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Abstract. Approximate and generalized confidence bands for some parametric func-
tions of the univariate lognormal diffusion process with exogenous factors are obtained.
The procedures to obtain these bands are developed from the suitable adaptation of
the available methods for building confidence intervals for the mean of the lognormal
distribution. The obtained bands are similar to those calculated for the homogeneous
lognormal diffusion process but, in this case it is not possible a general comparative
study in terms of coverage errors, by means of simulation studies, because of the de-
pendence on the exogenous factors of each particular model. Therefore, in each case
a particular study is necessary. In this sense, in this paper two models are consid-
ered modelling the gross national product of Spain and the global manmade methane
emissions, respectively.

1 Introduction. The lognormal distribution and the lognormal diffusion process have
been used frequently as probabilistic models in several scientific fields when the variable
under consideration shows an exponential trend. For example, to determine even-time dis-
tributions (Lawrence [22]), in ecology as population growth model (Capocelli and Ricciardi
[5]; Ricciardi [28]), in geology, etc. Possibly, economic and financial fields are the areas
of application where the lognormal diffusion process has been more considered in order to
model dynamic variables. Important contributions have been made in this direction by Cox
and Ross [6], Merton [26] and Markus and Shaked [25], showing the theoretical and prac-
tical importance of this process in this environment. For example, these processes appear
associated with the Black and Scholes model (Black and Scholes [4]) and later extensions,
for example terminal swap-rate models (Lamberton and Lapeyre [17]; Hunt and Kennedy
[15]).

The motivation that leads to include exogenous factors in the model is to introduce
an explanation about the behavior of the studied variable by the diffusion (endogenous
variable) in terms of a set of external variables. Their time behavior is assumed as known
and they must contribute to the description of the evolution of the process as well as its
external control with forecasting aims.

Usually, the way of introducing the external variables in the model is by means of a time
function h which must be continuous in the time interval where the process is observed.
The possibility of being several external influences to the endogenous variable of the process
makes usual to consider h(t) = β0 +

∑q
j=1 βjFj(t), with βj ∈ R and Fj time-continuous

functions j = 1, . . . , q.
This case has been widely studied related to some aspects about the inference as well as

first passage times (Torres [33]; Gutiérrez et al. [7], [8], [9]) and applied for modelling time-
variables in several fields. For example, Gutiérrez et al. ([10], [12]) built a non-homogeneous
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lognormal diffusion process to fit the gross national product in Spain by considering the
consumer spending and the gross domestic fixed capital formation as exogenous variables.
This application is an example where the endogenous variable itself shows who the exogenous
factors are. Nevertheless, there are situations in that external variables to the process having
an influence on the system are not available or their functional expressions are unknown.
In such case Gutiérrez et al. [13] suggest to approach the exogenous factors by means of
polynomial functions, that is, in this case h(t) =

∑k
j=0 β

k)
j P

k)
j (t), where P k)

j is a k-degree

polynomial (P k)
0 = 1) and βk)

j are real fixed parameters, j = 1, . . . , k.
The possibility of controlling the endogenous variable by means of the exogenous factors

makes very useful this process in forecasting. In this sense, some of its characteristics, as
the mean and mode functions, could be used for predictions. Therefore, the inference of
these two functions has been the object of considerable study, both from the point of view
of point estimation and of that of estimation by confidence intervals.

With respect to the former, in Gutiérrez et al. [11] a more general study was made
to obtain maximum likelihood estimators (MLE), uniformly minimum variance unbiased
estimators (UMVUE) and expressions for the relative efficiency of MLE with respect to
UMVUE for more general parametric functions (which include the mean and mode func-
tions, together with their conditional versions, as special cases).

Concerning estimation by confidence bands, Gutiérrez et al. [12] extended the results
obtained by Land ([18], [21]) on exact confidence intervals for the mean of a lognormal distri-
bution, thus obtaining confidence bands for the mean and mode functions of the lognormal
process with exogenous factors, expressing these functions in a more general form. The
calculation of these bands runs into the same problems as does that of the exact confidence
intervals obtained by Land, namely that they are based on conditional pivot statistics, the
calculation of which is fairly complex, as it involves determining quantiles on the basis of
integrals that must be resolved numerically. Therefore, it is necessary to employ tables of
quantiles [20] with the consequent restrictions of available values, or computer programs,
such as that proposed by Lyon and Land in [24] based on numerical algorithms that are
unstable for certain ranges of values of the sample mean and quasi-variance of the lognor-
mal random variable being examined (or the corresponding values in the case of the former
process). Moreover, Singh et al. [30] suggested that upper confidence limits values based
on Land’s method are too high and lead to incorrect conclusions.

With these considerations in mind, for the case of the mean of a lognormal distribution,
various authors have developed approximate confidence intervals, and studies have been
devoted to obtain these and to compare them in terms of the coverage probability, the
average length, etc., by means of simulation studies; see, for example, Zhou and Gao [35]
and Lefante and Shah [23]. On the other hand, in 2003 Krishnamoorthy and Mathew [16]
obtained a generalized confidence interval for the mean of a lognormal distribution based
on the concepts of the generalized pivotal quantity and the generalized confidence interval,
following Weerahandi [34].

