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BCK/BCI-BIALGEBRAS
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ABSTRACT. The notion of BCK/BCI-bialgebras and sub-bialgebras is introduced, and
related properties are investigated. A characterization of X = pI(X:1) W pI(X2) is
provided.

1 Introduction. A BCK/BCl-algebra is an important calss of logical algebras intro-
duced by K. Iséki and was extensively investigated by several researchers. Bialgebraic
structures, for example, bisemigroups, bigroups, bigroupoids, biloops, birings, bisemirings,
binear-rings, etc., are discussed in [6]. In this paper, we consider bialgebraic structures in
BCK/BClI-algebras. We introduced the notion of BCK/BCI-bialgebras and sub-bialgebras,
and investigate several properties. Using the notion of a commutative bigroup, we construct
the concept of X = pI(X;) W pl(X2), and vice versa.

2 Preliminaries. An algebra (X;x,0) of type (2,0) is called a BCI-algebra if it satisfies
the following conditions:

D) (Va,y,2z € X) (((z+y) * (xx2))* (zxy) = 0),
(D) (Va,y € X) (2 + (@ 1))y = 0),
(II) (Vz € X) (zxx =0),
(IV) Vr,ye X) (zxy=0,yxz=0 = z =y).
If a BCl-algebra X satisfies the following identity:

(V) (Vz e X) (0xx =0),
then X is called a BCK -algebra. In a BCK-algebra X, the following identity holds.
(al) (Vo,y,z € X) (z*xy)*2z = (r*2)*y).

A nonempty subset S of a BCK/BCl-algebra X is called a subalgebra of X if x xy € S for
all z,y € S. A BCK-algebra X is said to be positive implicative if it satisfies the following
identity:

(Va,y,z € X) (@ ry) v 2 = (@xy) * (% 2).

A positive implicative BCK-algebra will be written by piBCK-algebra for short. A BCK-
algebra X is s said to be commutative if x * (x *y) = y x (y * z) for all z,y € X. A
commutative BCK-algebra will be written by cBCK-algebra for short. A BCI-algebra X is
said to be p-semisimple if its p-radical is trivial. In a p-semisimple BCI-algebra X, we have
the following axioms:
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(a2) (Fa,y € X) (2 (0+y) =y * (0 %)),
(a3) Vz e X) (0% (0xx) = x).

We refer the reader to the book [5] for further information regarding BCK/BClI-algebras.
3 BCK/BClI-bialgebras

Definition 3.1. Let X = (X, *,®,0) be an algebra of type (2,2,0). Then X = (X, *,®,0)
is called a BCK-bialgebra (resp. BCI-bialgebra) if there exists two distinct proper subsets
X1 and X5 of X such that

(i) X = X, UXo.
(ii) (X1,%,0) is a BCK-algebra (resp. BCI-algebra).
(iii) (X2,®,0) is a BCK-algebra (resp. BCI-algebra).

Denote by X = K (X)W K(X3) (resp. X = I(X;) W I(X3)) the BCK-bialgebra (resp.
BClI-bialgebra). If (X7, %,0) is a BCK-algebra (resp. BCl-algebra) and (X», ®,0) is a BCI-
algebra (resp. BCK-algebra), then we say that X = (X, x,®,0) is a BCKI-bialgebra (resp.
BCIK-bialgebra), and denoted by X = K (X)W I(X2) (resp. X = I(X;) W K(X32)).

Example 3.2. (1) Let X = {0,a,b,¢,d} and consider two proper subsets X; = {0, a, b}
and Xy = {0, a,c,d} of X together with Cayley tables respectively as follows:

el0 a ¢ d
* |0 a b
0o o0 o 0(0 0 0 O
ala 0 0 ala 0 a O
blb o 0 clec ¢ 0 O
d|ld ¢ a 0
Then (X7, %,0) and (X2,®,0) are BCK-algebras. Hence (X, *,®,0) is a BCK-bialgebra,

fe, X = K(X1) W K(Xa).
(2) Let X = RT U{0,a,b,c} where R" is the set of all positive real numbers. Define
two binary operations ‘*’ and ‘@’ as follows:

(Vo,y € RT U{0}) (z *y = max{z — y,0})

and

o o o8
0o > oo
St O O
Q O Ol

c
0
0
0
0

Then (X7 := RTU{0}, %,0) and (X3 := {0, a, b, ¢}, ®,0) are BCK-algebras. Hence (X, %, ®,0)
is a BCK-bialgebra, i.e., X = K(X;) W K(X32).

(3) Let X = {0,a,b,c¢,d} and consider two proper subsets X; = {0,a,b} and Xo =
{0,a,¢,d} of X together with Cayley tables respectively as follows:

d

QLo 2 Oh
&ogo:
o0 ool
S OO oo
oo o
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Then (X1, *,0) is a BCK-algebra and (X»,®,0) is a BCl-algebra. Hence (X, *,®,0) is a
BCKI-bialgebra, i.e., X = K(X;1) W I(X3).

(4) Let X ={0,a,b,c,d, e, x,y,z} and consider two proper subsets X1 = {0, a,b,c¢,d, e}
and Xo = {0, z,y, 2z} of X together with Cayley tables respectively as follows:

* |0 a b ¢ d e

00 0 0 O d d &0 =z y =z
ala 0 a 0 e d 010 2 y =
blb b 0 0 d d z|lz 0 =z wy
cle b a 0 e d yly = 0 =z
d|ld d d d 0 0 z|lz y x 0
ele d e d a 0

Then (X1, *,0) and (X2, ®,0) are BCI-algebras. Hence (X, x, ®,0) is a BCI-bialgebra, i.e.,
X = I(X,) W I(Xa).

