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Abstract. The age model of cellular communities is considered. Delay-differential
equations and their model systems for cellular communities are constructed and quan-
titatively analyzed. It is determined that there are the following states: rest, stationary
state, Poincaré type limit cycles, dynamic chaos and “black hole” effect. Regularities
for the origin of dynamic chaos, “r-windows” regions and prediction problems for the
determination of destructive changes - “black hole” effect, are investigated. The re-
sults of the developed approaches are applied to the quantitative analysis of cellular
communities and the delay-differential equations of animal and plant organisms are
considered.

1 Introduction. In the study of many biological problems the quantitative estimation
of the behavior of communities of cells is required. Such communities of cells generally
fulfill mutual functions necessary to a system activity [1, 2]. Especially, this is important
for model investigations of regulatory mechanisms for cellular communities of an organism.
Based on the principles of biological epimorphism [3] and the block structurally-functional
organization of living systems [4, 5], the concept of Functional Unit of Cellular Communities
(FUCC) as connected cells set (on space or (and) on time) with dividing (M), growing (B1),
differentiating (D), carrying out the specific functions (S1, S2, ..., Sn; n is the quantity of
amount specific functions and usually, n = 2) and aging (B2) cells has been developed.
During FUCC functioning, its elements consistently pass from one homogeneous group to
another consecutive homogeneous group of cells (Figure 1). Cells leave from homogeneous
group (B2) by a natural death or (if necessary) by a transition into homogeneous cells in
D group, where cells are de-differentiated, preparing for repeated fulfilment of the specific
functions. Cells transitions are carried out with some time delay and we get a temporal
mutual relations in FUCC (Figure 2). Organs and tissues of the multicellular organisms
can be considered as a system in which an elementary component is FUCC.

2 Delay-differential equations of FUCC. The method application for mathematical
description of the regulatory mechanisms for living systems functioning (regulatorika) [6, 7,
8] allows carrying out the following formal system of delay-differential equations for FUCC
regulatory mechanisms:

dX1(t)
dt

= f1 (X1(t − τ),X2(t − τ1),X4(t − τ),X5(t − τ)) − a1X1(t);

dX2(t)
dt

= f2(X1(t − τ1),X2(t),X3(t − τ2)) − a2X2(t);

dX3(t)
dt

= f3(X2(t − τ2),X3(t),X6(t − τ5)) − a3X3(t); (1)
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dX4(t)
dt

= f4(X3(t − τ3),X4(t)) − a4X4(t);

dX5(t)
dt

= f5(X3(t − τ3),X5(t)) − a5X5(t);

dX6(t)
dt

= f6(X4(t − τ4),X5(t − τ4)X6(t)) − a6X6(t),

Figure 1: spatial-temporal organization of FUCC: a is the transitions scheme (continuous
arrows are the determined transitions and dotted arrows are a probable return transitions);
b is the temporal relations.

where X1(t),X2(t),X3(t),X4(t) and X5(t),X6(t) are the values, expressing the number
of cells in homogeneous groups M, B1, D, S1 and S2, B2; f1(·), f2(·),..., f6(·) are homo-
geneous, continuous, non-negative functions of their arguments; {a} are non-negative con-
stants, expressing rate of change in number of cells in homogeneous groups, t is parameter
of temporal relations (Figure 1). The uniformity and continuity of the given functions do
not allow the appearing “ex novo” of elements in the considered community (elements can
arise only in M group by duplication) and we have the well-known Virhov’s principle as
“each cell from cell”. The non-negativity of considered functions provides that there is no
negative number of cells during quantitative researches.

Within the framework of the assumptions, the first terms in the right hand side of (1)
express rate of cell growth (due to duplication in M and cells transition in the others) in
homogeneous group of community, and the second terms are velocities of their decrease due
to transition into other groups and the natural destruction of cells in the B2 group.

