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Abstract. Using a regulatorika (functioning of regulatory mechanisms) methodol-
ogy for dynamical systems, the equations for studying living systems based on the
functional-differential, functional and discrete equations have been developed. From
results of the qualitative analysis of model systems for equations follows, that the
functional state can have a varied nature: stable state, stable limit cycle, deterministic
chaos and break-down of solutions to the trivial attractor (“black hole” effect). It is
shown that there are only seven stable systems, which are in the balance with an ex-
ternal medium. Control problems for regulatorika systems in areas of dynamical chaos
and “black hole” effect are considered.

1 Introduction. The beginning of the second half of last century has seen the devel-
opment of cybernetics, computers design and technology and a great scientific attraction,
especially after World War II, towards biology, in areas reach of urgent problems demanding
solutions. Wiener’s research on cybernetics, defined as a science on control and communi-
cation in the animal and the machine, and the book Schrödinger about perspective ways
of quantitative research in living beings gave rise to a sort of revolution in biology. Funda-
mental results after the World War II are: the discovery of DNA structure, the definition of
regulation mechanisms for intercellular processes (the operon theory) and the “end-product
inhibition” effect. The scientific atmosphere has been so much invaded by cybernetics ideas,
that for instance the work by Jacob-Monod, on genes regulation mechanisms for bacteria,
is full of terms such as gene-operator, gene-regulator, RNA information, activator and re-
pressor.

Pioneers in the model researches of a cellular regulatory mechanisms, based on the
operon theory, have been Goodwin and Sendov who formulated the ordinary differential
equations to model intercellular processes regulation [1, 2].

In the decade 1970-1980 a joint group of mathematicians and molecular biologists was
established under the leadership of Sendov and Tsanev. It resulted in development of math-
ematical and computer models for regulation mechanisms of embryonic cells, epithelial cells
and cellular functions (mitosis, differentiation and ageing) for the regularities analysis dur-
ing early development and cancer [2, 3]. During the successive 10 years, the basic direction
for the quantitative analysis of regularities for the regulatory mechanisms functioning (reg-
ulatorika) in cellular processes led to a more detailed account of regulation object, i.e. the
functioning of the intracellular medium and its mutual relations with the environment. The
well-known works by Eigen [4] on modeling “information box” containing an interconnected
activity of biologically active ensemble, Ratner’s research on “sysers” [5], White’s work on
“auto-genes” [6] and Prigogine, Nicolis and others investigations on Eigen type models and
on brusselator functioning pertain to this area [7]. Researches on quantitative analysis of
Belousov-Jabotinskey reaction [7], excitation regularities in the cardiac tissues [8] and the
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development of the theory of dynamical systems (Kolmogorov, Arnold, Moser) had lead to
focus a special attention to regulation mechanisms. During quantitative research on regu-
latory mechanisms for intracellular processes it has been understood that it is important
to take into account the time relations in a feedback system, the cooperative character of
the biological processes and the “end-product inhibition” effect. Development of this line
of investigations [9, 10, 11, 12] has led to progress in real quantitative description of mecha-
nisms acting in real biological processes and has offered the opportunity for understanding
the normal regulation of living systems as well as its anomalies.

2 Functional-differential equations in regulation mechanisms of living systems.
One of the possible methods for the quantitative analysis of living system regulation mech-
anisms is based on the functional-differential equations orasta[12].
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where xi(t) are the value describing i-th signal quantity in orasta at time t; hik is the time
interval necessary for activity change of i-th elements under influence upon k-th elements
activity; ai0, aik1,...,kj , bi are the velocity parameters of i-th signal formation in medium
orasta, by elements orasta and i-th signal decay, accordingly; δik is the repression parameter
of i-th elements by activity products of k-th elements, i, j, kj = 1, 2, ..., n.
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the system is in “equilibrium” with the external environment. Equations (1) have been
constructed as a generalization of the approaches by Goodwin, Smith, Ratner, Eigen [1, 13,
5, 4].

