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GHOST STOCHASTIC RESONANCE FOR A STOCHASTIC SINGLE
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Abstract. The response of a neuron to a linear combination of the first two harmonics
of a fundamental frequency is studied by means of a leaky integrate and fire model. A
suitable modification of the classical stochastic model is introduced to consider such
input. The resulting interspike interval distribution exhibits maxima in correspondence
with the fundamental frequency that was absent in the input signal. This fact shows
the ability of the system to recognize the ”ghost” frequency. Resonance-like behavior is
also showed by the model neuron in a set of instances. The simplicity of the considered
model makes also easy to understand the features involved in the ghost resonance
phenomenon and to recognize the parameter the ranges compatible with such behavior.

1 Introduction Much effort has been devoted in literature to describe the response
of neurons to simple input signals, usually harmonic ones. However only a few studies
consider the response to multiple stimuli such as the superposition of one or more periodic
terms. Signals of this type arise for example when acoustic perception problems are under
examinationin or in diagnostics, as in the analysis of evoked potentials in the human visual
cortex (Visual and Conte (2000)). Moreover, it is also known that complex sounds are
perceived when the (two) constituent tones are presented binaurally, i.e. one for each ear.

These problems have been treated recently in literature either for neuronal models based
on very simple noisy threshold devices (Chialvo et al. (2002), Chialvo (2003)) or for stochas-
tic Morris-Lecar neuronal models (Balenzuela and Garcia-Ojalvo (2005)). In this last case
the response of small neural networks to a linear combination of two in-phase harmonic
signals, each driven by a different noisy neuron sending pulses to a third one, has also been
studied. The output of the models appears to detect a frequency which is absent in the
original input signal. Indeed the normalized count plots of the interspike interval (ISI) dis-
tributions show a multimodal shape with peaks centered around the fundamental frequency
or its multiples. This frequency is recognized as the ”missing fundamental” or ”ghost”
frequency. Such fundamental frequency, which is lacking in the input, is thus nevertheless
perceived by the system. Moreover similarly to the case with a single modulation frequency
the quoted systems also exhibit a resonance-like behavior (cf. for example Segundo et al.
(1994), Kitajo et al. (2003), Wenning and Obermayer (2003)) in correspondence with the
ghost frequency for specific ranges of the noise. The analysis performed in Chialvo et al.
(2002), Chialvo (2003) and Balenzuela and Garcia-Ojalvo (2005) show that the models
respond optimally to the missing fundamental of the harmonic complex signal for an inter-
mediate level of noise. The same behavior, that has been denoted as ”ghost resonance”, has
been replicated experimentally in other nonlinear systems such as semiconductor devices
(Buldù et al. (2003)) or electronic circuits (Calvo and Chialvo (2005)).
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Our aim is to reinterpret the problems exposed above employing a stochastic leaky inte-
grate and fire model (LIFM) to describe the time course of the neuron membrane potential.
The stochastic LIFM is a stochastic threshold model whose validity for the description of the
membrane potential behavior in a series of conditions is generally accepted (cf. for example
Tuckwell (1988)). It retains the main physiological features of the neuronal cell membrane
potential such as the spontaneous decay in the absence of stimuli and it is sufficiently simple
to allow the detection of the most relevant phenomena. We are concerned here with the
response of such model neuron to stimuli composed with the sum of two successive harmon-
ics of the same fundamental frequency to recognize if it detects the missing frequency and
to investigate on the possible arising of ghost resonance phenomena. The simplicity of the
considered stochastic model for single neuron activity can facilitate the understanding of
leading paradigms involved in time spiking activity and the analysis of related phenomena
such as the synchronization between different neurons.

In Section 2 we introduce the model together with the methods employed to study
the effects of the above mentioned stimuli. Our results are illustrated by means of some
examples in Section 3. We conclude in Section 4 with a brief discussion of the results.
2 Model and Methods The classical stochastic LIFM describes the underthreshold
time course of the membrane potential Xt as solution to the following stochastic differential
equation (SDE):

dXt =
(
−Xt

θ
+ µ

)
dt + σdWt;(1)

X0 = x0.