Stimulatory and inhibitory factors have a simultaneous effect on cell reproduction. Stim-
ulatory factors for increase in number of cells in homogeneous M group are set of dividing
cells and, probably, number of elements carrying out specific functions. This is FUCC
sustenance during carrying out the specific functions necessary for FUCC community (for
multicellular organism). Inhibiting factors can be quantitatively described using biological
principle of “end-product inhibition” taking into account method for modelling regulatory
mechanisms of living systems [6, 8]. Considering possible cell’s transfer from M to B1

(Figure 1) we have:

dX1(t)
dt

= aX1(t − τ)X4(t − τ)X5(t − τ)e
−

6�

j=1
δjXj(t−τ)

+ ε1X2(t − τ1) − a1X1(t) (2)



SIMULATION OF CELLULAR COMMUNITIES MECHANISMS 827

For other homogeneous groups, on the basis of the accepted assumptions, for transitions
and temporal relations, in the elementary case, we obtain

dX2(t)
dt

= a1X1(t − τ1) + ε2X3(t − τ2) − (ε1 + a3)X2(t);

dX3(t)
dt

= a3X2(t − τ2) + ε3X6(t − τ5) − (ε2 + a4 + a5)X3(t);

dX4(t)
dt

= a4X3(t − τ3) − a6X4(t); (3)

dX5(t)
dt

= a5X3(t − τ3) − a7X5(t);

dX6(t)
dt

= a6X4(t − τ4) + a7X5(t − τ4) − (ε3 + a8)X6(t),

where {a} are positive values of the determined transitions, {ε} are probable return tran-
sitions and δj are repression parameters (j = 1,..., 6).

3 Model systems for FUCC equations. (2), (3) are the closed system of delay-
differential equations. If we have continuous initial functions on a time interval equal to
max(τ, τ1,..., τ5) there exists a unique continuous solution obtained by a method of con-
secutive integration [9, 10]. For the analysis general regularities for FUCC dynamics we
can assume that the number of dividing, fulfilling specific functions and aging elements is
proportional to the total number of FUCC elements, τj = 0(j = 1,..., 5) and

X(t) =
6∑

j=1

Xi(t),X1(t) = k1X(t),X4(t) = k2X(t),

X5(t) = k3X(t),X6(t) = k4X(t);

0 < ki < 1; i = 1, 2, 3, 4.

Summing (2) and (3) we obtain

θ
dY (t)

dt
= pY 3(t − 1)e−Y (t−1) − Y (t), (4)

where
Y (t) = X(τt); θ =

1
τk4a8

; p =
ak1k2k3

k4a8

and θ, p > 0.
The same type of the equation can be obtained, if we assume that the processes are

stationary in homogeneous groups of cells B1, D, S1 and S2, B2 of FUCC. Then the number
of elements in these groups is proportional to the number of cells in homogeneous group
M that leads to the equation such as (4) for number of cells in M. In the paper [11] it
is shown the opportunity for approximation of delay-differential equation like (4) by the
functional and discrete equations, if θ is small. Hence, if θ is small, then dynamics (4) can
be qualitatively investigated on the basis of the functional

Y (t) = pY 3(t − 1)e−Y (t−1) (5)

and the discrete equations
Yk+1 = pY 3

k e−Yk . (6)
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The condition is usually true for most of real biological communities (due to large values
of feedback time and constant velocity of elements renovation in an organism) and the
quantitative analysis for dynamics of considered cellular communities on the basis (6) is
effective. The equation (6) is a very convenient equation for the qualitative analysis of
FUCC dynamics due to its realization easiness on computer using the method of Lamerey
diagram construction [12], calculations of Lyapunov parameter, Hausdorff, information and
high dimensions [7].

4 Analysis the general regularities of FUCC dynamics. On the basis of the admit-
ted assumptions it is possible to conclude, that solutions of (4)-(6) are in the first quadrant
if initial conditions are positive. Using the standard technique for the analysis of critical
points of delay-differential equations [13, 14, 15], for equilibrium points (ξ) of considered
equations (4)-(6) we have

ξ = pξ3e−ξ. (7)

It is obvious that there is a steady trivial attractor. Results of the qualitative analysis
shows, that if

0 < p < e2/4

then the equations (4)-(6) have only a trivial equilibrium, and if p = e2/4 we have a
non-trivial equilibria which is hardly appeared if ξ = 2. The further increase in value p
(p > e2/4) leads to its splitting on two non-trivial equilibria ξ2, ξ3

0 < ξ2 < 2 < ξ3 < ∞. (8)

.

Figure 2: Attractors existence in the equations (7).

Qualitative analysis of (4)-(6) solutions shows, that in considered case the α-set consist of
one element (ξ2), and the ω-set has two elements - (ξ1, ξ3) (Figure 2). Non-trivial attractor
ξ3 has basin (ξ2,∞), and trivial attractor has basin (ξ1,ξ2) . Hence, attractor ξ2 is called
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the functional attractor. In the basin of ξ2 we can carry out the quantitative analysis of
FUCC dynamics.

