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Abstract. We consider in this paper random flights in �
d performed by a particle

changing direction of motion at Poisson times. Directions are uniformly distributed on
spheres Sd

1 . For the position (X1(t), ..., Xd(t)) we obtain the conditional characteristic
function

E
�

ei
�d

k=1 αkXk(t) | N(t) = n
�

and related density pn(x1, ..., xd; t) in terms of (n + 1)−fold integrals of products of
Bessel functions. These integrals can be worked out in simple terms for spaces of
dimension d = 2 and d = 4. In these two cases also the unconditional distribution is
determined in explicit form. We point out that a strict connection between these types
of motions with infinite directions and the equation of damped waves holds only for
d = 2. The related motion with random velocity in �3 is analyzed and its distribution
derived.

We consider a particle initially located at the origin of a frame of reference of the space
R

d, d ≥ 2. The particle initially chooses the direction of its motion with uniform law on the
surface of the hypersphere ∂Sd

ct = {(x1, ..., xd) :
∑d

k=1 x2
k = 1}, that is

f(θ1, ..., θd−2, φ) =
Γ(d/2)
2πd/2

sind−2 θ1 sind−3 θ2 · · · sin θd−2,(1)

where 0 ≤ θj ≤ π, j = 1, ..., d − 2, 0 ≤ φ ≤ 2π. The changes of direction of motion are
governed by a homogeneous Poisson process and therefore at each Poisson event occurs the
particle changes direction according to the uniform law (1).

We assume that the particle moves with a constant velocity c and its position (X1(t), ...,Xd(t))
at time t, when the number N(t) of Poisson events in the interval (0, t) is equal to n, can
therefore be written as

Xd(t) = c

n+1∑
j=1

(sj − sj−1) sin θ1,j sin θ2,j · · · sin θd−2,j sinφj

Xd−1(t) = c

n+1∑
j=1

(sj − sj−1) sin θ1,j sin θ2,j · · · sin θd−2,j cos φj

· · ·

X2(t) = c

n+1∑
j=1

(sj − sj−1) sin θ1,j cos θ2,j

X1(t) = c
n+1∑
j=1

(sj − sj−1) cos θ1,j,

(2)
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Figure 1: Sample paths of the random flight in R
3.

where by sj , j = 1, ..., n we indicate the instants of occurrence of the Poisson events with
s0 = 0, sn+1 = t.

The sample paths described by the moving particle appear as straight lines with sharp
turns and look like polygonals made up of randomly oriented segments of random length
(see Figure 1).

Our more general results are stated in the next theorem.

Theorem 1 The conditional characteristic function of (X1(t), ...,Xd(t)) is given by

E
{

ei
�d

k=1 αkXk(t) | N(t) = n
}

=
n!
tn

{
2

d
2−1Γ

(
d

2

)}n+1 ∫ t

0

ds1 · · ·
∫ t

sn−1

dsn

n+1∏
j=1

J d
2−1

(
c(sj − sj−1)

√∑d
k=1 α2

k

)
(

c(sj − sj−1)
√∑d

k=1 α2
k

) d
2−1

,
(3)

The related distribution function for the absolutely continuous component of the vector
position (X1(t), ...,Xd(t)) is

pn(x1, ..., xd; t)(4)

=
Pr
{⋂d

k=1 (Xk(t) ∈ dxk) |N(t) = n
}

∏d
k=1 dxk

= (2π)−
d
2

[
2

d
2−1Γ

(
d

2

)]n+1
n!

tn
(√∑d

k=1 x2
k

) d
2−1

·

·
∫ ∞

0

ρ
d
2 J d

2−1

⎛
⎝ρ

√√√√ d∑
k=1

x2
k

⎞
⎠ dρ

∫ t

0

ds1 · · ·
∫ t

sn−1

dsn

n+1∏
j=1

J d
2−1 (cρ(sj − sj−1))

(cρ(sj − sj−1))
d
2−1

,
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for n ≥ 1, d ≥ 2.

The general formula (4) shows that the probability distribution of the position X(t) =
(X1(t), ...,Xd(t)) is isotropic, but its explicit expression can be obtained only in two cases,
that is for d = 2 and d = 4.

If the length of the displacements of the particle are constant, we obtain the initial version
of the problem of random flights studied by Pearson, Kluyver, Rayleigh and Watson. In
this case, and assuming that at time t the (n + 1)−th step has been completed, formula (4)
becomes

pn(x1, ..., xd)

=
2( d

2−1)n−1π− d
2
[
Γ
(

d
2

)]n+1

(
a
∑d

k=1 x2
k

) d
2−1

∫ ∞

0

ρ−( d
2−1)n+1J d

2−1

⎛
⎝ρ

√√√√ d∑
k=1

x2
k

⎞
⎠(J d

2−1 (ρa)
)n+1

dρ,
(5)

for n ≥ 1.
For d = 2 and d = 4 the density (4) can be evaluated by means of the following integrals