The goal of this paper is to obtain approximate and generalized confidence bands for
some parametric functions associated to the lognormal diffusion process with exogenous
factors. These bands will be obtained by the suitable adaptation of the corresponding
methods available for the mean of a lognormal distribution; we also propose an alternative
method, referred to as the proposed method. The bands are similar to the obtained for
the homogeneous lognormal diffusion process (Rico [29]; Gutiérrez et al. [14]) but, in this
case it is not possible a general comparative study, by means of simulation studies, in terms
of coverage errors because of the dependence on the exogenous factors of each particular
model.
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2 The lognormal diffusion process with exogenous factors. The lognormal diffu-
sion process with exogenous factors is defined by a diffusion {X(t); t0 ≤ t ≤ T }, taking
values on R

+ and with infinitesimal moments

A1(x, t) = h(t)x
A2(x, t) = σ2x2(1)

where h is a continuous function in [t0, T ] and σ > 0. We have to note this definition
generalizes that of the homogeneous version of this process, in which case the function h is
h(t) = m, with m ∈ R.

This process can be studied from the point of view of the partial differential equations.
The starting point for this is the forward (or Fokker-Planck) equation

∂f(x, t|y, s)
∂t

= −h(t)∂[xf(x, t|y, s)]
∂x

+
σ2

2
∂2[x2f(x, t|y, s)]

∂x2

and the backward (or Kolmogorov) equation

∂f(x, t|y, s)
∂s

+ h(s)y
∂f(x, t|y, s)

∂y
+
σ2

2
y2 ∂

2f(x, t|y, s)
∂y2

= 0.(2)

These equations verify the conditions for the existence and uniqueness of the solution,
with respective initial conditions lim

t↓s
f(x, t|y, s) = δ(x− y) and lim

s↑t
f(x, t|y, s) = δ(x− y),

where δ(·) is the Dirac’s delta function.
Alternatively, we can consider the Ito stochastic differential equation given by

dX(t) = h(t)X(t)dt+ σX(t)dW (t)
X(t0) = c

(3)

where {W (t); t ∈ [t0, T ]} is a one-dimensional standard Wiener process and c is a positive
random variable. Considering the analytical properties of h, it follows (see for example
Arnold [3]) that the equation (3) has an unique solution that will be the (0,+∞)-valued
diffusion process with initial distribution c and infinitesimal moments given by (1).

3 Distribution of the process. In this section we obtain the distribution of the pro-
cess considering the two approaches mentioned above. In any case, the finite dimensional
distributions will be calculated.

3.1 Distribution of the process from stochastic differential equations. Let us
consider the transformation Y (t) = ln(X(t)). By virtue of Ito’s lemma, equation (3) turns
into

dY (t) =
(
h(t) − σ2

2

)
dt+ σdW (t)

Y (t0) = ln(c)

which solution is

Y (t) = ln(c) +
∫ t

t0

h(λ)dλ− σ2

2
(t− t0) + σ(W (t) −W (t0)).(4)

Furthermore, following Arnold [3], Y (t) is a gaussian process if and only if ln(c) is
constant or normally distributed. In such a case, the mean and covariance function of Y (t)
is given by

m(t) = E[ln(c)] +
∫ t

t0

h(λ)dλ− σ2

2
(t− t0)
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and
R(t, s) = V ar[ln(c)] + σ2(t ∧ s− t0),

respectively, where t ∧ s = min(t, s). Hence, the finite dimensional distributions of the
process Y (t) are normal, that is,

(Y (t1), Y (t2), . . . , Y (tn))′ ∼ Nn(µ; Σ)

where the i-th component of the vector µ is m(ti), i = 1, . . . , n, whereas Σ is a definite
positive matrix whose components are R(ti, tj), i, j = 1, . . . , n.

From (4), the solution of (3) is

X(t) = exp(Y (t)) = c exp
(∫ t

t0

h(λ)dλ− σ2

2
(t− t0) + σ(W (t) −W (t0))

)
and, therefore, the finite dimensional distributions of the processX(t) are lognormal Λn(µ; Σ).
Obviously, from the two-dimensional distributions one can calculate the transition proba-
bility density function (p.d.f.).

3.2 Distribution of the process from partial differential equations. The transi-
tion p.d.f. of the process can be obtained by looking for a transformation

t′ = φ(t)
x′ = ψ(x, t)

that changes its Kolmogorov equation (2) into that of the standard Wiener process. Indeed,
the infinitesimal moments (1) verify the conditions of the theorem 1 in Ricciardi [27], so
such transformation exists. Concretely

ψ(x, t) =
(k1)1/2

σ

(
ln(x/z) −

∫ t

t2

h(λ)dλ+
σ2

2
(t− t2)

)
+ k2

φ(t) = k1(t− t1) + k3

where z ∈ R
+, ti > 0 and the ki’s are arbitrary constants with k1 > 0. This transformation

allows to obtain the transition p.d.f. for the considered process, resulting

f(x, t|y, s) =
1

x
√

2πσ2(t− s)
exp

⎛⎜⎝−
[
ln(x/y) − ∫ t

s h(λ)dλ+ σ2

2 (t− s)
]2

2σ2(t− s)

⎞⎟⎠ , t > s,(5)

that corresponds with the density function of a lognormal variable, i.e.