3 Basic equations. One of the basic elementary regulatorika equation is

θ

h

dX(t)
dt

=
√

n/2πXn(t − 1)en(1−X(t−1)) − X(t), (3)

where X(t) is the value describing a signal quantity in the regulatorika system; a is the
resource parameter; θ is the average “life” time of signals; h is the time necessary for a
feedback realization; n is the self-conjugate degree. If θ << h, for the qualitative analysis
we have the following model system:

X(t) =
√

n/2πXn(t − 1)en(1−X(t−1)) (4)

and its discrete analogue

Xk+1 =
√

n/2πXn
k en(1−Xk); k = 0, 1, ...;n >> 1, (5)
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where Xk represents the number of signals, synthesized by or on a k-th step of orasta
activity. Also, for heuristic purposes we use the following discrete equation:

Xk+1 = pXn
k e−Xk ; k, n = 0, 1, ..., (6)

where p is the resource parameter. Possible ways for transition from (3) to (4), (5) are
considered in [14, 12].

4 The qualitative study. The analysis of solutions character for (3)-(6) shows that so-
lutions are in the first quadrant of the phase space at non-negative values of parameters and
initial conditions; indefinite points are unstable; there are trivial and positive equilibrium
points.

The trivial equilibrium point exists always. The existence condition for positive equilib-
rium points has the form (Figure 1):√

n/2π(1 − 1/n)n−1e ≥ 1. (7)

Figure 1: Existence positive equilibrium points (3)-(5).

If condition (7) does not hold, only the trivial equilibria exist. Positive equilibrium points
arise at γ = (n−1)/n, by rigid excitation, if condition (7) is satisfied. Increase of n (n > 5)
leads to equilibria bifurcation into two positive equilibrium points ξ1, ξ2 (we consider only
integer n). Calculations show (taking into account the accepted approximation, based on
Sterling formulae, namely

(
ne−1

)n
/(n − 1)! ∼

√
n/2π, when n is large) that for increasing

n the positive equilibrium points first move away from γ, and then approach each other,
though remaining on opposite sides with respect to γ (Figure 2; a).

Let us consider equilibria stability at n ≥ 6. It is clear that the trivial equilibria are
stable. Since we consider only discrete values for n, it can be assumed that all equilibrium
points are isolated (Figures 1, 2).

Linearizing (5) near equilibria ξ > 0 we get

θ

h

dZ(t)
dt

= n(1 − ξ)Z(t − 1) − Z(t);h > 0

with the characteristic equation
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Figure 2: Quantitative characteristics for dynamics of the self-conjugated regulatorika sys-
tems (on the basis of (3)-(5)); a shows the dynamics of the positive equilibrium points, b
the values of positive equilibrium points and Lyapunov’s parameter (L(ξ2)) for the stable
regulatorika systems.

(θλ + h)eλ + hn(ξ − 1) = 0. (8)

Negativity conditions for real part of roots of the transcendental equation (8) can be
investigated using Hayse criterion [15]:

h + θ > 0;

1 + n(ξ − 1) > 0; (9)

hn(ξ − 1) < θµ sin µ − h cos µ,

where µ is a root of the equation θµ = −htgµ; 0 < µ < π.
The first condition in (9) for considered equations is always satisfied, the second condi-

tion has the form ξ > (n − 1)/n and holds only for equilibria ξ2. It follows that equilibria
ξ1 is unstable and basin for ξ2 attractor is functionally active area for considered regulatory
system. For ξ2 the third condition (9) is reduced to ξ2 < 2.24/n + 1 in the case of normal
regulatorika (θ=h). We see from the table (Figure 2, b) that this condition is not always
satisfied.

The calculations show that for 6 ≤ n ≤ 8 equilibrium ξ2 is stable, and if n > 8 equi-
librium ξ2 is unstable. Loss of the stability is accompanied by occurrence of oscillations
(Poincare type limit cycles) around equilibria ξ2 .