(a sort of semigroup-type property of Bessel functions)∫ a

0

xµ(a − x)νJµ(x)Jν(a − x)dx =
Γ
(
µ + 1

2

)
Γ
(
ν + 1

2

)
√

2πΓ (µ + ν + 1)
aµ+ν+ 1

2 Jµ+ν+ 1
2
(a),(6)

with Re µ > − 1
2 , Reν > − 1

2 , and∫ a

0

Jµ(z)Jν(a − z)
z(a − z)

dz =
(

1
µ

+
1
ν

)
Jµ+ν(a)

a
,(7)

with Re µ > 0, Re ν > 0 (see Gradstheyn-Ryzhik formula 6.533(2) and formula 6.581(3)).
The integrals (6) and (7) permit us to evaluate the distribution (4) respectively for d = 2
and d = 4. Therefore we get that

pn(x1, x2, x3, x4; t) =
n(n + 1)

π2(ct)2n+2

(
c2t2 −

4∑
k=1

x2
k

)n−1

,(8)

for n ≥ 1 and (x1, x2, x3, x4) ∈ S4
ct, and

pn(x1, x2; t) =
n

2π(ct)n

(
c2t2 − x2

1 − x2
2

)n
2 −1

,(9)

for n ≥ 1 and (x1, x2) ∈ S2
ct.

We observe that the distribution (8) for n = 1 becomes the uniform distribution in the
hypersphere S4

ct, while the distribution (9) for n = 2 coincides with the uniform law inside
the disc S2

ct. We note, also, that the above distributions tend to zero on the edge of the
sphere (for n > 1 for d = 4 and for n > 2 for d = 2).

In order to have a closer insight into the behavior of the distribution (8) we give the
following result

E

⎧⎨
⎩
⎛
⎝
√√√√ 4∑

k=1

X2
k(t)

⎞
⎠

m ∣∣∣∣N(t) = n

⎫⎬
⎭ = n(n + 1)(ct)m Γ(n)Γ

(
m+4

2

)
Γ
(

m+4
2 + n

) ,(10)

that for m = 1, as n → ∞, tends to zero.
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From (8) we obtain the law of the absolutely continuous part of the unconditional
distribution

p(x1, x2, x3, x4; t) =
Pr
{⋂4

k=1 (Xk(t) ∈ dxk)
}

∏4
k=1 dxk

=
λ

c4t3π2
e−

λ
c2t

�4
k=1 x2

k

{
2 +

λ

c2t

(
c2t2 −

4∑
k=1

x2
k

)}
,

(11)

for (x1, x2, x3, x4) ∈ S4
ct. The distribution (11) has almost the form of a truncated four-

dimensional Gaussian distribution with independent components. As λ, c → ∞ e c2

λ → 1
we obtained that

lim
n→∞ p(x1, x2, x3, x3; t) =

e−
�4

k=1 x2
k

π2t2

that represents the distribution of Brownian motion in R
4.

It’s hard to obtain explicit probability distribution also for N(t) = 1 for arbitrary values
of the dimension d. In fact we have that

p1(x1, ..., xd; t) =
Γ2
(

d
2

)
2tπ

d+1
2

√∑d
k=1 x2

k

1
Γ(d

2 − 1
2 )

∫ t
2+

√�d
k=1 x2

k
2c

t
2−

√�d
k=1 x2

k
2c

(sin v)d−3ds1

(cs1)d−2(c(t − s1))
,(12)

where

cos v =
(c(t − s1))2 +

(√∑d
k=1 x2

k

)2

− (cs1)2

2c(t − s1)
√∑d

k=1 x2
k

and (x1, ..., xd) ∈ Sd
ct =

{
(x1, ..., xd) :

∑d
k=1 x2

k < c2t2
}
. In particular for d = 3 formula

(11) yields

p1(x1, x2, x3; t) =
log
(

ct+
√

x2
1+x2

2+x2
3

ct−
√

x2
1+x2

2+x2
3

)
π(2ct)2

√
x2

1 + x2
2 + x2

3

, (x1, x2, x3) ∈ S3
ct.

(13)

Of course for d = 2, 4 we reobtain from (12) the distribution (8) and (9) for n = 1.
We can extract from (11) the probability law of motions described by the projection of

random flights onto lower spaces (see Figure 2). In particular, we studied a moving particle
in R

3 with random velocity with the following components

vx1 = c sin θ1 sin θ2 sin φ, vx2 = c sin θ1 sin θ2 cos φ, vx3 = c sin θ1 cos θ2

and intensity c sin θ, θ ∈ (0, π). Therefore the projection of the four-dimensional motion
onto R

3 has the following density function

p4(x1, x2, x3; t) =

√
λπe−λt

c3t2π2
√

t

∞∑
k=0

{
λ

c2t

(
c2t2 −

3∑
k=1

x2
k

)}k− 1
2

2k + 2
2k − 1

1
Γ
(
k − 1

2

) ,(14)
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Figure 2: Sample paths in R
3 and their projections on the equatorial plane.

for (x1, x2, x3) ∈ S3
ct.

While in R
2 we have that

p(x1, x2; t) =
λ

2πc

e−λt+ λ
c

√
c2t2−(x2

1+x2
2)√

c2t2 − (x2
1 + x2

2)
,(15)

is a solution to the equation of planar, damped waves also called two-dimensional telegraph
equation, namely

∂2p

∂t2
+ 2λ

∂p

∂t
= c2

{
∂

∂x2
+

∂

∂y2

}
p,

it seems the analogous relationships do not hold for random flights in R
4 and for their

projections onto R
3, R2, R.
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