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Abstract. We present some methods to analyze a biological excitable medium. We
provide local-global considerations to describe biological excitable media based on
delay-differential equations. We find that there are the following modes: rest, steady
state, regular oscillations, deterministic chaos and phenomena of oscillation failure.

In recent years the theory of excitable medium has rapidly developed and its results have
been applied in various areas: chemistry, biology, ecology, electric engineering, populations
dynamics, cardiology, neurology. Classical works by N. Wiener, V.I. Krinsky, B.P. Belousov
have allowed to carry out the problem statement, to define the major features for functioning
of excitable medium. A.N. Kolmogorov, V.I. Arnold, J. Moser, J.G. Sinay, A.T. Winfree,
L. Glass, and others contributions in the field of mathematics and biophysics have allowed
to understand more features in the dynamics of excitable medium.

At present, different approaches for the mathematical description of biological excitable
medium dynamics by means of partial-differential equations, functional-differential, func-
tional and discrete equations are applied. It is conditionally possible to emphasize two
directions in quantitative researches on chaos dynamics in an excitable medium: the quan-
titative description of the propagation properties of nonlinear excitation waves (local state-
ment of problem) and modelling mechanisms of regulation and self-control (global statement
of problem).

The modern technique for the quantitative description of excitable medium begins from
works by A.L. Hodgkin , A.F. Huxley [1]. Though A.L. Hodgkin and A.F. Huxley have
developed a mathematical model describing excitation in nerve, their work was a basis
for many mathematical works on biological excitable medium. Models on the quantitative
description of excitation in cardiac tissue, carried out by FitzHugh-Nagumo (1961), Noble
(1966), Beeler-Reuter (1977), Luo-Rudy (1991-1994) and others have been developed on
the basis of Hodgkin-Huxley equations.

A very effective method for the quantitative researches of biological excitable medium is
the local-global consideration of processes in excitable medium which takes into account the
local features of excitation propagation between each element of active medium and global
mechanisms in external regulation system with feedback and self-control. Let us consider
this method in more detail.

Reactive capability and elements finiteness of the excitable medium imply the presence
of “mixing” process and feedback existence. Let us assume existence of some time average
(h) during feedback. It means that the influence of the signal has an effect on an element
after an interval of time h. Then, the activity of the i-th element of the excitable medium
can be described by following equation:

dXi(t)
dt

= aifi(X1(t − h), ...,Xn(t − h)) − biXi(t) (1)

2000 Mathematics Subject Classification. 34K35, 34K60.
Key words and phrases. excitable medium, regulatory mechanisms, differential-delay equations, chaos.



756 MOHINISO BAHROMOVNA HIDIROVA

where Xi(t) is the activity of the i-th element; ai is the functional parameter of the i-th
element; fi(·) is the feedback function; bi is the decay constant, i = 1, 2, . . . , n.

The kind of function fi(·) depends on concrete characteristics of the considered excitable
medium (for example, neural networks, cellular systems etc.). An elementary way to define
the kind of function fi(·) is the method of limiting factors [2]. In this case we have

f(ξ) = A − ξ.

The A parameter limits the level of elements excitation.
In many cases [3, 4, 5]:

f(ξ) =
a

1 + dξ
(2)

or
f(ξ) =

aξ

1 + dξ
. (3)

Using (2) we obtain represser systems of regulation and application (3) in the certain
cases can reflect systems with the combined feedback.

