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Abstract. In this paper, we are concerned with the role of the age structure of a prey
in the dynamic of a predator prey model. Specifically, we study the effect of predation
on a non-reproductive class of the prey, when the reproductive class of the prey presents
a group defense mechanism. Three different scenarios are analyzed: (1) Constant
predation rate on the nonreproductive class, no defense mechanism; (2) Predation
of Type II of Holling on the non-reproductive class, no defense mechanism; and (3)
Predation of Type II of Holling on the non-reproductive class, defense mechanism.

1 Introduction Predator–prey is one of the most important interspecific interaction and
it has received extensive attention from many points of view. Recently some models have
been built to study the dynamical properties of a system where predation is age–dependent.
The study of age structured models is a topic of ecological interest. In nature we find preda-
tors that eat only adults, or immature prey, or sometimes they prefer the most conspicuous
class. An example is the cicada which is preyed only in adult stage [8], or some species of
perch which feed on immature prey [4]. In [13] they have considered a predator–prey model
with a two age class prey. Under the assumption that predator feeds only on the immature
class and the predation rate is constant they obtain necessary and sufficient conditions for
coexistence and extinction. However, their hypothesis of constant predation rate is unrealis-
tic, due to the mutual interference between the predators which increases with the predator
density. Interference between predators see [1]. The phenomenon of predation on the more
abundant prey known as switching has been considered in many papers, see for example
[6], [9], [10], [11]. In [7] a system is analyzed containing a predator species and a structured
prey species with fixed maturity time. This model presents a kind of switching from one age
class to the other. It is found that the introduction of a time delay is a destabilizing process
in the sense that increasing the time delay could cause population’s fluctuations. Another
important aspect that could be present in a predator-prey relationship is the ability of the
prey to better defend themselves when their number is large. Pairs of musk-oxen can be
successfully attacked by wolves but groups often are not attacked [12]. Examples of this
kind of group defense can be found in [5], [3].
In this paper, we are concerned with the role of the age structure of a prey in the dy-
namic of a predator prey model. Specifically, we study the effect of predation on a non-
reproductive class of the prey, when the reproductive class of the prey presents a group
defense mechanism. Three different scenarios are analyzed: (1) Constant predation rate on
the non-reproductive class, no defense mechanism; (2) Predation of Type II of Holling on
the non-reproductive class, no defense mechanism; and (3)Predation of Type II of Holling on
the non-reproductive class, defense mechanism. We assume that the class of the youngest
organisms reproduces logistically and the maturation rate is constant. The second class
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contains the oldest organisms and it is assumed that they are not reproductive. A group-
ing defense mechanism of the first class is simulated by taking a predation rate which is a
decreasing function of the size’s class. To know the dynamical consequences of each one of
the considered aspects -selective predation and defense mechanism- we start with a basic
predation–prey model which is progressively modified by incorporating at each step, one of
the mechanisms. In this way, when a new dynamical property arises, we know what it is
the mechanism that produces it.

2 The model There exist a lot of examples of predator species which preferentially feed
on the most conspicuous age class of their prey. On the other hand, when the prey species
is numerous it may develop defense mechanisms and consequently a lower predation rate is
observed. These two aspects –selective predation and defense mechanism– are considered
in the following model.

ẋ = x(γ(1 − (x + y)
K

) − f(x, y)z − ν) = xF1(x, y, z),

ẏ = νx − τy − g(y)z = G1(x, y, z),(1)
ż = z(µxf(x, y) + βg(y) − D) = zH1(x, y, z).

The term x + y stands for the population of the prey, x is the reproductive class and y
represents the eldest and non-reproductive class. The defense of the prey based on its size
is simulated assuming that (∂f(x,y))

∂x ) and (g(y)/y)′ are negative. Also, we assume that
(∂f(x,y))

∂y ) < 0 to introduce a kind of switching effect.
In this paper f and g are given by

f(x, y) =
1

1 + x2 + y
,

g(y) =
δy

1 + y
.

When the non–reproductive class is not considered, the Model (1) becomes

ẋ = x(γ(1 − x

K
) − z

a + x2
),

ż = z(
µz

a + x
− D),(2)

whose dynamical behavior has been analyzed in [2].
First, we study the system

ẋ = x(γ(1 − (x + y)
K

) − z

1 + x + y
− ν) = xF2(x, y, z),

ẏ = νx − τy − yz = G2(x, y, z),(3)

ż = z(
µx

1 + x + y
+ βy − D) = zH2(x, y, z),

where predation rate on y is size independent.
Then, we consider the system

ẋ = x(γ(1 − (x + y)
K

) − z

1 + x + y
− ν) = xF3(x, y, z),

ẏ = νx − τy − yz

1 + y
= G3(x, y, z),(4)

ż = z(
µx

1 + x + y
+

βyz

1 + y
− D) = zH3(x, y, z),



THE PREY AGE STRUCTURE ON A PREDATOR-PREY SYSTEM 693

where we have a density dependent predation rate on y, of the type II of Holling.
Finally, model (1) is analyzed.