X(t)|X(s) = y ∼ Λ1

(
ln(y) +

∫ t

s

h(λ)dλ− σ2

2
(t− s); σ2(t− s)

)
, t > s.(6)

Since the process being considered is a markovian process, the obtaining of the finite-
dimensional distributions depends on the initial one and the transition p.d.f. In our case,
the transition is lognormal given by (6), so it only remains to choose the initial distribution.
Accordingly, two are the distributions here considered: a degenerate distribution in x0 > 0,
that is, P [X(t0) = x0] = 1, and a lognormal distribution X(t0) ∼ Λ1(µ0;σ2

0), these choices
ensuring that the finite dimensional distributions are lognormal (in accordance with that
established in the above approach to the distribution of the process). We have to note that
the former choice can be seen as a particular case of the second considering σ0 = 0 (that
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implies µ0 = ln(x0)). Moreover, the degenerate initial distribution is the real situation when
only a sample path is available whereas the lognormal case requires several trajectories.

Particularly, as X(t)|X(t0) = x0 ∼ Λ1

(
ln(x0) +

∫ t

t0
h(λ)dλ− σ2

2 (t− t0); σ2(t− t0)
)
,

taking X(t0) ∼ Λ1(µ0;σ2
0), one can calculate the joint distribution of (X(t0),X(t))′, result-

ing a two-dimensional lognormal distribution Λ2(µ; Σ) with

µ =

(
µ0

µ0 +
∫ t

t0
h(λ)dλ− σ2

2 (t− t0)

)
and Σ = σ2

0I2 + σ2

(
0 0
0 t− t0

)
,

where I2 denotes the two-order identity matrix. Therefore, X(t) is distributed as a random
lognormal variable Λ1(γ;σ2(t− t0)) with γ = µ0 +

∫ t

t0
h(λ)dλ− σ2

2 (t− t0), t > t0.
A similar development to the one-dimensional case leads to the obtaining of the bivariate

distributions. In this case we can check that (X(s),X(t))′ ∼ Λ2(µ; Σ), being now

µ =

⎛⎜⎝ µ0 +
∫ s

t0
h(λ)dλ− σ2

2 (s− t0)

µ0 +
∫ t

t0
h(λ)dλ− σ2

2 (t− t0)

⎞⎟⎠ and Σ = σ2
0I2 + σ2

(
s− t0 s ∧ t− t0

s ∧ t− t0 t− t0

)
.

Obviously, by virtue of the markovian property of the process, it is possible to obtain
any finite-dimensional distribution, being lognormal in all cases.

3.3 Some characteristics. Once the finite dimensional distributions have been calcu-
lated, the main characteristics of the process can be obtained. We now describe some of
them, focussing particularly on two of the most commonly employed in practice, especially
for forecasting. These characteristics are the mean and the mode functions (as well as their
conditional versions), which expressions can be formulated jointly for the two initial dis-
tributions considered. Expressions for other characteristics (covariance function, quantile
function, etc...) have not been included here because there will be not considered in the
remainder of the paper.

• Mean function

m(t) = E[X(t)] = E[X(t0)] exp
(∫ t

t0

h(λ)dλ
)
, t ≥ t0.

• Conditional mean function. Given s and xs,

m(t|s) = E[X(t)|X(s) = xs] = xs exp
(∫ t

s

h(λ)dλ
)
, t > s ≥ t0.

• Mode function

Mo(t) = Mode[X(t)] = Mode[X(t0)] exp
(∫ t

t0

h(λ)dλ− (t− t0)
3σ2

2

)
, t ≥ t0.

• Conditional mode function. Given s and xs,

Mo(t|s) = Mode[X(t)|X(s) = xs] = xs exp
(∫ t

s

h(λ)dλ− (t− s)
3σ2

2

)
, t > s ≥ t0.
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3.4 Particular case: lognormal diffusion process with h a linear function. In the
previous sections we have done a brief overview about the lognormal process with exogenous
factors without taking an explicit expression for the external variables being included in
the model. In the following we will consider a special case for the h function: a linear
combination of partially known functions, that is, h(t) = β0 +

∑q
j=1 βjFj(t), with βj ∈ R

and Fj time-continuous functions in [t0, T ], j = 1, . . . , q. It is important to note that for
inferential purposes about this process, it is not necessary to know the functional form of
the exogenous factors but the value of their integrals between two time values included in
the interval [t0, T ]. In any case, the exogenous factors must be independent of unknown
parameters.

