relationships on closures
of E.

Proposition 7.4 (i) For a subset E of (Z2, κ2), pCl(E) = (κ2)α-Cl(E) holds.
(ii) For a preopen set E of (Z2, κ2), pCl(E) = (κ2)α-Cl(E) = Cl(E) hold.

Proof. (i) It is obtained from a fact that PO(Z2, κ2) = (κ2)α (cf.Theorem 7.3(iii)). (ii)
By using (i) and the α-closure’s formula [2, Theorem 1.5(c)], it is shown that pCl(E) =
(κ2)α-Cl(E) = E ∪ Cl(Int(Cl(E))) ⊇ E ∪ Cl(E) = Cl(E). Therefore, using (∗) above, we
have that pCl(E) = (κ2)α-Cl(E) = Cl(E) hold. �

Recall the set (Z2)κ2 = {x| {x} is open in (Z2, κ2)} = {(2m + 1, 2s + 1)|m, s ∈ Z} and
it is open and dense in (Z2, κ2).

Proposition 7.5 For a non-empty subset E of (Z2, κ2), the following properties are equiv-
alent:

(1) E is dense in (Z2, κ2);
(2) Cl(E) = Int(Cl(E)) holds;
(3) E ⊇ (Z2)κ2 holds.

Proof. (1)⇒(2) Since Cl(E) = Z2, Cl(E) = Z2 = Int(Cl(E)) holds. (2)⇒(3) By (2),
Cl(E) is open and closed in (Z2, κ2) and Cl(E) �= ∅. Since (Z2, κ2) is connected [1, p.67],
Cl(E) = Z2. Let x be any point of (Z2)κ2 . Then, {x} is open and x ∈ Cl(E). Thus we have
that x ∈ E and hence (Z2)κ2 ⊆ E. (3)⇒(1) It follows from (3) that Cl(E) ⊇ Cl((Z2)κ2) =
Z2 and so Cl(E) = Z2. �
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Remark 7.6 For the following space (X, τ) and a set E of X , the implication (2)⇒(1)
in Proposition 7.5 does not hold in general. Let X = {a, b, c} and τ = {∅, {a}, {b, c}, X}.
Then, a subset E = {a} is not dense in (X, τ);Cl(E) = Int(Cl(E)) = {a} holds.

Theorem 7.7 Let E be a subset of (Z2, κ2).
(i) If E is dense in (Z2, κ2), then E is ξ∗∗-closed.
(ii) If E ⊇ (Z2)κ2 , then E is ξ∗∗-closed in (Z2, κ2).
(iii) If E is a preopen and dense subset of (Z2, κ2) and E �= Z2, then E is not ξ-closed.
(iv) If E ⊇ (Z2)κ2 and E �= Z2, then E is not ξ-closed in (Z2, κ2).

Proof. (i) Let U be a gα-open set containing E. Then, Z2 = Int(Cl(E)) ⊆ Int(Cl(U))
and so Int(Cl(U)) = Z2. Thus we have that (κ2)α-Cl(E) = E ∪ Cl(Int(Cl(E))) = E ∪
Z2 = Z2 = Int(Cl(U)) and so E is ξ∗∗-closed. (ii) By Proposition 7.5, E is dense in
(Z2, κ2), because E �= ∅. Using (i), E is ξ∗∗-closed. (iii) Suppose that E is ξ-closed. Since
E ∈ PO(Z2, κ2) = GαO(Z2 , κ2) (cf. Theorem 7.3(iii)) and E ⊆ E, we have that (κ2)α-
Cl(E) = Cl(E) ⊆ E using Proposition 7.4(ii). Therefore, E = Z2, because Cl(E) = Z2.
This is a contradiction. (iv) It follows from assumption that Cl(E) ⊇ Cl((Z2)κ2) = Z2 and
so E is dense and E is preopen. Using (iii), E is not ξ-closed. �

Theorem 7.8 (i) If a non-empty subset E is preopen and it is not dense in (Z2, κ2), then
E is not ξ∗∗-closed.

(ii) Every non-empty proper subset of (Z2)κ2 is not ξ∗∗-closed in (Z2, κ2).

Proof. (i) Suppose that E is ξ∗∗-closed. Since E ∈ GαO(Z2, κ2) and E ⊆ E, by
using Proposition 7.4(ii), it is shown that (κ2)α-Cl(E) = Cl(E) ⊂ Int(Cl(E)) and so
Cl(E) = Int(Cl(E)). By Proposition 7.5, E is dense. This is a contradiction. (ii) Let E
be a non-empty proper subset of (Z2)κ2 . Then, E is open and so preopen and there exists
a point x0 such that x0 ∈ (Z2)κ2 and x0 �∈ E. We claim that E is not dense. Indeed,
suppose that E is dense. Since {x0} is open and x0 ∈ Cl(E), we have that x0 ∈ E. This is
a contradiction. Therefore, the set E is non-empty, preopen and E is not dense. By using
(i) above, E is not ξ∗∗-closed. �

Remark 7.9 The following example shows that Theorem 7.8 for a space does not hold in
general. Let (X, τ) be a space of Remark 7.6 and a subset E = {a}. Then, E is preopen
and non-dense subset of (X, τ); the set E is ξ∗∗-closed.

Theorem 7.10 For a non-empty subset E of (Z2, κ2), the following properties are equiva-
lent:

(1) E is ξ∗∗-closed and preopen in (Z2, κ2);
(2) E is dense in (Z2, κ2);
(3) E ⊇ (Z2)κ2 holds.

Proof. (1)⇒(2) Since E ⊂ E ∈ PO(Z2, κ2) = GαO(Z2 , κ2) and E is ξ∗∗-closed,
Cl(E) ⊆ Int(Cl(E)) holds (cf. Proposition 7.4(ii)). By Proposition 7.5, it is shown that
E is dense in (Z2, κ2). (2)⇒(1) Using Theorem 7.7(i), E is ξ∗∗-closed. Since E is dense,
E ⊆ Cl(E) = Z2 = Int(Cl(E)) holds. (2)⇔ (3) This is shown in Proposition 7.5. �

Remark 7.11 (i) For a topological space, the implication (1)⇒(2) in Theorem 7.10 does
not hold in general. Let (X, τ) be a space, where X = {a, b, c} and τ = {∅, {a}, {b}, {a, b},
{a, c}, X} and E = {a, c}. Then, E ∈ PO(X, τ) ∩ ξ∗∗C(X, τ); E is not dense in (X, τ).
(ii) By Theorem 7.10, the following subset E is ξ∗∗-closed and ξ-open in (Z2, κ2) : E =
(Z2)κ2 ∪ A, where A is any non-empty set. The set (Z2)κ2 is called as the open screen of
the digital plane.
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