For the analysis of non-trivial attractor stability we can use (if (8) is fully justly) the
Lyapunov method of linearisation. Near ξ, for small y(t)(Y (t) = ξ + y(t) at (t)), we have

θ
dy(t)
dt

= (3 − ξ)y(t − 1) − y(t). (9)

The characteristic equation for (9) can be written in the form

(1 + 1/θ)eλ + (ξ − 3)/θ = 0. (10)

Real parts of roots of the transcendental equation (10) must be negative for stability of
considered equilibria. We use the Hayse theorem [13]: the equation like (10) has a negative
real parts if

1/θ > −1;

ξ − 2 > 0;

(ξ − 3)/θ < ρ sin ρ − cos ρ,

where ρ is a root of the equation

ρ = −1
θ

tan ρ,

0 < ρ < π.
First condition is true for both non-trivial equilibria. According (8), the second condition

is correct only for ξ3. Hence, the non-trivial equilibrium point ξ2 is unstable. Stability
character of the second non-trivial equilibrium point ξ3 is defined by third Hayse condition.
The third condition may not always be satisfied. We consider the case θ = 1. Then the
condition for stability ξ3 has the form

ξ < 3 + ρ sin ρ − cos ρ,

where ρ is a root of the equation
ρ = − tan ρ

(0 < ρ < π). This equation has the approximate numerical solution: ρ = 2.03(sin ρ =
0, 896; cosρ = 0, 443). Then third Hayse have the form: ξ < 4.376. According (7), if ρ
grows, then ξ3 monotonously increases. Hence, there are such values ξ3 that the considered
condition is not true and non-trivial attractor ξ3 loses stability. It is accompanied by the
occurrence Poincaré type limit cycles in neighbourhood of ξ3.

5 FUCC dynamics at small θ. The case when q is small deals with rapidly reborn
cellular communities with large feedback time (a8 � 1, τ � 1 in (4)). Then (5) and
(6) can be used for the qualitative analysis of FUCC dynamics. Equation (6) is especially
convenient due to an evident realizability of the solution (using method of Lamerey diagram
construction), self-oscillations, irregular fluctuations and characteristics calculation of the
deterministic chaos [12, 10]. On the basis of quantitative researches we show that (6) has
the following states: rest, steady stationary state, self-oscillations, deterministic chaos and
“black hole”effect (Figure 3). The “black hole”effect denotes that there is solution failure
from functional attractor basin into trivial attractor. Note, that before direct solution
failure we have quick maximal growth of number of FUCC elements.

Results of the quantitative analysis of Lyapunov number dynamics shows that in the
field of the deterministic chaos there are small regions with regular fluctuations are called
r-windows (Saidalieva, 1998).
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Figure 3: Lamerey diagrams, describing the basic states of (6) solutions behavior: a is a
steady stationary state (1.85 < p < 3.41);b is a self-oscillation (3.41 < p < 4.39); c is
an irregular fluctuation (4.39 < p < 6.99); d is a destructive change, “black hole” effect
(p > 6.99).

6 Mini-FUCCs and their dynamics. In biological systems, in addition to the basic
circuit for interactions between elements (Figure 1), there are a short regulation circuits;
among these are stable or particularly stable structures in concrete cases. It can be ap-
peared as the normal phenomenon like the adaptive answer to stressful influences, and as
an abnormal pathological condition. This partial or fractal FUCCs is called a mini-FUCCs.
Let us consider a few mini-FUCCs.

Such cells are observed in rapidly reborn cells at early development of an organism, in the
animal epithelial tissues and in the cambial cells of plants. Using (2) and (3), for generative
mini-FUCC (Figure 4, a) we get (for simplicity, we consider the case when τ1 = 0) :

dX1(t)
dt

= aX1(t − τ)e
−

2�

j=1
δjXj(t−τ)

− a1X1(t);

(11)

dX2(t)
dt

= a1X1(t) − a2X2(t),

where all parameters are similar to parameters in (2), (3), however a2 expresses the constant
velocity of natural cells dying in homogeneous group B1. The qualitative research (11)
shows, that there are steady non- trivial stationary state and there appears Poincaré type
limit cycles near non-trivial equilibria (ξ1, ξ2) :

ξ1 = (1 + (a1/a2)/(δ2/δ1))−1 ln(a/a1);

ξ2 = (a1/a2)ξ1.
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Figure 4: Generative mini-FUCCs.