Here µ and σ2 > 0 are constants representing respectively the net input and the noise
amplitude, θ is the membrane time constant and Wt is a standard Wiener process. Without
loss of generality we always fix x0 = 0 mV since this simply implies a shift with respect to
any other value. The advantages of this model reside in the fact that it retains the decay of
the membrane potential while the intrinsic nonlinearity of the spiking activity is captured
by a threshold mechanism. The process Xt is the well known Ornstein-Uhlenbeck (O.-U.)
diffusion process (cf. for example Ricciardi et al. (1999)) which is characterized by linear
drift and constant infinitesimal variance.

For model (1) one assumes that a spike is elicited at the time when the stochastic process
Xt first reaches a given constant spiking threshold S. After each spike the membrane
potential is instantaneously reset to its resting value, set for simplicity to X0 = 0 mV .
The ISIs have then their mathematical counterpart in the first passage time (FPT) random
variable

T = inf {t ≥ 0 : Xt ≥ S; X0 = 0 < S} .(2)

It is possible in this case to define a FPT probability density function g(t) as

g(t) =
∂

∂t
P (T ≤ t) .(3)

Some variations over model (1) are treated for example in Bulsara et al. (1996) and in
Shimokawa et al. (1999) where external inputs are introduced. These studies performed
on the stochastic LIFM with an additional periodic term in the drift coefficient show that
it exhibits a stochastic resonance-like behavior. Indeed the response of the system to even
feeble input information results to be amplified and optimized due to the presence of noise.

Here we consider a further modification of the stochastic LIFM where a linear com-
bination of two periodic signals with different frequencies f1 and f2 is added to the drift



SINGLE NEURON GHOST STOCHASTIC RESONANCE 725

coefficient. Denoting as f0 the fundamental frequency we put in particular f1 = 2f0 and
f2 = 3f0, thus considering the first two harmonics of the fundamental frequency. The
resulting process Xt is then solution to the following SDE:

dXt =
(
−Xt

θ
+ µ + A (cos (f1t + φ1) + cos (f2t + φ2))

)
dt + σdWt;(4)

X0 = 0

In eq. (4) the parameters µ, σ2 and θ preserve the same meaning as in eq. (1), A is
the constant modulation amplitude and φ1, φ2 are the initial phases of the two modulation
components, that are both set equal to 0 in our model.

As far as the modulation phases are concerned two alternative approaches can be fol-
lowed, contemplating either their resetting after each spike or the uninterrupted evolving of
the input signal. While we refer to Lánský (1997) for a detailed discussion on the subject,
we follow here both approaches. If the modulation phases are reset to their initial (null)
value after each spike a FPT random variable as in (2) is introduced to describe the ISIs.
The series of ISIs {T1, T2, ..., Tk, ...} can then be viewed as a series of event times from a
renewal process. In the case where the time course of the input modulation is not stopped
after each spike the ISI series can no longer be considered as generated by a renewal process
and a FPT density cannot be defined. The series of ISIs {T1, T2, ..., Tk, ...} gives then rise
to a time series.

To understand the response of the model neuron described by eq. (4) to the compound
stimulus we can distinguish among two different settings:

(a): the case of σ2 = 0 mV 2msec−1, corresponding to the deterministic regime;

(b): the case of σ2 > 0 mV 2msec−1, corresponding to the stochastic regime.

(a): Deterministic regime. The closed form solution to eq. (4) can be explicitely evalu-
ated (cf. for example Arnold (1974)). We first address the instance where the modulation
phases are reset to the values φ1 = 0, φ2 = 0 after each threshold crossing. Defining

a(t) = A (cos (f1t) + cos (f2t))(5)

one has

Xt = F (t)
∫ t

0

F−1(s)a(s)ds(6)

where F (t) is the fundamental solution to the equation

dF (t)
dt

= −1
θ
F (t).(7)

¿From (6) and (7) one then easily obtains

Xt = Aθ(
1

1 + f2
1 θ2

(
cos (f1t) + f1θsin (f1t) − e−

t
θ

)
(8)

+
1

1 + f2
2 θ2

(
cos (f2t) + f2θsin (f2t) − e−

t
θ

)
) + µθ

(
1 − e−

t
θ

)
.