3 The analysis of the models As usual, we are interested in the dynamics on the
feasible region R defined by R ={x ≥ 0, y ≥ 0, z ≥ 0}. Notice that (0, 0, 0) is a global
attractor of the systems

ẋ = xFi(x, y, z),(5)
ẏ = Gi(x, y, z),
ż = zHi(x, y, z),

for i = 1, 2, 3, when γ < ν. This is due to Fi(x, y, z) < 0 for each (x, y, z) ∈ R. Hence, we
will assume that γ > ν. An equilibrium point is called a coexistence equilibrium point (ce-
point) if all its coordinates are no null. In any of the above considered cases, the equilibrium
points of the system with at least one null coordinate are O = (0, 0, 0) and N = (x, y, 0),
where x = K(γ−ν)

γ
τ

τ+ν and y = ν
τ x. Although, the points O and N are non hyperbolic

points, it is not hard to prove the following proposition.

Proposition 1 (a) The point O is an unstable equilibrium point of the system (5), for
i = 1, 2, 3.

(b) The point N is a stable (an unstable) equilibrium point of the system (5), if Hi(N) < 0
(Hi(N) > 0) for i = 1, 2, 3.

Proof. (a) Since Fi(0, 0, 0) = γ − ν > 0, there exists a neighborhood V of O, such that
Fi(x, y, z) > γ−ν

2 , for each (x, y, z) ∈ V . This implies that x(t) increases as long as the
trajectory (x(t), y(t), z(t)) remains in V . Thus, the point O is unstable. (b) Now, we
prove that N is stable. Since Hi(N) < 0, there exists a neighborhood V1 of N such that
Hi(x, y, z) < 0 for each (x, y, z) ∈ V1). Notice that N is a stable equilibrium point of
the planar restricted flow; then, there exists a planar neighborhood V2 of N such that the
solution (x(t), y(t)) of the system

ẋ = x((γ − ν) − γ

K
(x + y)), x(0) = x0,

ẏ = νx − τy, y(0) = y0,

tends to N when t → ∞, for (x0, y0) ∈ V2. We take α and β such that

α < x((γ − ν) − γ
K (x + y)) < β,

α < νx − τy < β,

for each (x, y) ∈ V2. Let V3 denote an open planar set contained in V2, and let ρ be a
positive number such that

α < xFi(x, y, z) < β,
α < Gi(x, y, z)β,

for all (x, y, z) ∈ V3 × [0, ρ]. Hence, the component (x(t), y(t))a of any solution starting in
V3 × [0, ρ] remain in V2 and the component z(t) → 0. Analogously, it is proved that N is
unstable when Hi > 0. �

Proposition 2 All the solutions of the system (5) are bounded, for i = 1, 2, 3.



694 M. FALCONI

Proof. To be explicit, we consider the case i = 1. Notice that ẋ < 0 while x + y > K.
Therefore, given a solution (x(t), y(t), z(t)) there exist X > 0 and t0 > 0, such that x(t) ≤ X
for t ≥ t0. Since ẏ ≤ νX − τy for t ≥ t0, we see that y(t) ≤ νX

τ + 1 if t ≥ t1, for a t1 > 0.
So, x(t) and y(t) are bounded functions of t; let C a bound of x(t) and y(t). Before to prove
that z(t) is bounded we show that it does not converge monotonically to infinity. If z(t)
tends to infinity monotonically, then (1) ż(t) > 0 and also (2) we have a Λ > 0 such that
z(t) > Λ for t large enough and both F1(x(t), y(t),Λ) and G1(x(t), y(t),Λ) are negative.
Item (2) implies that (x(t), y(t)) → (0, 0), consequently H1(x, y) < 0. This a contradiction
since item (1) holds. Also, it is worth noting that z(t) is an increasing function on an
interval I = (t0, t1) if z(I) = (n1Λ, n2Λ), with n1 < n2 and n1, n2 ∈ N. Otherwise, there is
t ∈ (t0, t1) such that z(t) > z(t) for some t > t. This implies that H1(x(t), y(t)) < 0. On
the other hand, ẋ and ẏ are lesser than zero, since z(t) > Λ. Therefore, H1(x(t), y(t)) will
remain lesser than zero, while z(t) takes values greater than Λ. Hence, z(I) �= (n1Λ, n2Λ).
This contradiction proves that z(t) increases monotonically.
We have the inequalities

ẋ < x((γ − ν) − z

1 + 2C
),(6)

ẏ < νy,(7)

If z(t) is not bounded, then given n1, n2 ∈ N there exists an interval (t0, t1) such that
z(I) = (n1Λ, n2Λ). The equality γ−ν = kΛ holds for some k > 0. We have (γ−ν)− z(t)