With the choice of the h function and denoting

• a0 = β0 − σ2

2 and aj = βj, j = 1 . . . , q;

• a = (a0, a1, . . . , aq)′;

• ū(t, s) =
(
t− s,

∫ t

s

F1(τ)dτ, . . . ,
∫ t

s

Fq(τ)dτ
)′

,

the transition p.d.f. (5) can be expressed as

f(x, t|y, s) =
1

x
√

2πσ2(t− s)
exp

(
− [ln(x/y) − ū(t, s)′a]2

2σ2(t− s)

)
,(7)

whereas from (7), and considering the initial distribution P[X(t0) = x0] = 1, the aforemen-
tioned parametric functions that represent the mean and mode functions of the process are
expressed as

• m(t) = x0 exp
(
ū(t)′a + 1

2σ
2(t− t0)

)
, t ≥ t0

• m(t|s) = xs exp
(
ū(t, s)′a + 1

2σ
2(t− s)

)
, t > s ≥ t0

• Mo(t) = x0 exp
(
ū(t)′a − (t− t0)σ2

)
, t ≥ t0

• Mo(t|s) = xs exp
(
ū(t, s)′a − (t− s)σ2

)
, t > s ≥ t0

where ū(t) = ū(t, t0). Note that we have chosen the degenerate initial distribution because
it is the situation that will appear in the subsequent examples.

The above expressions can be summarized in a single formula, concretely

exp
(
µ(t, s) + λσ2(t, s)

)
(8)

where the values of µ(t, s), λ and σ2(t, s) are given in table 1.
In the following, we will consider this version of the lognormal process, and because

the no conditional versions of the mean and mode functions are particular cases of the
conditional, with s = t0 and xs = x0 since we have considered P[X(t0) = x0] = 1, we will
refer to these last.

4 Maximum likelihood estimators of the parameters and parametric functions.
Let us consider a discrete sampling of the process, that is, for fixed times t1, . . . , tn, (n >
q+2), we observe the variables X(t1), . . . , X(tn) whose values will be the basic sample from
which we carry out the inferential process. Furthermore, we suppose that P[X(t1) = x1] = 1.
Let x1, . . . , xn the observed values of the sampling. Now we transform these values by means
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Table 1: Values of µ(t, s), λ and σ2(t, s) to obtain the mean and mode functions from
exp

�
µ(t, s) + λσ2(t, s)

�
.

Function µ(t, s) λ σ2(t, s)
m(t) ln(x0) + ū(t)′a 1/2 (t− t0)σ2

m(t|s) ln(xs) + ū(t, s)′a 1/2 (t− s)σ2

Mo(t) ln(x0) + ū(t)′a −1 (t− t0)σ2

Mo(t|s) ln(xs) + ū(t, s)′a −1 (t− s)σ2

of v1 = x1 and vi = (ti − ti−1)−1/2 ln(xi/xi−1), i = 2, . . . , n. From (7), the likelihood
function for the transformed sample is

Lv2,... ,vn(a, σ2) =
1

(2π)(n−1)/2(σ2)(n−1)/2
exp

(
− 1

2σ2
(v − U′a)′(v − U′a)

)
(9)

where v = (v2, . . . , vn)′ and U is the (q+1)×(n−1) matrix given by U = (u2, . . . ,un) with
ui = (ti − ti−1)−1/2ū(ti, ti−1). By supposing that rg(U) = q + 1, the maximum likelihood
estimators of a and σ2 are

â = (UU′)−1Uv and σ̂2 =
1

n− 1
v′[In−1 − U′(UU′)−1U]v.

These estimators are independent and jointly sufficient and complete for (a, σ2). Fur-
thermore,

â ∼ Nq+1

(
a;σ2(UU′)−1

)
and

(n− 1)σ̂2

σ2
∼ χ2(n− q − 2).

Taking into account these estimators, for fixed t and s, those corresponding to µ(t, s)
and σ2(t, s) are immediately obtained. In this sense, B(t, s) = ln(xs) + (t− s)â is the MLE
of µ(t, s), whereas for σ2(t, s) we consider the unbiased estimator S2(t, s) = (t−s)S2, where
S2 = (n−1)σ̂2

n−2 . These estimators are also independent, jointly sufficient and complete for
(µ(t, s), σ2(t, s)) and verify

B(t, s) ∼ N (
µ(t, s);C(t, s)σ2(t, s)

)
and

(n− q − 2)S2(t, s)
σ2(t, s)

∼ χ2(n− q − 2)

where C(t, s) =
t− s

tn − t1
·

5 Confidence bands. In order to obtain approximate and generalized confidence bands
for the parametric functions aforementioned, and because these functions represent some
characteristics associated to lognormal distributions, it seems obvious to consider known
similar results in this context. Thus, let us cite the results summarized in Zhou and Gao
[35] which are related to the building of approximate and generalized confidence intervals
for the mean of the lognormal distribution. In a first approach, one might think that the
confidence bands could be calculated in a direct form from the distribution results, simply
by obtaining confidence intervals for fixed values of t and s and, subsequently, varying t
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to get the bands. This procedure is valid if one has n independent sample paths because,
in such a case, and for fixed t and s, the same sample information as for the inference
on the lognormal distribution is available, that is, we have a simple random sample of n
observations for the distribution being considered. Nevertheless, if only one trajectory is
observed (which is the usual situation in certain real applications such as those proposed in
this paper), these results are not directly applicable in this way. However, the consideration
of the likelihood function of the sample path, by virtue of the Markov structure of the
process considered, allows us to apply the point estimation of the parameters involved, and
thus the adaptation and extension of the results for the lognormal distribution is possible.

