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Abstract. There are many random phenomena such that their probability distribu-
tions are not Gaussian but other particular distributions with fat tail. They are the
so-called fractional power distributions. We can see that their mathematical models
can, in some favorable cases, be embedded in stable stochastic processes, which are ex-
pressed as superpositions of Poisson processes with various magnitudes of jump. Thus,
our mathematical theory, which characterizes latent traits of Poisson noise, would ef-
fectively be applied to the random phenomena in question, in order to describe their
biological characteristics.

1 Introduction We shall study effect of fluctuation or noise involved in biological phe-
nomena, and more generally, in random complex systems.

If we are allowed to speak in an intuitive level, we may say as follows. Behaviors that we
can observe in natural phenomena used to be controlled by some principles like symmetry,
optimality and/or some other principles, in addition they are fluctuating. The nature is
waiting for our approach so as those principles to be discovered, although they are often
latent.

Probability theory and mathematical analysis can help us to carry on such trials of
discovering. We are going to present a method which would be useful to study actual
random phenomena in this line, noting that they are evolutional complex systems.

The goal of this paper is to investigate mathematical methods to discover latent traits
of biological phenomena, which are random and have the probability distributions with fat
tails.

The recipe of our approach is as follows:

1. Obtain characteristic properties of Poisson noise which will be useful to biological
study. Those properties are revisited and need to be rediscovered.

2. Then, we can easily come to the investigation of stable process which can be expressed
as a superposition of Poisson processes with various magnitudes of jump. There the way of
superposing is determined by the given data from the phenomena in question.

3. Let those mathematical properties obtrained so far correspond to the biological
(maybe latent) phenomena, respectively.

Regarding the study of Poisson noise, there were two motivations ; one was in quantum
optics, where Poisson distribution appears in photon emissions and the other, to be more
important, was in the interest in particular probability distributions with fat tail, which
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often appear in biological data (see e.g. [1]). We were therefore led to the study of charac-
teristics of Poisson noise and compound Poisson noise that serve as basic random driving
force, in addition to the study of the roles of Gaussian noise. Thus, we have a question
on how to discover characteristics of Poisson noise so that we can give some interpretation
to those random phenomena from the viewpoint of probability theory. For this purpose it
is necessary to remind harmonic analysis arising from groups such as rotation group and
symmetric group, in particular unitary representation of the groups. Representation of a
rotation group is familiar to us in stochastic analysis, while we need some background for
the theory of symmetric group.

It is noted that many formulas in statistics are based on Gaussian distribution. There
are, however, many good applications which can be described in terms of stable distributions
with exponent α < 2. Appendix may help us when actual data are given.

2 Unitary representation of rotation group In this section we recall the unitary
representations of rotation groups referring to ([3]).

Let µ be a white noise measure on the space E∗ of generalized functions, and let
L2(E∗, µ) ≡ (L2) be a complex Hilbert space. The space E is taken to be a real nuclear
space and E∗ is the dual space of E. Then, we have a Gel’fand triple :

(S) ⊂ (L2) ⊂ (S)∗,

where (S) and (S∗) are spaces of test functionals and generalized white noise functionals,
respectiveely.

It is well known that (Gaussian) white noise measure µ is invariant under the infinite
dimensional rotation group O∗(E∗) = g∗; g ∈ O(E), where O(E) is the group of all rotations
of a nuclear space E.

The Hilbert space (L2) has a Fock space representation such that

(L2) =
⊕

n

Hn.

For any ϕ ∈ (L2) and for g ∈ O(E) define Ug by

(Ugϕ)(x) = ϕ(g ∗ x).

Then Ug is unitary on (L2), and the collection U = {Ug, g ∈ O(E)} forms a group which is
isomorphic to O(E).

Theorem 1 i) {Ug, g ∈ O(E); (L2)} is a unitary representation of the infinite dimensional
rotation group O(E).

ii) The {Hn} is an irreducible unitary representation.