In analysis of regulatory mechanisms in cellular systems the function fi(·) is used as [6]:

f(ξ) = aξke−ξ, (4)

where k is a positive number. The concrete value of k is defined by character of mutual
relations between elements. In the elementary case, taking into account research experience
for complex systems, we can accept that k = 2 and the feedback function have the form:

f(ξ) = aξ2e−ξ. (5)

Note, that in concrete mathematical modelling, the influence from external factors on
feedback realization can be taken into account. For example, let us consider the equations
for the mathematical model of regulatory mechanisms for cellular division (mitosis) [7]:

dCi(t)
dt

= εεiaiD(t) exp

⎛
⎝−

N∑
j=1

σijRj(t − τ2)

⎞
⎠ − biCi(t);

dXi(t)
dt

= νiCi(t − τ1) − diXi(t);

dRr(t)
dt

= kPr(t)Cr(t);

dP1(t)
dt

= g1X1(t) − f1P1(t);

dPr(t)
dt

= grXr(t) − frPr(t);

dPm(t)
dt

= gmXm(t) − fmD(t)Pm(t); (6)

R1(t)
dt

= g1X1(t) − h1(R1(t) − NRe(t − τ3));

dRm(t)
dt

= gmXm(t) − fmRm(t);
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dRe(t)
dt

= h1(R1(t) − NRe(t)) − feRe(t);

dD(t)
dt

= kD(1 − ε)(2D0 − D(t))tS ;

ε =
{

0 − in S, M
1 − in G1, G2;

ε1 =
{

0 at Rm(t) > A1

1 at Rm(t) ≤ A1;

εr =
{

0 at R1(t) > Ar

1 at R1(t) ≤ Ar;
εm =

{
0 at Ri(t) > Am

1 at Ri(t) ≤ Am.

Here i = 1, r,m designates conformity to functional, plastic and mitotic genes group;
Ci(t),Xi(t), Pi(t), Ri(t), (i = 1, r,m) are the m-RNA concentrations indices, initial groups of
proteins, protein-ferments and repressers respectively; Re(t) is the repressers concentration
in medium; D(t) is DNA quantity; D0 is DNA quantity before mitosis; ts is the time
counted from the beginning of S-period; N is the generated cells quantity at the time t; all
coefficients of (6) are positive constants; S, M, G1, G2 are mitosis periods.

Using (1), (5) we have the equations for an element activity of excitable medium:

dXi(t)
dt

= ai

⎛
⎝ li2∏

j=li1

Xj(t − h)

⎞
⎠ exp

⎛
⎝−

n∑
j=1

dijXj(t − h)

⎞
⎠ − biXi(t), (7)

where li1, l
i
2- the elements indices which are carrying out influence on the considered element

in the excitable medium; n is the number of elements; all parameters are positive.
Using (7) we can investigate the behavior of the excitable medium. For this it is nec-

essary to specify the mechanism for a choice li1, l
i
2 for each element. In concrete cases the

given mechanism follows from physical substance of considered problem. Often, it is ac-
cepted represser character for all elements, which have an influence on the given element.
Sometimes, there are special represser elements in the considered excitable medium. As an
example, let us consider the delay-differential equations for apoptosis regulation:

dCi(t)
dt

= SC(t)εεie
−

3�

j=1
dijRj(t−τ2) − biCi(t);

dXi(t)
dt

= SX(t)Ci(t − τ1) − diXi(t);

dRr(t)
dt

= Sr(t)Pr(t)Cr(t);

dP1(t)
dt

= g1X1(t) − fiPi(t);

dPr(t)
dt

= grXr(t) − frPr(t);

dPm(t)
dt

= gmXm(t) − fmD(t)Pm(t);

dR1(t)
dt

= g1X1(t) − h1(R1(t) − SR(t)NRe(t − τ3));
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dRm(t)
dt

= gmXm(t) − fmRm(t);

dRe(t)
dt

= h1(R1(t) − Re(t)) − feRe(t);

dD(t)
dt

= SD(t)(1 − ε)(2D0 − D(t))tS ,

where only R1(t), R2(t), R3(t) suppress the system activity; SC , SX , Sr, SD are the functions
which are taking into account the influence of thyroid hormones on intercellular regulation
by means of sphingolipid metabolites; other parameters and variables are similar to the
parameters and variables in (6).