In this section we give the expressions of the approximate and generalized confidence
bands for the exp

(
µ(t, s) + λσ2(t, s)

)
functions in the case of the lognormal diffusion process

with h a linear function, which obtaining is similar to that developed for the homogenous
version of the process (see Rico [29]; Gutiérrez et al. [14]). However, since the estimations
of the parameters are different (more complicated in this case), the obtained expressions
show differences regarding the associated distributions that appear, so another approach
in their calculation is needed. Moreover, in contrast to the homogeneous case, where the
coverage probabilities associated to each one of the intervals that constitute the confidence
band remain constant, in the case of the non homogenous process these probabilities change
through the time, being this dependence motivated by the inclusion of the exogenous factors.
For this reason, in this last case it is not possible a general comparative study, in terms of
coverage errors, as the realized in the last mentioned works.

In the next, we give a brief summary including the expressions of the approximate and
generalized confidence bands for the parametric functions, including a new proposal for this
purpose, as well as some comments about their obtaining.

5.1 Approximate confidence bands.

5.1.1 Transformation methods. The adaptation of these methods to the process being
considered leads to calculate, for each t and s, a confidence interval for µ(t, s) (that can
be obtained from the distribution of its estimator B(t, s)) and then take the appropriate
transformation in order to obtain the desired confidence interval.

The naive method considers the exponential transformation, resulting the following con-
fidence intervals at level 1 − α

exp
(
B(t, s) ± tn−q−2;1−α/2

√
C(t, s)S(t, s)

)
,

whereas the adaptation of Patterson’s transformation leads to add, before taking the expo-
nential transformation, the term λS2(t, s). Hence the intervals, from which the confidence
band is obtained, are

exp
(
B(t, s) + λS2(t, s) ± tn−q−2;1−α/2

√
C(t, s)S(t, s)

)
,

where tn;α is the αth quantile of a Student’s t distribution with n degrees of freedom.

5.1.2 Direct methods. These methods are based on estimators of the characteristics for
which we want to build the confidence intervals or of some function of them. With these
methods it is assumed that the estimators are normally distributed, with a known or esti-
mated variance, from which the approximate confidence intervals can be calculated.
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In our case the interest characteristics are µ(t, s) + λσ2(t, s). For these functions, the
adaptation of the Cox’s method [6] considers their UMVUEs, B(t, s)+λS2(t, s), as estima-
tors, whose variances are also estimated by the corresponding UMVUEs, that is

UMVUE
[
Var

(
B(t, s) + λS2(t, s)

)]
= UMVUE

[
C(t, s)σ2(t, s) + 2λ2 σ4(t, s)

n− q − 2

]
= C(t, s)S2(t, s) + 2λ2S

4(t, s)
n− q

·

Finally, from the above considerations, the confidence band takes the form

exp

(
B(t, s) + λS2(t, s) ± z1−α/2

√
C(t, s)S2(t, s) + 2λ2

S4(t, s)
n− q

)

where zα is the αth quantile of a normal standard distribution.
The method considered here is an adaptation of one that appears in [19]. However, other

versions of this method have also been proposed. For example, following Zhou and Gao
[35] or Lefante and Shah [23], we can estimate Var

(
B(t, s) + λS2(t, s)

)
simply by replacing

σ2(t, s) by S2(t, s).

5.1.3 Methods based on pivot statistics.
Angus’ conservative method.

The adaptation of the method proposed by Angus [1] leads us to consider, for µ(t, s) +
λσ2(t, s), the following pivot statistic

B(t, s) + λS2(t, s) − (µ(t, s) + λσ2(t, s)
)√

S2(t, s)C(t, s) + 2λ2

n−q−2S
4(t, s)

·

This statistic is asymptotically equivalent to the likelihood ratio statistic for testing
hypothesis about µ(t, s) + λσ2(t, s) and its cumulative distribution function is monotone
increasing on σ(t, s). From this statistic, and taking into account the asymptotic distribu-
tions associated when σ(t, s) tends to 0 and to infinity (see [29] for details), we calculate
the confidence band as follows(

exp

(
B(t, s) + λS2(t, s) − tn−q−2;1−α/2

√
C(t, s)S2(t, s) +

2λ2S4(t, s)
n− q − 2

)
,

exp

(
B(t, s) + λS2(t, s) +

√
n− q − 2

2

(
n− q − 2
χ2

n−q−2;α/2

− 1

)√
C(t, s)S2(t, s) +

2λ2S4(t, s)
n− q − 2

))
.

In this case χ2
n;α denotes the αth quantile of a chi-squared distribution with n degrees

of freedom.
Parametric bootstrap method.

In this method, the confidence band is made by following the next Monte Carlo algo-
rithm, similar to the one proposed in [2]. This algorithm is used to avoid the numerical
problems derived by applying the t-percentile method to the approximate pivotal statistic
considered in the previous method.

• Generate k values N∗
i of a normal standard distribution N (0; 1) and k values χ2

i
∗ of a

chi-squared distribution with n−q−2 degrees of freedom χ2(n−q−2) independently.
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• Calculate, from the simulated values

T ∗
i (t, s) =

N∗
i + λS(t,s)√

C(t,s)

(
χ2

i
∗

n−q−2 − 1
)

√
χ2

i
∗

n−q−2

(
1 + 2λ2 S2(t,s)

C(t,s)

χ2
i
∗

(n−q−2)2

) ·
• Sort out the values T ∗

i (t, s) in T ∗
(1)(t, s) < T ∗

(2)(t, s) < . . . < T ∗
(k)(t, s).