The suprathreshold regime corresponds in this case to fulfilling the condition

max {Xt} = θ

(
µ + A

[
1√

1 + f2
1 θ2

+
1√

1 + f2
2 θ2

])
≥ S.(9)
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When the stimulus phases are not reset after the occurrence of a spike eq. (8) describes
the behavior of the membrane potential only up to the time T1 when the first spike occurs.
The membrane potential behavior is then described by the function

X
(i)
t = Aθ

[
1

1 + f2
1 θ2

(cos(f1 (t + Ti)) + f1θ sin(f1 (t + Ti))

− (cos (f1Ti) + f1θ sin (f1Ti)) e−
t
θ

)
(10)

+
1

1 + f2
2 θ2

(cos(f2 (t + Ti)) + f2θ sin(f2 (t + Ti))

− (cos (f2Ti) + f2θ sin (f2Ti)) e−
t
θ

)]
+ µθ

(
1 − e−

t
θ

)
for t ∈ [Ti, Ti+1], i = 1, 2, ..., k, ... .
(b): Stochastic regime. When the system (4) is characterized by a not null noise level

and a phase reset is performed after each spike the deterministic solution (8) can be read as
the behavior of the mean value of the membrane potential, E [Xt]. A similar role is played
by the solution (10) for the case without phase resetting. However in this case one should
condition the solutions X

(i)
t to belong to the random intervals [Ti, Ti+1], i = 1, 2, ..., k, ... .

Some insight on the ISI distribution in the presence of noise can be got by considering the
crossings of the mean membrane potential E [Xt] happening in the strip E [Xt]±

√
V ar [Xt],

where V ar [Xt] denotes the variance of the diffusion process Xt. For the considered model
we have (cf. Arnold (1974))

V ar [Xt] =
σ2θ

2

(
1 − e−

t
θ

)
.(11)

The fluctuations within the above mentioned strip make crossings allowable even in the
underthreshold regime.

Also in the stochastic regime (b) we consider the distribution of the ISIs distinguishing
between instances where the modulation phases are reset or not after each spike. The study
is performed via computer simulation of the firing times. By suitably transforming the FPT
problem for the model described by (4) through a constant threshold into the corresponding
problem for the O.-U. process through an oscillating threshold the numerical procedure
proposed in Buonocore et al. (1987) could be employed to compute the FPT probability
density function (3) in the case where the stimulus phases are reset after the spikes. However,
since the same procedure cannot allow to obtain the ISI distribution in the case without
phase resetting, it becomes necessary to resort to simulation techniques and the use of the
same methodology for the two instances with and without phase resetting appears to be
more coherent. We employ an algorithm which is a modification of the method proposed
in Giraudo and Sacerdote (1999) for first passage times through boundaries of diffusion
processes. The method allows to enhance the reliability of the simulation of FPT’s for
time homogeneous diffusion processes by suitably evaluating the probability of crossing the
threshold in each time discretization interval. Since the process described by (4) is not time
homogeneous we adopt a slight modification of the algorithm by freezing the values of the
drift in eq. (4) at the initial point of each time discretization interval. We then determine
the crossing probabilities of the corresponding tied-down process that, in analogy with what
is done in Giraudo and Sacerdote (1999), are used to account for possible exits occurred
inside each time discretizaton interval. For every case examined N = 40000 simulation runs
are executed. When the stimulus phases are reset after each spike we can approximate the
FPT density (3) by means of the histograms of simulated interspike intervals. In the case
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where no phase reset is performed we employ normalized count plots to represent the ISI
distribution. The use of histograms or of normalized count plots allows to recognize the
detection of the ghost frequency by the model and the possible arising of resonance-like
phenomena. To estimate the coherence of the output with the frequencies of interest we
analyze whether corresponding peaks arise in the histograms or normalized count plots.
Stochastic resonance can be recognized by studying whether the ISI densities height at the
modulation period goes through a maximum when the noise intensity σ2 is varied while
keeping all the other parameters of the model fixed. Hence we look at the height of the
peaks at the period T0 = 2π

f0
corresponding to the fundamental frequency f0. Moreover we

compute also the fraction of ISIs that fall in the time interval T0 ± 5% by simply dividing
the number of those that satisfy such condition by the total number of simulated ISIs.

