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Abstract. A brain can perform pattern recognition tasks that are not yet possible for
an electronic computer. We continue here our investigation of electronic circuits that
are inspired by knowledge of structures in a brain. These circuits are oscillators that
are motivated by principles of neuroscience, but yet are constructible as micro circuits,
and possibly as nano-circuits. Populations of such oscillators can exhibit patterns
in their output frequencies. This may be in response to an external signal being
applied across the population or in response to internal waves that propagate through
the population. We have investigated the former phenomenon where coalitions of
oscillators, classified by their output frequency, form in response to a common driving
signal. The resulting patterns have been used to characterize the input signal and
they serve as a basis for comparison of signals and other pattern recognition tasks.
In this paper, we investigate pattern formation that results from the propagation of
synchronized activity waves within the population of oscillators. The novelty here is
in the model: We derive a nonlinear wave equation to describe networks of oscillators,
and simulate solutions to demonstrate some basic results.

We use knowledge of how a brain works to design networks of electronic circuits that can
perform pattern recognition tasks. The circuits are inspired by electronic circuits that have
been derived from Hodgkin’s and Huxley’s seminal work [Hodgkin, 1948, 1952; Huxley,
1952]. Their work shows that (1) there are mechanisms to maintain a membrane potential
in the absence of stimulation, (2) there is negative differential resistance partly due to the
opening and closing of ionic channels, (3) there is a homeostatic mechanism that returns the
membrane potential to rest, and (4) charge accumulates on both sides of the membrane. A
useful model of a neuron focuses on an Action Potential Generator (APG) region that can
be described in terms of the membrane potential in that region [Hoppensteadt, 2004]. There
is substantial experimental evidence that the electrical dynamics of an APG is similar to
that of a mechanical pendulum [Hodgkin, 1948; Hoppensteadt, 1997; Izhikevich, 2004]. For
reference here, an oscillator is a device, possibly at rest, that can sustain regular oscillations
when stimulated with constant input. For example, we refer to a pendulum, even at rest,
as being an oscillator since it can perform regular oscillations when a constant torque is
applied to the support point. Its frequencies might not be apparent in the absence of external
forcing. The state of a pendulum is naturally described in terms of an angle variable.

The novelty of this work is in the derivation from neuroscience principles of a nonlinear
wave equation (4) that supports isolated waves of synchronization through a population
of oscillators, and we provide an illustrative simulation of its solution structure in a two
dimensional array.

Pendulum equations appear in many investigations ranging from neuroscience to quan-
tum mechanics, and the angle variable that they govern are related to integral of a voltage.
For example, in quantum mechanics the dynamics of a Josephson junction [Feynman, et
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al.,1965, III.21-15 ff.] is described by a pendulum equation for a phase variable θ(t) where
θ̇ = qV (electron charge times applied voltage) and the current through the device is pro-
portional to sin θ. The close connection between frequency and voltage is used to design
and study electrical systems from large dynamos and rotating electrical machinery, to mi-
croscopic electronic devices such as phase-locked loops and MEMS, and to super-conducting
quantum mechanical devices.

Phase variables are natural state variables for modeling neural membrane potentials
[Hoppensteadt, 1997, 2006]. Writing the membrane potential as a frequency V = θ̇, we can
interpret the principles identified by Hodgkin and Huxley in terms of electronic components
in the following way: The membrane voltage is θ̇, the current into the homeostatic mecha-
nism is a sin θ, the current into the negative differential resistance mechanism is f(θ̇) where
f is an N -shaped function, and the current into the capacitor is Cθ̈. Balancing currents
leads us to the equation

τ θ̈ + αθ̇ + f(θ̇) + a sin θ = ω.(1)

where τ is a time constant, α is a damping factor, f describes the negative differential
resistance in the circuit, a sin θ accounts for homeostasis, and ω summarizes currents injected
into the circuit.

Because the exact shape of f changes from one application to another, we change vari-
ables if necessary, and write the nonlinearity as being a canonical cubic function

f(V ) ≈ α(V 2 − λ)V.(2)

where α and λ are parameters related to circuit parameters. We have completed an analysis
of equation (1) on the phase-cylinder

C = {(θ, v) : 0 ≤ θ < 2π,−∞ < v < ∞}
[Hoppensteadt, 2006].

1 Coalition Formation in Frequency-Gradient Aggregate Consider an array of N
of these oscillators that are not connected, but that have a common periodic parametric
forcing. We refer to them as forming an aggregate rather than a network. This configuration
and choice of parametric structure is suggested by our work on the hippocampus [Borisyuk,
1999]. We assume that the center frequencies of these oscillators are graded, say ω1 < ω2 <
· · · < ωN . Such gradients are known in various structures in the brain, principally in the
auditory pathway, but also possibly in the hippocampus.

Based on the considerations above, we describe the oscillators by the equations

τ θ̈j + F (θ̇j) + a cos µt sin θj = ωj(3)

for j = 1, 2, 3, . . . , N , where µ is the common forcing frequency. We describe the output of
these oscillators in terms of output frequencies

ρj = lim
t→∞

θj(t)
t

.