• Calculate k1(t, s) and k2(t, s) as

kboot
1 (t, s) = T ∗

[(1−α/2)k](t, s) and − kboot
2 (t, s) = T ∗

[α/2k](t, s)

where [a] denotes the integer part of a.

• Construct the bootstrap confidence band for exp
(
µ(t, s) + λσ2(t, s)

)
as(

exp

(
B(t, s) + λS2(t, s) − kboot

1 (t, s)

√
C(t, s)S2(t, s) +

2λ2

n− q − 2
S4(t, s)

)
,

exp

(
B(t, s) + λS2(t, s) + kboot

2 (t, s)

√
C(t, s)S2(t, s) +

2λ2

n− q − 2
S4(t, s)

))
.

5.1.4 Proposed method. We construct the confidence band by combining, for each (t, s),
the limits of the corresponding optimal confidence intervals for µ(t, s) and for σ2(t, s).
With this procedure both the variability in the estimation of µ(t, s) and in the estimation
of σ2(t, s) are considered whereas the previous procedures only take into account the former.

The result is(
exp

(
B(t, s) − tn−q−2;1−α/2S(t, s)

√
C(t, s) + λ

(n− q − 2)S2(t, s)
χ2

n−q−2;1−α/2

)
,

exp

(
B(t, s) + tn−q−2;1−α/2S(t, s)

√
C(t, s) + λ

(n− q − 2)S2(t, s)
χ2

n−q−2;α/2

))
.

5.2 Generalized confidence band. Following the guidelines of Krishnamoorthy and
Mathew [16], we consider the generalized pivotal quantity for µ(t, s) + λσ2(t, s)

R(t, s) = b(t, s) − B(t, s) − µ(t, s)√
C(t, s)S(t, s)

√
C(t, s)s(t, s) + λ

σ2(t, s)
S2(t, s)

s2(t, s)

which has the same distribution as

b(t, s) − Z
U√

n−q−2

√
C(t, s)s(t, s) + λ

s2(t, s)
U2

n−q−2

where Z ∼ N (0; 1) and U2 ∼ χ2(n− q− 2) are independent, and where the observed values
of each random variable that appears are denoted by lower case print.

Since r(t, s) = µ(t, s) + λσ2(t, s), it is sufficient to obtain the corresponding quantiles in
order to construct the desired confidence band. Hence we use the following algorithm:
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• Obtain, from a sample observed path of the process, the values of b(t, s) and s2(t, s).

• Generate Zi ∼ N (0; 1) and U2
i ∼ χ2(n− q − 2), i = 1, . . . , k independently.

• Calculate

Ri(t, s) = b(t, s) − Zi

Ui√
n−q−2

√
C(t, s)s(t, s) + λ

s2(t, s)
U2

i

n−q−2

, i = 1, . . . , k

and, from these values, calculate the 100(α/2)th and the 100(1 − α/2)th quantiles,
denoted by R(t,s)(α/2) and R(t,s)(1 − α/2) respectively.

• Construct the generalized confidence band, at the 1−α confidence level, for exp(µ(t, s)+
λσ2(t, s)) as (

exp(R(t,s)(α/2)), exp(R(t,s)(1 − α/2))
)
.

Note that this confidence band fits a Monte Carlo procedure for calculating the approx-
imate confidence band obtained by the proposed method.

6 Comparative studies. Once the different confidence bands have been obtained, the
logical next step to do would be a comparative study of the confidence bands in the same
line of those carried out for the lognormal distribution by Zhou and Gao [35] and for the
homogeneous lognormal diffusion process by Rico [29] and Gutiérrez et al. [14]. In these
studies the confidence bands are compared in terms of coverage probabilities, coverage errors
and average lengths, by means of simulation procedures.

Nevertheless, in this context, the process being considered in this paper has some par-
ticularities that make it be different from the homogeneous case.

Firstly, we show these particular features justifying that no general studies are possible,
and hence each specific case must be dealt with separately. Secondly, we consider two
different models for which the comparative study is realized.

6.1 Special features of the model. Observe that approximate confidence bands can
be written in the general form

(
xs exp

(
u(t, s)′â +K1λ(t− s)S2 −K2

√
u(t, s)′(UU′)−1u(t, s)S2 +K3λ2(t− s)2S4

)
,

xs exp
(
u(t, s)′â +K1λ(t− s)S2 −K∗

2

√
u(t, s)′(UU′)−1u(t, s)S2 +K3λ2(t− s)2S4

))
(10)

taking the values of K1, K2, K∗
2 and K3 that are related in table 2.