If there is not the time factor in a feedback (it means that τ = 0) then system of the
equations (11) has not self-oscillations. Indeed, linearizing (11) near (ξ1, ξ2) at t = 0 we
have the following characteristic equation

(λ + a1ξ1)(λ + a2) + a2
1ξ2δ2/δ1 = 0.

The equation has only negative roots. Results of qualitative and quantitative research show
that “black hole” effect is absent in the case of (11) and its model system has the form

Yk+1 = pYke−Yk , p = a/a1.

Mini-FUCCs without dividing function
Such cells can exist in the blood, bone tissues, nervous system and in aging plants tissues

at the norm, and in the liver, cardiac tissues, pancreas and in some other animal tissues at
a pathology.

The analysis of the appropriated equations for the mini-FUCCs shows that the non-
trivial equilibria is absent and number of mini-FUCC elements is gradually reduced.

7 Imitative modelling of cellular communities. Introduction of the concept and
structural-functional organization of FUCC allow carrying out an operative quantitative
research for realizing the imitative modelling of the cellular communities of an organism.
In order to attain these goals, the mathematical and computer models of regulatory mech-
anisms of dividing, growing, differentiating and aging cells have been constructed on the
basis of the established biological facts and theoretical attainments (Saidalieva, 1998). For
example let us consider the equations of regulatory mechanisms for cellular differentiation
constructed based on the competition of metabolic ways at genetic level, polynucleotide
ensuring level and at level of the cytoplasm (Saidalieva, 1998)

dC1(t)
dt

=
a1 + a2P1(t − h)

1 + b1M1(t) + b2M2(t)
−

ln
[
2V (t0+TC1 )

V (t0)

]

TC1

C1(t);
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Figure 5: Mini-FUCCs without dividing function.

dC2(t)
dt

=
a3 + a4P2(t − h)

1 + b3M1(t) + b4M2(t)
−

ln
[
2V (t0+TC2 )

V (t0)

]

TC2

C2(t);

dM1(t)
dt

= a5C1(t) −
ln

[
2V (t0+TM1 )

V (t0)

]

TM1

M1(t);

dM2(t)
dt

= a6C2(t) −
ln

[
2V (t0+TM2 )

V (t0)

]

TM2

M2(t);

dP1(t)
dt

=
a7S1E1(t)

1 + b5E1(t) + b
′
5E2(t)

−
ln

[
2V (t0+TP1 )

V (t0)

]

TP1

P1(t);

dP2(t)
dt

=
a8S2E2(t)

1 + b6E1(t) + b
′
6E2(t)

−
ln

[
2V (t0+TP2 )

V (t0)

]

TP2

P2(t);

dE1(t)
dt

= a9C1(t − h) −
ln

[
2V (t0+TE1 )

V (t0)

]

TE1

E1(t);

dE2(t)
dt

= a10C2(t − h) −
ln

[
2V (t0+TE2)

V (t0)

]

TE2

E2(t);

where Ci(t),Mi(t), Pi(t), Ei(t) are values expressing concentration of m-RNA, multi-
nucleotides, protein-enzymes, effectors for two alternative ways in specialization (i = 1, 2);
V (t) is cell volume; TX is a time of the substance X half-decay; {a}, {b} are the positive
constants.
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Figure 6: A schematic screen for the system of “crypt-nap”and its cells during computer
imitation (the areas of the cells locations are shown).

Models for the regulatory mechanisms of specific functions have been constructed in
general view for flexible orientation in concrete cases. They have equations for protein-
enzymes biosynthesis on the basis of genes regulation; substances transport from a medium,
organoids development and functioning systems [16, 12]

Based on the models of regulatory mechanisms for cells activity in homogeneous groups
of community and biologists assistance, the imitation models for plant and animal cellu-
lar communities; models for “crypt-nap” system (functional unit of digestive system) [16]
(Figure 6) and “fruit cells of high plants and V.dahlie fungus” systems [17] have been
constructed. The results of quantitative researches have shown opportunity for cells accu-
mulation in growth zone in “crypt-nap” system as the adaptive mechanism and symbiosis
between the high plants and fungus.
Imitative modelling researches allow defining quantitative regularities for functioning of a
concrete cellular structures taking into account a spatial cellular architectonics and regula-
tion of an intracellular processes. Results of the work are used for the regularities analysis
of the cotton growing and development [18] and for the toolbox development for the infor-
mation technology in gene, cellular engineering and biotechnologies [19].

8 Acknowledgements This work was partially supported by FSFR AS RUz (grant No.
41-98) and SST CM RUz (grant No. P-20.16).
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