As another example, we consider the delay-differential equations of cardiac excitation
[8]:

dX(t)
dt

= a1Θ(t − τ0)η(t − τ0)e−δ1Θ(t−τ0)−δ2η(t−τ0) − b1X(t);

dY (t)
dt

= a2f1(X(t − τ1)) − b2Y (t);

dZ(t)
dt

= a3f2(X(t − τ2)) − b3Z(t);

dΘ(t)
dt

= a4f3(Y (t − τ3)) − b4Θ(t);

dη(t)
dt

= a5f4(Z(t − τ4)) − b5η(t),

where X(t), Y (t), Z(t),Θ(t), η(t) are the variables expressing the excitation level in pace-
makers, auricles and ventricular respectively; {f (·)} are smooth functions; {a}, {b}, {δ}, {τ}
are positive constants.

Equation (7) can be used for working up equations for the concrete excitable medium
and for the analysis of the most general regularities of chaos dynamics in the excitable
medium.

It can be assumed that the minimal basic model of the excitable medium has the form:

dX1(t)
dt

= a1X2(t − h)X3(t − h)e−d1X2(t−h)−d2X3(t−h) − b1X1(t);

dX2(t)
dt

= a2Ψ1(X1(t − h1),X2(t − h1)) − b2X2(t); (8)

dX3(t)
dt

= a3Ψ2(X1(t − h2),X2(t − h2)) − b3X3(t),

where X1(t) is the elements activity in active area (pacemakers); X2(t),X3(t) are the el-
ements activity outside of pacemaker area; Ψ1, Ψ2 are continuous functions; a, b are the
functional parameters; d1, d2 are non-negative parameters expressing negative feedback;
{a}, {b}, {h} are positive.

In the qualitative analysis of the general mechanisms for excitable medium activity, we
can consider the simplified equations:

dX1(t)
dt

= a1X2(t − h)X3(t − h)e−d1X2(t−h)−d2X3(t−h) − b1X1(t);

dX2(t)
dt

= a2X1(t − h) − b2X2(t); (9)
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dX3(t)
dt

= a3X1(t − h) − b3X3(t),

where all parameters are positive.
The equations (8), (9) are the functional-differential equations and have an infinite

number of basic functions [9, 10]. Let us consider the following problem for (9):
Let ϕ1(t), ϕ2(t), ϕ3(t) be initial functions which are continuous on the interval [−h, 0] and

Xi(t) = ϕi(t), t ∈ [−h, 0], i = 1, 2, 3. (10)

It is required to define the continuous solution (9) at t > 0, satisfying (10). Using (10), we
have

dX1(t)
dt

= a1ϕ2(t − h)ϕ3(t − h)e−d1ϕ2(t−h)−d2ϕ3(t−h) − b1X1(t);

dX2(t)
dt

= a2ϕ1(t − h) − b2X2(t); (11)

dX3(t)
dt

= a3ϕ1(t − h) − b3X3(t).

If we replace Xi(t) by Yi(t)e−bit, (i = 1, 2, 3) in (11) we get

dY1(t)
dt

= eb1ta1ϕ2(t − h)ϕ3(t − h)e−d1ϕ2(t−h)−d2ϕ3(t−h);

dY2(t)
dt

= eb2ta2ϕ1(t − h); (12)

dY3(t)
dt

= eb3ta3ϕ1(t − h).

Integrating (12) in t ∈ (0, h], we obtain

Y1(t) = ϕ1(0)+

t∫
0

eb1sa1ϕ2(s − h)ϕ3(s − h)e−d1ϕ2(s−h)−d2ϕ3(s−h)ds;

Y2(t) = ϕ2(0) +

t∫
0

eb2sa2ϕ1(s − h)ds;

Y3(t) = ϕ3(0) +

t∫
0

eb3sa3ϕ1(s − h)ds.