Theorem 1 suggests us to consider finite dimensional approximations (Sn, σn) to (E∗, µ),
where Sn is the n-dimensional sphere and σn is the uniform probability measure on Sn.
The σn is invariant under the rotation group SO(n + 1). Analogous approximation can be
seen to a Poisson noise, but the structure is different.
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3 Unitary representation of a symmetric group Let S(n) be the symmetric group
of order n. Unitary representations of the symmetric group S(n) may be discussed in con-
nection with Poisson noise.

Define Uπ, π ∈ S(n) on Rn by

Uπx = (xi1 , xi2 , · · · , xin),(3.1)

where

π =
(

1 2 . . . n
i1 i2 . . . in

)
,(3.2)

and x = (x1, x2, · · · , xn) ∈ Rn. Since ‖x‖ =
√∑

x2
i = ‖Uπx‖ and Uπ is linear, Uπ is a

unitary representation of S(n) on Rn.

Let Rn = R1 ⊕Rn−1, where R1 = {(x, x, · · · , x)}. Then Uπ is identity on R1, that is, a
trivial unitary representation, which is irreducible, although it looks very particular.

The representation can be lifted up to L2(Rn
+), where Rn

+ = {(x1, · · · , xn); xi ≥ 0}. In
fact, we may take a Sobolev space H(n+1)/2(Rn

+) of order n, instead of L2(Rn
+).

Define an operator Vπ such that

(Vπf)(x) = f(xi1 , xi2 , · · · , xin),(3.3)

where f is in H(n+1)/2(Rn
+).

Then Vπ defines a linear isomorphism of H(n+1)/2(Rn
+) and keeps H(n+1)/2(Rn

+)-norm
invariant.

Consider a subspace H of H(n+1)/2(Rn
+) such that for any f in H(n+1)/2(Rn

+) there
exists a function fd on R+

1 satisfying

f(x1 + x2 + · · · + xn) = fd(x1 + x2 + · · · + xn).

Then, we can easily prove

Theorem 1 The Vπ is restricted to H and the pair (H,Vπ) is an irreducible rpresentation
of S(n).

4 An irreducible representation of infinite symmetric group The infinite sym-
metric group S(∞) is usually defined to be the inductive limit of S(n). We shall, however,
consider the inductive limit of the pair S(n) and its irreducible representation. Hence, our
proposal is as follows:

1. The Hilbert space on which the representation of S(n) is a subspace of L2(Rn), where
the Lebesgue measure is involved. For the infinite dimensional case, it is natural to
replace the Lebesgue measure with the (Gaussian) white noise measure, denoted by µ.
In other words, we use a Brownian motion B(t) or the white noise Ḃ(t). The Hilbert
space, where a representation is given, has to be a suitable subspace of (L2).
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2. With the choice of (L2) we reformulate the irreducible representation of S(n). In
Section 3, the basic space is R+

n , so that we have to take positive variables. The
simplest choice is a family {(∆kB)2}, where {∆k} is a partition of [0, 1] with |∆k| = 1

n .

3. To fix the idea to take the inductive limit, we take partitions of [0, 1] to be ∆n,k, 1 ≤
k ≤ 2n, n = 1, 2, · · · , where |∆n,k| = 2−n. Actually the partition becomes finer as n
increases. A representation of S(2n) is obtained by

∑
k

(∆n,kB)2.

It is known that this sum tends to 1 as n → ∞, almost surely, by the theorem for the
second variation of Brownian paths.

4. We wish to modify the above sum in the following form in order to have correct
meaning in the limit as n → ∞.

∑
k

: (∆n,kB)2 :
∆2

n,k

× ∆2
n,k,

where : : denotes the Wick product.

The limit has a formal expression

∫ 1

0

: Ḃ(t)2 : (dt)2.

5. The integrand in the above integral has meaning as a generalized white noise functional
living in (S)∗, but (dt)2 need a plausible interpretation. Changing a viewpoint, we
remind that : Ḃ(t)2 := (∂∗

t )21, where ∂∗
t is the creation operator which is the adjoint

of the differential operator

∂t =
∂

∂Ḃ(t)
.