3 Examples To investigate on the role of the superposition of two harmonic input signals
on the ISI distribution for model (4) we consider here some examples distinguishing between
the fully deterministic case (a) and the stochastic one (b). We always consider both
instances where the modulation phase is reset or not after each occurrence of a spike.

In all the Figures we always represent in the left-hand and right-hand panels respectively
the results obtained resetting or not the modulation phases after the spikes.

While in case (a) we choose the suprathreshold regime to better show the dynamics
of the membrane potential Xt, in case (b) we remain in the subthreshold regime to study
the effects of the noise component since its behavior in the suprathreshold regime is known
from the analogous deterministic case. This implies to fulfill the constraint

max {E [Xt]} < S.(12)

To obtain mean firing frequencies for the original stochastic LIFM lying between 5 and 30
spikes per second, which is generally considered as reasonable, further constraints for the
parameter values must be satisfied. Here we compute the mean firing frequency as the
inverse of the mean ISI, though different definitions for the mean firing frequency can be
given (cf. Lánský et al. (2004)).

We restrict our study to the case where µ > 0 to avoid the occurrence of long tails in
the ISI distribution. A preliminary study shows that too small values for the amplitude A
do not allow the system to perceive the modulation, hence we limit ourselves to consider
cases where A ≥ 0.5 mV msec−1. The best coherence between input and output signal is
expected when the ISI distribution mode is approximately near the period T0. Indeed the
detection of T0 in this case is facilitated by the higher probability of spiking around such
value in the absence of additional stimuli. This leads us in the choice of the range for the
noise level σ2.

We then consider as a reference case the one characterized by fixed S = 10 mV , θ =
10 msec, µ = 0.6 mV msec−1 and we vary the values of f0, A and σ2 as required by the
different criteria of analysis chosen.

Case (a). In Fig. 1, panels a and b respectively, we show the behavior of the membrane
potential Xt given by eq. (8) and (10) when A = 1.5 mV msec−1 and f0 = 0.28559 msec−1.

It can be clearly detected that after a short onset regime the firing times are regularly
spaced at intervals equal to T0 in the case with reset (panel a), while different values of
the initial phases in the stimulus (panel b) can determine the skipping of spiking times at
multiples of T0. Note that the solution (8) is asymptotically periodic with period T0. In
the case considered we have T0 � 22 msec.

Case (b). We consider now the case where σ2 > 0 mV 2msec−1. With the aim of estab-
lishing the role of the different parameters on the response of the system to the composed
modulation we consider two different frameworks:



728 MARIA TERESA GIRAUDO AND LAURA SACERDOTE

0 20 40 60 80 100
−2

0

2

4

6

8

10

12

t (msec)
X

t (
m

V
)

Fig. 1 a

0 50 100 150
−4

−2

0

2

4

6

8

10

12

t (msec)

X
t (

m
V

)

Fig. 1 b

S
S

Figure 1: Plot of eq. (8) and (10), panels a and b respectively, for S = 10mV , θ = 10msec,
µ = 0.6 mV msec−1, A = 1.5 mV msec−1 and f0 = 0.28559 msec−1.

(1) : for fixed S, θ, µ and f0 we let the modulation amplitude A vary;

(2) : for fixed S, θ, µ and A we let the modulation fundamental frequency f0 vary.