Results of the qualitative researches of the (5)-(6) solutions in the field of instability, by
using methods of qualitative analysis of equations and computer calculation, show that there
exists a complex behavior of the considered model of the self-conjugated regulatory systems
(Figure 3). In Figure 3, region A is the area of rest (there exists only trivial attractor),
B is the area of stationary state (non-trivial attractor is stable), C is the area of regular
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oscillations (Poincare type limit cycles), D is the area of irregular oscillations (deterministic
chaos), E is the area of oscillations failure. Besides periodic states of functioning, there
are irregular oscillations (area D) and a “black hole” effect (“E” area). This effect means
that destructive changes exist in the model system and that there is oscillations failure [15]
solutions movement to trivial equilibria. The analysis of solution behavior for the considered
regulatorika equations has shown its presence, in area D, in the form of small regions with
regular solutions (Figure 3, 4).

Figure 3: The scheme for parametrical portrait of (6).

Researches based on the Lamerey diagrams construction, calculations of Lyapunov pa-
rameter, Hausdorff and high dimensions for (5) solutions, show existence of irregular os-
cillations if n ≥ 9 and “black hole” effect if n > 12. Hence, the stable self-conjugated
regulatorika systems, which are in balance with medium, can exist only if 6 ≤ n ≤ 12. This
explains the hierarchical organization of the natural regulatorika systems (consequently of
the living system, too) and evolution progressiveness. We can view the self-conjugate degree
n as the development criterion for living systems during evolution.

5 Control of living systems in anomalies areas. Using the considered approach
we performed (based on the equations (1),(3)-(5)) quantitative analysis of the regulation
mechanisms of genes [11, 12], cells, cellular communities [10] and heart tissue [14]. Let us
consider the application of the obtained results to the control of living systems in areas of
dynamical diseases.

Usually areas D and E (Figure 3) can be identified with areas of dynamical diseases in
living systems [15]. Existence of the small areas with regular oscillations (r-windows) in
area C (deterministic chaos) allows temporarily to solve the problem by entering the system
to the nearest r-window to take out the system from area D. It follows that a construction
of a path for moving out the system from irregularity area into area C by using r-windows
series (Figure 5) is effective.

The transit of destructive changes in the “black hole” area complicates the problems
of control of the system behavior. Indeed, it is required the estimation of the time during
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Figure 4: The graph for dynamics of Lyapunov parameter (L(ξ2)) in the field of dynamic
chaos (arrows specify small areas with regular solutions).

Figure 5: A possible path for moving out the system from area of the deterministic chaos
into area of self-oscillations (S is initial position).
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which the system is in the functional attractor basin and development of the effective (on
time) ways for moving out the systems to area of the deterministic chaos and then to area
of the regular oscillations. Some researches on the problem have shown the existence of a
paradoxical control with an initial short worsening of the system state (the system turns into
“black hole”) and the further transfer of the system to the area of the regular oscillations.

The analysis of questions of controlling by the dynamic systems the molecular-genetic,
cellular and organism levels and applying the effects of the Pontryagin maximum principle
lead to take note of the necessities of “the principle of not worsening of the state” in the
dynamic system during the process of control. The performance of this principle requires
the evaluation of the system state dynamic close by the norm area and the small areas with
regular oscillations (Figure 3, small C in D).

Another principle is related to the limited level of the common possible pressure on the
living system during external controlling influences in the field of anomalies. The control
must be “sparing” with the minimally possible level of the pressure. The acceptance in the
capacity of the pressure value of an irregularity level (H) of the dynamical system condi-
tions is natural in the field of anomalies. H can be calculated on the base of Kolmogorov
entropy or Lyapunov number. “The principle of the minimal pressure” can be reached by
minimization of H(t) during control:

H(t) =

t∫
t0

K(x(θ), u(θ))dθ,

where K(x(θ), u(θ)) is Kolmogorov entropy at concrete values for functions of state x(θ)
and control u(θ) at the time moment θ, t0 is the initial time of control t ≥ t0.

An intensive scientific researches in the field of the genetic, cellular engineering and
biotechnology require use of the “principle of ecological purity of control”. Observance of
this principle assumes that the dynamic system is in a given class of systems during control.
Formalization of this principle depends on an organization level of the considered system
and in conservation claim the quantity of basic elements, systems of functional and temporal
mutual relations.
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