2C <
(k − n1

2C )Λ. We choose n1 such that α < 0, where α stands for the term k − n1
2C . In this

way, we have that ẋ < αx, when z(t) belongs to (n1Λ, n2Λ). This shows that x(t) decreases
exponentially fast and together with the inequality 7 imply that after z(t) surpasses n1, the
time that z(t) remains increasing is bounded. As a consequence, we can get arbitrarily large
growth rate of z(t), by choosing conveniently n2. This is not possible, since ż

z is bounded
by max H1(x, y). �

The ce-points are the positive roots of the system of equations given by

Fi = 0, Gi = 0, Hi = 0,(8)

for i = 1, 2, 3.
The equation Fi = 0 defines a bounded surface which cuts the x − y plane along the line
Lx : x + y = K(γ−ν

γ ). This surface is positive (that is, the coordinate z is greater or equal
than zero) in the triangle defined by the lines (x = 0, z = 0), (y = 0, z = 0) and Lx. The
surface Gi = 0 is positive for (x, y) in the planar region below the line Ly : νx − τy = 0
and tends asymptotically to the plane y = 0. Notice that Ly is the intersection of Gi = 0
with the x− y plane. The equation Hi defines a cylindrical surface orthogonal to the plane
x − y. Indeed, Hi = 0 is a hyperbolic cylinder for i = 2, 3. Let Lz denotes the intersection
of Hi = 0 with the plane x − y (see Figure (1).
Because our purpose is to relate the dynamical changes with the interaction mechanisms, we
only show those cases which present some new dynamical feature concerning the ce-points.
On the other hand, the general description of the coexistence equilibrium points is almost
an impossible task due to the great number of parameters involved.

3.1 Equilibrium points of the system (5): i = 2. First of all, we analyze the geometry
of the nullclines. The shape of the cylindrical surface H1 = 0 is determined by the hyperbola
given by

βy2 + βxy + (β − D)y + (µ − D)x − D = 0.(9)
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Figure 1: (a) The nullclines for i=2. (b) Lx, Ly, Lz for i=2.
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Figure 2: (a) µ < D. (b) µ = D. The asymptote is the discontinuous line

Remark 1 This hyperbola intersects the x axis in x∗ = D/(µ − D). If µ = D, it does
not intersect the x axis. The intersections with the y axis are y = −1 and y = d/β. The
asymptotes are given by the equations y = D−µ

β and y = −x + µ−β
β .

We are only interested in the branch of the hyperbola contained in R, that we denote by
P . In Figures (2) and (3), we show P according to the sign of D − µ.

Proposition 3 Assume that µ < D and i = 2. There exists an interval J = (0, τ∗) such
that the system (5) has a ce-point for each τ ∈ J if and only if K γ−ν

γ > D
β . The ce-point is

unique for each τ.

Proof. A ce-point is a point in the intersection of the surfaces given by 8. The surface
F2 = 0 is foliated by the lines la : {y = −x + a, z = ((γ − ν) − γ

K a)(1 + a)}. We take
a ∈ [0, K(γ−ν

γ )), since we are interested in the portion of the surface contained in the region
R. The hyperbolic cylinder H2 = 0 is projected onto the convex curve P , whose slope (the
tangent line slope) is greater or equal than −µ

β+D > −1. it follows that if K(γ−ν
γ ) < D

β ,
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Figure 3: µD. (a) D + β < µ. (b) D + β = µ, P becomes a line segment. (c) D + βµ.

there does not exist a ce-point since the line la does not cut the surface H2 = 0, for each
a ∈ [0, K(γ−ν

γ ). Now, we consider K(γ−ν
γ ) > D

β . Notice that la cuts the surface H2 = 0
if and only if a ∈ [D/β, K(γ−ν

γ )]. The intersections of the lines la with H1 = 0 define
a continuous curve which we denote by L. The z coordinate of L is positive, except the
corresponding to a = K(γ−ν

γ ) which is null. The surface G2 = 0 is foliated by the lines
hm : {y = mx, z = ν

m − τ}. Hence, the intersection of F2 with G2 denoted by M is a curve
that its z coordinate grows from zero to infinity when m goes from ν

τ to 0. The ce-points
are the intersection points of L with M . Notice that M does not cut the curve L if ν

τ is
lesser or equal than y

x , where (x, y, 0) is the point in L corresponding to a = K(γ−ν
γ ). In

that case, it does not exist any ce-point. If ν/τ ≥ y/x, L intersects M in exactly one point.
The interval J = (0, νx

y ). �

Proposition 4 Let µ > D and i = 2. The following statements holds.

(a) If D + β < µ, then there exists an interval J = (τ∗,∞) such that the system (5) has
a ce-point for each τ ∈ J if and only if K(γ−ν

γ ) > D
µ−D . The ce-point is unique for

each τ. We can take τ∗ = 0, if K(γ−ν
γ ) > D

β .