Framework (1). We compare in Fig. 2 the simulated ISI distributions for the same set
of parameter values as for Fig. 1, but for f0 = 0.196349 msec−1, σ2 = 0.9 mV 2msec−1 and
smaller values of the amplitude A (0.5mV msec−1, upper panels, and 0.9mV msec−1, lower
panels) so to satisfy the constraint (12) that brings the system in the subthreshold regime.

An analogous set of cases, but with σ2 = 2.5 mV 2msec−1, is shown in Fig. 3.
Both Figures show the presence of peaks at integer multiples of the period T0. This

confirms the ability of the system to detect the missing fundamental frequency despite its
absence in the modulated stimulus. Peaks in the ISI distributions are produced also at
integer multiples of the period T1 = 2π

f1
which corresponds to the first harmonic component

in the input term. For the higher value of the modulation amplitude A the peak height
is increased in both cases with and without phase resetting. This behavior is maintained
also for larger values of the noise intensity. The phase locking of spike generation times
with the period T0 is enhanced for smaller values of the noise intensity σ2 (Fig. 2). The
instantaneous resetting of the stimulus phases to their initial null values after the spikes
produces more pronounced peaks and consequently deeper troughs among them in the ISI
distribution. The composition of two harmonic terms generate constructive interferences at
multiple of T0 in the input signal and Fig. 2 and 3 illustrate how the response of the system
to the stimulus preserves this property.

In Fig. 4, panels a and b, we compare the peak heights at T0 for the parameter sets of
Fig. 2 (bottom lines) and Fig. 3 (top lines) respectively, but for varying values of σ2. In
panels c and d we show the fraction of spikes occuring in the time interval T0 ± 5% as a
function of the noise intensity σ2.

The two measures capture the same characteristics of the considered phenomenon. All
the curves shown pass through a maximum, thus confirming the arising of a resonance-like
behavior. However only for the lower value of A = 0.5 mV ms−1 both the peak height at T0

and the fraction of spikes produced around time T0 reach such maximum within the range
of σ2 for which all the modeling and biological constraints are fulfilled (within bars in the
Figures). Note that very small values of σ2 become unadmissible since they correspond to
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Figure 2: Histograms (panels a, c: case with phase reset) and normalized count plots (panels
b, d : case without phase reset) of the ISI distributions for model (4) when S = 10 mV ,
θ = 10 msec, µ = 0.6 mV msec−1, f0 = 0.196349 msec−1, σ2 = 0.9 mV 2msec−1 for A =
0.5 mV msec−1 (upper panels) and A = 0.9 mV msec−1 (lower panels). Here T0 � 32 msec.



730 MARIA TERESA GIRAUDO AND LAURA SACERDOTE

0 50 100 150 200
0

0.01

0.02

0.03

t (msec)

no
rm

al
iz

ed
 c

ou
nt

Fig. 3 a

0 50 100 150 200
0

0.01

0.02

0.03

Fig. 3 b

t (msec)

no
rm

al
iz

ed
 c

ou
nt

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06
Fig. 3 c

t (msec)

no
rm

al
iz

ed
 c

ou
nt

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06
Fig. 3 d

t (msec)

no
rm

al
iz

ed
 c

ou
nt

Figure 3: Histograms (panels a, c: case with phase reset) and normalized count plots (panels
b, d : case without phase reset) of the ISI distributions for model (4) for the same parameter
set as in Fig. 2, but with σ2 = 2.5 mV 2msec−1.
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Figure 4: Height of the ISI distribution at T0 (upper panels) and fraction of spikes at
T0 ± 5% (lower panels) as a function of σ2. Other parameters as in Fig. 2 with A =
0.5 mV msec−1 (bottom lines), A = 0.9 mV msec−1 (top lines). Vertical lines delimit the
biologically admissible range.
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too low spiking frequencies. The resonance-like behavior is enhanced as the modulation
amplitude A is increased. Furthermore not resetting the phases of the stimulus after each
spike implies that the heights of peaks are reduced while on the other hand the fraction of
spikes around the time corresponding to the fundamental frequency are enhanced.