Theorem 2 An irreducible representation of S(∞) is given by the following operator acting
on (S)∗:

∆∗
L =

∫ t

0

(∂∗
t )2(dt)2

Remark The reason why we use the notation ∆∗
L is that the above integral may be con-

sidered as the adjoint of the Lévy Laplacian which can be expressed as
∫

(∂t)2(dt)2.

Detailed discussion will appear in the authors’ forthcoming paper.

5 Lévy group and Lévy Laplacian Lévy group

Let π be a permutation defined by (3.2) by setting n = N and let ξ =
∑

anξn ∈ E. The
the Lévy group is defined by
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G = {gπ; gπξ = anξπ(n), gπ ∈ O∞, d(π) = 0},
where d(π) = lim sup 1

N #{π(n) > n; n ≤ N}, the density of π.

Obviously the symmetric group S(n) is a subgroup of the Lévy group G. The same for
the inductive limit S(∞).

Theorem 3 The group S(∞) is a normal subgroup of G.

Proof. For any S(n) and for g ∈ G, there exists an integer k(≥ n) such that

g−1S(n)g ⊂ S(k).

Letting n → ∞, (hence k → ∞,) we have

g−1S(∞)g = S(∞).

Note that any h ∈ S(∞), we can easily see that the average power, a.p.(h) = 0. While,
there exists many g’s in G such that a.p.(g) > 0. In this sense, G is essentially infinite
dimensional, but S(∞) is not.

Note. The symbol a.p. means the average power.

Lévy Laplacian and its eigen functionals

We keep a complete orthonormal sytem {ξn} in L2([0, 1]) as before. The Lévy Laplacian
acting on function space is defined by

∆L = lim
1
N

N∑
1

∂2

∂ξ2
n

,

where ∂
∂ξ is the Fréchet derivative.

The following assertion is well known.

Proposition 1 For any gπ ∈ G, it holds that

gπ∆L = ∆Lgπ.

Lévy Laplacian on (S)∗ and eigen functionals

There is the so-called S-transform that connects the space (S)∗ of generalized white
noise functionals and function space F . For ϕ ∈ (S)∗ define (Sϕ)(ξ) by

(Sϕ)(ξ) = exp[−1
2
‖ξ‖2]

∫
E∗

exp[〈x, ξ〉]ϕ(x)dµ(x).

The space F is the image of (S)∗ under the S-transform and is topologized so as to be
isomorphic to (S)∗.
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The Laplacian acting on (S)∗ of genetralized white noise functionals is

S−1∆LS,

which is also denoted by ∆L, if no confusion occurs.

Here is an example

ϕ(x) =
∫ 1

0

f(t) : Ḃ(t)2 : dt, f : smooth,

where we understand x = Ḃ, since x ∈ E∗ is viewed as a sample function of Ḃ. Then we
have

∆Lϕ = 2
∫ 1

0

f(t)dt.

If f is taken to be a constant 1, then we may see an interesting contrast between the
above functional and the vector appeared in the unitary representation of S(∞).

The fact that was announced in Section 4 can be rephrased as a theorem.

Theorem 4 The vector giving an irreducible representation of S(∞) defines a quadratic
form of the creation operator which is in agreement with the Lévy Laplacian ∆L in the sense
that (∫ t

0

(∂∗
t )2(dt)2

)∗
=

∫ t

0

∂2
t (dt)2 = ∆L.

6 Poisson noise We have a quick review of the paper [9] by one of the authors. We ex-
plain that the symmetric group either finite or infinite can describe the symmetry of Poisson
noise. In addition, we can see below that the poissson noise has maximum information so
far as the number of shots is limited.

Let the time parameter space still be kept as I = [0, 1]. In this case, the characteristic
functional CI

P (ξ) of a Poisson noise is of the form (to make the matters simple we take the
intensity λ = 1 )

CI
P (ξ) = exp[

∫ 1

0

(eiξ(u) − 1)du.

It has the Taylor series expansion:

CI
P (ξ) =

∞∑
0

1
n!

CP,n(ξ),

where

CP,n(ξ) = (
∫ 1

0

eiξ(u)du)n.