(b) If D + β ≥ µ, then the system (5) has a ce- point for each τ ∈ J = (0,∞) if and only
if K(γ−ν

γ ) ≥ D
β . The ce-point is unique for each τ.

Proof. The notation is as in the proof of Proposition (3). In this case (µ > D), the curve P
cuts the x axis. Indeed, the intersection point is (D/(µ−D), 0, 0). (a) P is a concave curve
with slope lesser than -1, when D + β < µ (see Figure 3.(a)), then a line la intersects the
surface H2 = 0 if and only if a > D

µ−D . So, there is not any ce-point when K(γ−ν
γ ) ≤ D

µ−D .

Now, we consider D
µ−D < K(γ−ν

γ ) ≤ D/β. The intersection point of lK(γ − ν)/γ) with P is
a point (x, y, 0), where 0 < x < D/µ−D and 0 < y < D/β. Clearly, the curve L intersects
the curve M if ν/τ ≤ y/x. Therefore, there exists a ce-point. We claim that L

⋂
M = ∅ if τ

is small enough. Straightforward but cumbersome calculations show that the z coordinate
of M grows faster than the corresponding one of L. On the other hand, if ν/τ > y/x, then
z is greater than 0, where (x, y, x) belongs to M . The claim holds and the proof of (a)
follows. We omit the proof of (b) because it is similar to the previous one. �

We remark that some numerical calculations and the local analysis of certain cases make
plausible that the ce-points are always asymptotically stable.
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Figure 4: (a) µ ≥ D, β < D. (b) µ ≥ D, β ≥ D. (c) µ < D, β ≤ D. (d) µ < D, β > D.

3.2 Equilibrium points of the system (5): i = 1, 3. We will do a numerical ex-
ploration to discover the new dynamical features which arise when we introduce: first, a
predation of type II of Holling on the oldest class; then, a defense mechanism of the youngest
class.

3.2.1 Case i=3. In Figure 4, we see the intersections of the surfaces F3 = 0, G3 = 0,
H3 = 0 with the plane z = 0. As in the case i = 2, the surface H3 = 0 is a hyperbolic
cylinder. Now, in the following remark we point out some of the main dynamical features
of this case. We suppose that K > D/β.

Remark 2 1. We consider the case µ ≥ D, β < D. There exist τ1, τ∗ satisfying τ1 <
τ∗, such that the system has a ce-point if and only if τ > τ1. There exist two ce-points
if τ belongs to (τ1, τ

∗). One of them is a stable point, and the other one is a saddle.
the 2-dimensional unstable manifold of the saddle point defines a separatrix of the
flow in such a way that any solution starting below the separatrix tends to N . As τ
tends to τ∗, these equilibrium points collide and a new point arises which is stable for
τ > τ∗.

2. We assume that µ ≥ D, β ≥ D. A unique ce-point exists for all τ > 0. This point
which is unstable for small values of τ , becomes a stable point as τ increases beyond
a certain value τ2. There exists a stable limit cycle for τ < τ2

3. Let µ < D, β ≤ D. A unique and stable ce-point exists if and only if τ3 < τ < τ4, for
some positive numbers τ3 < τ4. If µ < D, β > D, a stable ce-point exists if and only
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Figure 5: Nullclines of the system for i = 1
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Figure 6: Bifurcation diagram. i = 1.

if τ < τ5, for some τ5 > 0.

3.2.2 Case i=1. Although, we do not make an exhaustive numerical exploration for this
case, we have found that the system can show a bifurcation diagram as the following.

Remark 3 There exist 0 < τ1 < τ2 < τ3 such that for τ < τ1, the system has two equilib-
rium points which we denote by Q1 and Q2. One of them is a stable point, say Q1. Two of
the eigenvalues of Q1 are complex numbers. We have a Hopf bifurcation when τ = τ1. For
τ ∈ (τ1, τ2), Q2 and Q1 are unstable and there exists a stable limit cycle. These two points
collide when τ = τ2 in such a way that the system has a unstable point Q3, for τ ∈ (τ2, τ3).
The point Q3 bifurcates in two unstable points at τ = τ3.

In Figure (5) and Figure (6) are shown the null surfaces of the system and the bifurcation
diagram, respectively.
By comparing Propositions 3 and 4 with Remark 2, we realize that a II Holling predation
instead of a constant predation rate makes possible the arising of an extinction threshold
for z (the separatrix manifold) and the existence of limit cycles. The new dynamical feature
that arises when we introduce the group defense is that a high mortality rate of y leads to
the extinction of z (see Remark 3). Indeed, large value of τ implies small level of y and
consequently, higher values of x. Thus due to the group defense, the class x is protected
against attacks of a small predator population.
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