The simulation depicted in Figure 1 shows a typical output. The output frequencies resemble
a staircase whose treads correspond to intervals of phase locking. A collection of oscillators,
although not identical to each other, that are locked at the same output frequency form a
coalition. This provides a classification of oscillators by their output frequency: The sets of
oscillators having the same output frequency define coalitions among the population. For



PROPAGATING COALITIONS IN NETWORKS OF NONLINEAR OSCILLATORS 781

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Oscillator

ρ

Figure 1: Output frequencies of the array in Eq. (3) with 0.1 < ω < 0.9 and µ = 2.0.

example, the oscillators with 0.5 < ω < 0.65 form a coalition, and each output frequency is
approximately 0.75. A different input frequency µ creates another pattern, and in this way
we see that various inputs create distinctive coalitions. These patterns of firing frequencies
lay a basis for pattern recognition methodologies that are discussed elsewhere [Archibald,
et al.., 2005; Borisyuk, et al.., 1999; Hoppensteadt, 2006; Vinogradova, 2001].

This example describes what we mean by coalitions of oscillators. These are defined
by their response to particular inputs, and different inputs will result in different coalitions
being formed. Coalitions can be formed by other mechanisms than gradients of center
frequencies. We show next that they can also be formed by internal waves in the population.

2 Coalition Propagation in Inductively Coupled Networks: Nonlinear Wave
Propagation A next step in investigating pattern formation in arrays of oscillators is to
consider an array of them, say indexed by a spatial variable x ∈ E1 or x ∈ E2. We write
the state variable at position x as being θ(x, t). We suppose here that the circuits are as in
equation (1), but now coupled through inductors. Recall that if V is the voltage across an
inductor and I is the current through it, then V = Lİ where L is a physical parameter called
the inductance. In terms of the state variable, we have θ̇ = Lİ, so the current between sites
is proportional to θ. A short calculation shows that the model is

θ̈ + F (θ̇) + p(x, t) sin θ = ω(x) + σ∇2θ(4)

where ∇2θ is the Laplacian in 1D or 2D and where σ is related to neighboring connection
strength. This is a nonlinear wave equation which generalizes work on cellular nonlinear
networks [Archibald, et al.., 2005; Yang, et al.., 2001].

Consider this equation on a line segment, or a square, respectively, with periodic bound-
ary conditions. When F ≡ 0 and p and ω are constants, this equation is known as the sine-
Gordon equation. It is known to support solitons in 1D [McLaughlin, 1978]. We show for
the full model (4), which includes damping and external inputs, that there is an elaborate
nonlinear wave structure of frequency synchronization. In particular, useful interference
patterns can emerge among its solutions. In fact, the following simulation demonstrates an
emergent pattern of waves and the eventual complexity of the pattern.

Some insight to this wave propagation is gained from the 1D case. By introducing the
steady progressing wave coordinates x±√

σt and writing θ(x, t) = Θ(x±√
σt), the equation
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is reduced to a pendulum equation

σΘ′′ + F (Θ′) + p sin Θ = ω.

[See Hoppensteadt, 2006]. Depending the choices of the forcing constants p and ω, the
pendulum can respond to an initial perturbation by returning to rest, or by executing one
or a few full circle rotations, corresponding to isolated waves propagating out from the initial
perturbation, or by executing self-sustained oscillations, corresponding to a wave train.

The following simulation is done for the equation

θ̈ + 0.1 (θ̇3 − θ̇) + sin θ = 1.0 + 0.001∇2θ(5)

for 0 ≤ xj ≤ 2π, for j = 1, 2. Initial conditions are

θ(x1, x2, 0) = cos x1 cos x2,

and the boundary conditions are periodic

θ(x1, x2, t) ≡ θ(x1 + 2π, x2, t) ≡ θ(x1, x2 + 2π, t)

for all t > 0 and all (x1, x2) ∈ E2.
The problem is solved on a square of side 2π, but the results are presented in Figure 2

in four identical contiguous squares.
The simulation in Figure 2 begins with three circular waves propagating out from a

point. The wave fronts in four identical contiguous patches are shown in the top figure at
t = 60. By time t = 200 a complex pattern of wave fronts has emerged. Note that since
the voltage is constant along each wave front, the frequencies are identical along each wave
front. As a result, the wave fronts represent waves of synchronized oscillator activity. The
gray levels in these simulations indicate the size of the voltage, hence the firing frequency.
The pattern in the bottom of Figure 2 continues to evolve in time - it is not a static form.
In the terminology of the preceding section, these represent coalitions that propagate across
the population of oscillators.

3 Summary We have demonstrated several important facts in this report. First, we
derived a model of an APG in neurobiology from the principles of neuroscience, but in terms
that are consistent with the fabrication of electronic circuits. Second, we demonstrated that
useful pattern formation is possible in terms of voltages in totally disconnected aggregates
of circuits that are driven by a common signal and that are aligned with a gradient of
center frequencies (ω), which explains what coalitions are and provides one mechanism for
their formation. Next, we derived an equation for nearest-neighbor coupled oscillators of
the form in equation (1). We showed that when coupling is through inductors, the result
is a nonlinear wave equation. Mathematical analysis of this proceeds by demonstrating
the existence of stable steady progressing wave solutions of this equation. However, the
waves can be isolated and the eventual wave patterns in bounded domains with periodic
boundary conditions can become quite complex. The simulations of this nonlinear wave
equation presented here demonstrate some aspects of this complexity and its sources.

We are ultimately interested in computational architectures that 1) are intrinsically
parallel and usually asynchronous, 2) that can potentially implement algorithms like asso-
ciate memory in natural and efficient ways, and 3) that can potentially be implemented on
structureless systems, with coalitions forming dynamically. Here we addressed two mecha-
nisms for coalition formation by patterns of phase locking, and we presented two interesting
examples of them.
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Figure 2: Output voltages of the array in (5). Top: t = 60. Three circular rings are wave
fronts that are propagating outward from their centers. Bottom: t = 200. A snapshot of
the emerging pattern synchronization.
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