We now have some observation. A Poisson measure is now introduced on the space E∗.

Define P (t, x) = 〈x, χ[0,t]〉, 0 ≤ t ≤ 1, x ∈ E∗, by a stochastic bilinear form, where χ is
the indicator function. Then, P (t, x) is a Poisson process with parameter set [0, 1].
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Let An be the event on which there are n jump points over the time interval I. That is

An = {x ∈ E∗; P (1, x) = n},(6.1)

where n is any non-negative integer.

Then, the collection {An, n ≥ 0} is a partition of the entire space E∗
1 . Namely, up to measure

0, the following relations hold:

An

⋂
Am = φ, n = m;

⋃
An = E∗.(6.2)

Given An, the conditional probability µn
P is defined :

µn
P (A) =

µP (An ∩ A)
µP (An)

, A ⊂ E∗
1 .

For C ⊂ Ak, the probability measure µk
P on a probability measure space (Ak,Bk, µk

P ), is
such that

µk
P (C) = µP (C|Ak) =

µP (C)
µP (Ak)

,

where Bk is the sigma field generated by measurable subsets of Ak, determined by P (t, x).

Proposition 2 (Ref. [9]) The conditional characteristic functional is

E[ei〈Ṗ ,ξ〉|An] = CP,n(ξ) =
(∫ 1

0

eiξ(t)dt

)n

.(6.3)

Concerned with the following theorem we enjoyed conversation with Prof. K. Saitô.

Theorem 5 The CP,n(ξ), expressed in ??, is an eigen vector of Lévy Laplacian and the
correspondibng eigen value is −n.

Proof. The functional derivative of CP,n(ξ) is

δ

δξ(t)
CP,n(ξ) = ineiξ(t)Cn−1(ξ).

Again taking the functional derivative of CP,n(ξ), we have

δ2

δξ(t)2
CP,n(ξ) = −neiξ(t)Cn−1(ξ) + n(n − 1)(ieiξ(t))2Cn−2(ξ).

Then we have ∫
δ2

δξ(t)2
CP,n(ξ)(dt)2 = −nCP,n(ξ).

Thus the assertion is proved.

We now see an interesting intrinsic properties of Poisson noise as well as good connection
with (Gaussian) white noise.
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7 Applications to Biology We are now ready to discuss applications of what we have
discussed how to deal with biological data. If the data can be assumed to be Gaussian,
then there are a lot of formulas and methods. However, we often meet fractional power
distributions which is entirely different from Gaussian. A fractional power distribution
means a probability distribution over R1, the density function of which has tail of order
|x|α+1, namely a fat tail. Good references are found in [1] and papers refered there.

Given a fractional power distribution as a statistics of a certain biological phenomenon,
we may consider that the distribution belongs to the domain of attraction of a stable
distribution (see Appendix 2)). Once a stable distribution is given, it can be considered
as the probability distribution os a stable process at a certain instant t, although we need
to check this is fitting: Namely additive property (independent increments property) and
stationarity. In other words, we should check the possibility to be embedded in a stable
process with stationary increments.

Once it is known that such embedding is acceptable, we should see the self-similarity as a
characteristic of the given statistics. Then, we can proceed to the main assertion. Appealing
to the Lévy-Itô decomposition of such a process, we can , theortically, decompose the process
in question into elemetal Poisson processes with various magnitudes of jump. Thus, we can
list all the characteristics of Poisson noise that we theoretically know, and we try to find if
there can be corresponding properties of the actual biological phenomena.

Finally, we should try to discover the latent traits from the statistics of the given phe-
nomena. In fact, not everything, but most significant properties would be discovered, we
hope.

Appendix

1) Domain of attraction of Gaussian distribution:

K2
∫
|x|>K dF (x)∫

|x|<K
dF (x)

→ 0,

as K tends to ∞.

2) Domain of attraction of stable distribution with exponent α:

i)
F (−x)

1 − F (x)
→ c, (x → ∞),

ii ) for every positive constant k

1 − F (x) + F (−x)
1 − F (kx) + F (−kx

→ kα (x → ∞).
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