We have
X1(t) = e−b1t[ϕ1(0)+

t∫
0

eb1sa1ϕ2(s − h)ϕ3(s − h)e−d1ϕ2(s−h)−d2ϕ3(s−h)ds];

X2(t) = e−b2t

⎡
⎣ϕ2(0) +

t∫
0

eb2sa2ϕ1(s − h)ds

⎤
⎦ ; (13)
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X3(t) = e−b3t

⎡
⎣ϕ3(0) +

t∫
0

eb3sa3ϕ1(s − h)ds

⎤
⎦ .

If we take (13) as initial functions, we get solutions for the interval [h, 2h] etc. Such inte-
gration allows to obtain the continuous solution at t > 0.

For the analysis of the general regularities for chaos dynamics in excitable medium,
we can simplify the considered equations using the method of simplification of the delay-
differential equations [11]. In the elementary case the model system for (9) is one delay-
differential equation:

θ
dX(t)

dt
= aX2(t − 1)e−X(t−1) − X(t), (14)

where
θ = (b1h)−1;

a =
a1a2a3b2b3

b1(d1a2b3 + d2a3b2)
;

If θ is small then we obtain the functional equation:

X(t) = aX2(t − 1)e−X(t−1)

and the discrete equation
Xk+1 = aX2

ke−Xk (15)

where Xk is the pacemaker activity on k-th iteration step .
It can easily be checked that (14) has steady trivial state (trivial attractor). If a = e

then there is non-trivial equilibrium X0 = 1, which splits into α, β as parameter a increases
and

0 < α < 1 < β. (16)

Results of the qualitative research show, that β is attractor with (α,∞) basin. Linearizing
(14) neighbourhood of the non-trivial equilibrium we get

θ
dX(t)

dt
= (2 − X0)X(t − 1) − X(t).

The characteristic equation has the form

θλ = (2 − X0)e−λ − 1

or
(λ + a)eλ + b = 0, (17)

where a = 1/θ, b = (X0 − 2)/θ.
Using method of [10] we can see that the roots of equation (17) have the negative real

parts if
a > −1;

a + b > 0;

b < ξ sin ξ − cos ξ,

where ξ is a root of the equation ξ = a tan ξ and 0 < ξ < π, if a �= 0; ξ = π/2, if a = 0.
Qualitative studies show that α is unstable. Second non-trivial equilibrium β is attractor

that can be unstable under certain parameters with the appearance of Poincaré type limit
cycles.
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The most convenient for qualitative research of characteristic solutions is the discrete
equation (15). Using Lamerey diagram we find that the attractor β can be transformed
into strange attractor with the appearance of irregular oscillations, there is the deterministic
chaos (Figure 1).

Figure 1: Computer analysis of the deterministic chaos

Results of the quantitative research of oscillation character based on Kolmogorov entropy
show that in the deterministic chaos area there are small regions with regular oscillations.
Also using the method of Lamerey diagrams we find that area of irregular oscillations can
transform into the area of “ black hole” (oscillation failure). The solutions are broken down
into the trivial attractor (Figure 2):

As example we consider the following discrete equation for the cardiac activity

Xk+1 =
p

q
X2

ke−Xk , (18)

where p is the parameter of potential activation of cardiac muscle cells; q is the velocity
parameter of the electric signal decay. On the basis of the qualitative and quantitative
analysis, the parametrical portrait for (18) (Figure 3) is obtained. In chaos area there are
“r-windows”(areas with regular behavior).

Identification of the deterministic chaos with arrhythmia and “black hole” effect with
sudden cardiac death allows using results for the quantitative analysis of mechanisms for
origin, existence and development of abnormal modes in the cardiac activity.

Thus, using the elementary equations which are constructed based on the firmly es-
tablished biological facts for the excitable medium we show that there are the following
modes: rest, steady state, limit cycles, irregular oscillations and solutions failure into trivial
attractor.
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Figure 2: Conditions for oscillation failure (“black hole” effect)

Figure 3: Parametrical portrait for the equation (18)
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