From this general form, and remembering that the generalized band fits a Monte Carlo
procedure for calculating the approximate confidence band obtained by the proposed method,
we remark the following considerations:

• The results are independent on the parameters βj , j = 0, 1, . . . , q. For each fixed
value of (t, s), a change in the estimation of the coefficients βj , j = 0, 1, . . . , q, will
only affect the estimation of the vector a and the corresponding confidence interval
for exp

(
µ(t, s) + λσ2(t, s)

)
by a scale change, since n and S2 are unchanged, given

that the vector u(t, s) and the quadratic form u(t, s)′(UU′)−1u(t, s) depend on the
exogenous factors but they are independent on unknown parameters.
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Table 2: Values of K1, K2, K∗
2 and K3.

Method K1 K2 K∗
2 K3

Naive 0 tn−q−2;1−α/2 −tn−q−2;1−α/2 0
Patterson 1 tn−q−2;1−α/2 −tn−q−2;1−α/2 0
Cox (Land) 1 z1−α/2 −z1−α/2 2/(n − q)

Angus 1 tn−q−2;1−α/2

�
n − q − 2

2

�
n − q − 2

χ2
n−q−2;α/2

− 1

�
2/(n − q − 2)

Bootstrap 1 kboot
1 (t, s) −kboot

2 (t, s) 2/(n − q − 2)

Proposed
n − q − 2

χ2
n−q−2;1−α/2

tn−q−2;1−α/2 −tn−q−2;1−α/2 0

• The coverage probability and the length of the intervals change through the time.
From (10) we observe that both of them change through the time according to the
form of the vector u(t, s) and the quadratic form u(t, s)′(UU′)−1u(t, s), which also
depend on the exogenous factors within the model.

Therefore, the comparative study of the approximate and generalized confidence bands
must be done for a concretely model, that is, for previously fixed functions Fi (i.e.,
for each choice of the exogenous factors).

6.2 Gross National Product (G.N.P.) in Spain. This case has been widely studied
in [10] and [12], where the exogenous factors are built from the knowledge of another related
variables like consumer spending and gross domestic fixed capital formation during the same
time period.

6.2.1 The model. Remarks about the exogenous factors. Gutiérrez et al. [10], proposed a
model that fits the behavior of the G.N.P. in Spain by a lognormal diffusion process with
exogenous factors. For building the model, this study contemplated two stages: the first
was to decide which was the external information that must be considered in the model,
and that constitutes the exogenous factors, and the second how this information is included.
Taking into account that the G.N.P. depends mainly on the national demand, the search
of the exogenous factors was focused on its components. About how the information is
included, in this kind of studies (see Tintner and Sengupta [32]) normally is considered that
the exogenous variables remain constant between two consecutive observed times (usually
equally spaced). This supposition is not according with the continuity hypothesis estab-
lished in the definition of the process and can be discussed because of economic variables,
essentially, evolve continuously and not by jumps.

Given these two questions, the following procedure was proposed in order to solve them:

1. For the selection of the exogenous factors, a stepwise regression study for the na-
tional demand on its components was realized. The variables selected were consumer
spending and gross domestic fixed capital formation.

2. Given the selected factors, a function of them was built by polygonal functions such
that the integrals between two consecutive times coincide with the observed value
of the exogenous factors. That is, the exogenous factors are really functions not
directly observable but such that their influence on the process is given by the observed
values of the considered variables. Therefore, the chosen exogenous factors were the
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polygonal functions F1 and F2 such that∫ ti

ti−1

F1(τ)dτ = Y1(ti),
∫ ti

ti−1

F2(τ)dτ = Y2(ti), i = 2, . . . , n, Y1(t1) = Y2(t1) = 1.

where

(a) Y1: Increases of the private consumption.

(b) Y2: Increases of the gross fixed capital formation.

Once the external information and the procedure to include it in the model are estab-
lished, the estimation of the parameters is possible. In this sense, and considering the annual
observed values of the endogenous and exogenous variables in the time interval [1970, 2002],
the estimations of the parameters of the model are

β̂0 = −0.7146756702074915

β̂1 = 0.6297030524705661

β̂2 = 0.09370917397490128

σ̂2 = 0.00003799426796598253

6.2.2 Study of the approximate and generalized confidence bands. In order to decide which
confidence band is the optimal one with respect to the considered model, we have simulated
1000 random sample paths of the diffusion process with infinitesimal moments

A1(x, t) =
(
β̂0 + β̂1F1(t) + β̂2F2(t)

)
x

A2(x, t) = σ̂2x2.

Each sample path consists of 33 data in times 1970 + i, i = 0, . . . , 32 with initial value
x1 = 213032.

From these paths we have calculated the approximate and generalized confidence bands,
at level 0.9, for the particular case of the mean function, as well as the average and the
range of variation through the time of the coverage probabilities, coverage errors and the
range of variation of the average lengths in the observation times.

The results are shown in table 3 and allow the comparison of the confidence bands in a
general form.

According with these results, the generalized confidence band shows the least variation
range of the coverage errors, containing the imposed confidence level. Because of this
confidence band fits a Monte Carlo scheme for the proposed method, and the observed
differences between the two methods can be motivated by the number of random variables
used for the calculations, we can select any of them.

In this case, the naive confidence band is similar, in coverage error, to the proposed one
but with less range for the average length (the optimality in this case is given by a small
value of the estimation of σ2).

If our interest is focused on the length of the confidence bands, with an acceptable
coverage error, we will choose the confidence band given by Cox’s method.