Framework (2). To gain insight into the dependence of the ISI distribution on the
modulation frequencies we consider two values of T0 that are respectively greater and smaller
than the reference value T0 � 32 msec. Since from Fig. 4 the modulation amplitude
A = 0.5 mV ms−1 seems to optimize the stochastic resonance phenomenon we choose this
value for the cases analyzed. In Fig. 5 we show the ISI distributions for the same parameter
set as in Fig. 2, but with T0 = 15 msec and for noise levels σ2 = 0.9 mV 2msec−1 and
σ2 = 3.2 mV 2msec−1 (upper and lower panels respectively). An analogous set of results,
but in correspondence with a period T0 = 45 msec, is shown in Fig. 6.
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Figure 5: Histograms (panels a, c: case with phase reset) and normalized count plots
(panels b, d : case without phase reset) of the ISI distributions for model (4) when S =
10 mV , θ = 10 msec, µ = 0.6 mV msec−1, f0 = 0.418879 msec−1, A = 0.5 mV msec−1

for σ2 = 0.9 mV 2msec−1 (upper panels) and σ2 = 3.2 mV 2msec−1 (lower panels). Here
T0 � 15 msec.

The periods T0 are set equal to 15 msec and 45 msec in order to consider values contain-
ing the mode of the ISI distribution in the absence of modulation if σ2 = 0.9 mV 2msec−1.
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Figure 6: Same as in Fig. 5, but with f0 = 0.139626msec−1 corresponding to T0 � 45msec.
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However for σ2 = 3.2mV 2msec−1 the mode falls around 12msec which is less than both peri-
ods considered. The fundamental hidden frequency f0 appears in all the Figures shown. The
ghost frequency phenomenon is still present for the model described by (4) independently of
the nearness of the fundamental frequency to the optimal one. However in correspondence
with higher values of the period T0 the response to the fundamental frequency becomes
sharper. Shortest leading periods make the system perceive the modulation for a rather
long time range, while for higher values of T0 most of the probability mass in the distribution
is concentrated over the first periods. Here again the peak heights at nT0, n = 1, 2, ..., in
the ISI distribution are less pronounced and the trough depths is reduced when no resetting
of the phases is performed.

In Fig. 7 we compare the peak heights of the ISI distribution at T0 for the parameter sets
of Fig. 5 and 6 (upper panels correspond to T0 = 15 msec, lower panels to T0 = 45 msec),
but for varying σ2.
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Figure 7: Height of the ISI distribution at T0 as a function of σ2 for the other parameters
as in Fig. 5 (upper panels) and Fig. 6 (lower panels). Vertical lines delimit the biologically
admissible range.

We do not show the plots for the fraction of spikes generated around T0 since they
simply confirm the previous results. In both cases stochastic resonance-like phenomena can
be detected whereby the peak heights pass through a maximum as σ2 is varied. However
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the phenomenon is far more pronounced for T0 = 45 msec while it is rather tied down if
T0 = 15 msec. Furthermore the peak heights at T0 reach their maxima in correspondence
with noise levels that fall out of the range considered acceptable for the model neuron. In
the case where T0 = 15 msec this corresponds to considering very high firing frequencies
with respect to the acceptable ones.

4 Conclusions We have investigated the response of a stochastic LIFM to a stimulus
composed by the first two harmonics of a given fundamental frequency under both conditions
where the input phases are reset or not to their initial null values after each occurrence of
a spike.

The model solution to the SDE (4) has been shown to detect the ghost frequency and
to exhibit a resonance-like behavior in correspondence with such frequency. The features
illustrated by means of examples are common to a series of other cases that have been
studied and are not reported in this work.

The model proposed is sufficiently complex to retain the main features of a stochastic
Morris-Lecar one, but at the same time it is able to reproduce the properties discussed
in (Chialvo (2002)) and (Chialvo (2003)) for a simpler neuronal model and to allow the
same interpretation of the phenomena exhibited. However the results shown appear more
easily understandable than for the Morris-Lecar model allowing to recognize the role of
the composition of nonlinear features and randomness effects that produce the observed
behaviors.
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