The conservative confidence band presents the biggest coverage error and the biggest
length.
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Table 3: Range of variation of the coverage probability, average of the coverage probability, range
of variation of the coverage error, average of the coverage error and range of variation of the average
lengths for the approximate and generalized confidence bands, with confidence level 0.9, for the
mean function of the G.N.P. in the case of manmade global methane emissions.

Variation Average Variation Average Variation
Method cov. prob. cov. prob. cov. error cov. error average length

Naive 0.882-0.909 0.89178125 0-0.018 0.00946875 2417.9491-65302.5648
Patterson 0.881-0.907 0.8913125 0-0.019 0.0096875 2417.9968-65343.8726
Cox 0.87 -0.9 0.88125 0-0.03 0.01875 2340.7633-63254.8897
Conservativ 0.938-0.955 0.94453125 0.017-0.055 0.04378125 3248.8546-89484.6992
Bootstrap 0.872-0.952 0.8881875 0.001-0.052 0.016 2421.0044-65539.2623
Proposed 0.882-0.908 0.89209375 0-0.018 0.00909375 2422.0445-65675.1914
Generalized 0.884-0.911 0.89646875 0-0.016 0.00540625 2489.6651-67243.7583

6.3 Global methane emissions. We now consider the case of the manmade global
methane emissions. This is an example where there is not additional information avail-
able over another related variables that can be useful for the construction of the exogenous
factors. For this reason, in [29] and [13] an iterative procedure is proposed in order to
approach the unknown exogenous factors by means of polynomial functions.

6.3.1 The model. Remarks about the exogenous factor. In 1998 Stern and Kaufmann,
[31], published a study about global manmade methane emissions since 1860 to 1994. In
this study the authors gave the estimation, in the mentioned period of time, for the total
emissions considering each one of the seven components which constitute it. The global
methane emission is the addition of those components, where each one is estimated from
other variables like population or coal production. The target of this study was to obtain an
approximation to the actually value of the methane emissions and other fossil combustibles
such that it was compatible with the estimations of the Intergovernmental Panel on Climate
Change.

Gutiérrez et al. [13] studied the fit of the observed data by means of a lognormal
diffusion process owing to the exponential trend followed by the data. Nevertheless, when a
homogeneous lognormal diffusion process is fitted, the estimated trend shows deviations to
the observed data. For this reason one can think in the existence of some external influences
that the homogeneous process is not considering. These influences must be time dependent
variables affecting the trend but, however, unknown. For this reason, an approach to this
unknown factors is taken into account by considering polynomial exogenous factors. In this
sense, in that paper, the authors developed an iterative procedure to estimate the model
including this kind of exogenous factors. This method includes the recursive estimation of
the models, resulting from the successive addition of a polynomial function, and the criterion
for selecting the optimum one, which is based on the forecasting capacity of the model. The
model being chosen was that with infinitesimal moments (see the aforementioned references
for details):

A1(x, t) =
(
0.0109222 − 0.000292911t+ 6.982539013 × 10−6t2 − 3.579618802 × 10−8t3

)
x

A2(x, t) = 0.00007457051282638727x2.

6.3.2 Study of the approximate and generalized confidence bands. With the selected model,
and with the objective to decide which confidence band is optimum, we have realized a
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similar study than the one established in the previous section.
We have simulated 1000 sample paths of the previously fitted lognormal diffusion process,

with 135 values on each one, beginning at the year t1 = 1860 with x1 = 79.3.
From these paths we have calculated the approximated and generalized confidence bands,

at level 0.9, in the particular case of the mean function, and the average and range of
variation through the time of their coverage probabilities, coverage errors and the range of
variation of the average length in the observation times.

The results are showed in table 4. They allow the comparison of all methods in a global
form.

Table 4: Range of variation of the coverage probability, average of the coverage probability, range
of variation of the coverage error, average of the coverage error and range of variation of the average
lengths for the approximate and generalized confidence bands, with confidence level 0.9, for the
mean function in the case of manmade global methane emissions.

Variation Average Variation Average Variation
Method cov. prob. cov. prob. cov. error cov. error average length

Naive 0.872-0.906 0.89191791 0-0.028 0.00891791 0.7691-124.0001
Patterson 0.87-0.904 0.891768657 0-0.03 0.008723881 0.7692-124.6266
Cox 0.867-0.901 0.889134328 0-0.033 0.010880597 0.7637-123.7328
Conservative 0.904-0.938 0.928156716 0.004-0.0379 0.028152985 0.892-148.5159
Bootstrap 0.86-0.897 0.880970149 0.003-0.04 0.019029851 0.7636-124.3261
Proposed 0.871-0.906 0.893492537 0-0.029 0.008059701 0.7704-125.4415
Generalized 0.867-0.905 0.88541791 0-0.033 0.015149254 0.7715-124.4133

The coverage errors obtained are very similar between all confidence bands, being the
greatest the corresponding to the conservative and bootstrap bands and showing the latter
the biggest length. Excepting these two confidence bands, all of the other will be valid.

Cox’s method is the optimum in terms of average length, but if the interest is focused
on the minimal coverage error, the proposed method must be selected.
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