Proposition 3.3. We have

/X

1) WI(Xs)

/

X =K(X1)W K(X>) X =1(X1)WI(X>)
=I(X1)wK(Xs)
Proof. Since every BCK-algebra is a BCl-algebra, it is straightforward. O

Note that any BCI-algebra need not be a BCK-algebra. Hence the converse of Proposi-
tion 3.3 is not true in general.

Definition 3.4. Let X = K(X;)WK (X3) (resp. X = K(X1)WI(X3), X = I[(X1)WK(X2),
X = I(X1) WI(X2)). A subset H(# 0) of X is called a sub-bialgebra of X if there exist
subsets H1 and Hy of X; and Xs, respectively, such that

(1) H1 7& H2 and H = H1 UHQ,
(ii) (Hqy,*,0) is a subalgebra of (X7, *,0),
(iii) (H2,®,0) is a subalgebra of (X3, ®,0).

Example 3.5. Let X be a BCK-bialgebra in Example 3.2(1) and let H; = {0,a} and
Hy = {0,c}. Then Hy # Hs and Hy (resp. Hs) is a subalgebra of X (resp. X2). Hence
H = {0,a,c} is a sub-bialgebra of X. We can easily check that (H = {0,a,c},®,0) is
a BCK-algebra. Note also that Hz = {0,d} is a subalgebra of Xo and H; # Hs. Thus
G = {0, a,d} is a sub-bialgebra of X. We can easily check that (G = {0, a,d},®,0) is not a
BCK-algebra.

Remark 3.6. Let L be a sub-bialgebra of a BCK-bialgebra (X, *,®,0). Then L may not
be a BCK-algebra under % or & as seen in Example 3.5.

We provide a characterization of a sub-bialgebra.
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Theorem 3.7. Let X = K(X;)WK(Xs) (resp. X = K(X1)WI(X3), X = I(X1) WK (X2),
X =I(X1)WI(X2)) and let H be a nonempty subset of X. Then H is a sub-bialgebra of X
if and only if there exist two proper subsets X1 and Xo of X such that

(i) X = X1 U Xy, where (X1,%,0) and (X2,®,0) are BCK-algebras (resp. (Xi,*,0)
is a BCK-algebra and (X2,®,0) is a BCIl-algebra, (X1,%,0) is a BCI-algebra and
(X2,®,0) is a BCK-algebra, (X1,*,0) and (X2, ®,0) are BCI-algebras),

(ii) (H N Xy,%,0) is a subalgebra of (X1, *,0),
(ili) (H N X1,®,0) is a subalgebra of (X1,®,0).

Proof. We prove it for the case X = K(X;) W K(X3). For other cases, we can have desired
results by the similar method. Assume that H is a sub-bialgebra of X. Then (H, *, ®,0) is
a BCK-bialgebra. Hence there exist two distinct proper subsets H; and Hy of H such that

e H = H;,UHo,,
e (Hy,*,0) and (H2,®,0) are BCK-algebras.

Taking H; = HN X; and Hy = H N Xy imply that (H, = H N X31,%,0) and (Hy =
H N Xs,®,0) are subalgebras of (X1, *,0) and (X2, ®,0), respectively. Conversely, Let H
be a nonempty subset of a BCK-bialgebra (X, *, ®, 0) satisfying conditions (i), (ii) and (iii).
It is sufficient to show that (H N X;) U (H N X3) = H. Now,

(HNX1)U(HNX>) (HNX1)UH)N ((HNX1)UXs)

(HUH)N (X1 UH))N ((HUX2)N (X1 UX>))
= (HN(X1UH))N((HUX2)NX)

= Hn(HUX,)

= H

This completes the proof. O

Denote by X = piK(X7) W cK(Xs) the X = K(X;) W K(X5) in which (X3, *,0) is a
positive implicative BCK-algebra and (X2,®,0) is a commutative BCK-algebra. Denote
by X = iK(X1) W cK(X3) the X = K(X;1) W K(X2) in which (X7, *,0) is an implicative
BCK-algebra and (X2, ®,0) is a commutative BCK-algebra. Note that

X =iK(X1)WcK(Xy) = X = piK(X1) WeK(Xa) = X = K(X1) W K(X3),

but the converse is not true in general. In fact, in Example 3.2(1), we can see that the
implication

X = K(Xl) (] K(XQ) = X = pZK(Xl) (] CK(XQ)
does not hold.

Example 3.8. Let X = {0,z,y,a,b,c} and consider two subsets X; = {0,a,b,c} and
Xo ={0,z,y} of X with Cayley tables as follows:

QO T Q O %
QO Qe OO
QO o O Ol
o O O ol
O Oln
< 8 od
< 8 olo
8 © olr
o o ol

It is easy to check that X = pi K (X)W cK(X2), but X #iK(X1)WcK(X3).
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Lemma 3.9. [3] A BCK-algebra X is positive implicative if and only if it satisfies the
following identity:

(Vo,y € X) (zxy = (z*xy)*y).

Lemma 3.10. [3] A BCK-algebra X is commutative if and only if it is a semilattice with
respect to A.

Using Lemmas 3.9 and 3.10, we provide a condition for X = K(X;) W K(X2) to be
X = piK(X1) W cK(X3).

Theorem 3.11. Let X = K(X1) W K(X3). Then X = piK(X1) W cK(X2) if and only if
the following conditions are true.

(i) (Vo,y € X) (zxy = (zxy)*y),
(ii) X2 is a semilattice with respect to Ag which is given by
(Va,b e X2)(aNgb=bD (bD a)).
Lemma 3.12. [3] A BCK-algebra X is commutative if and only if it satisfies the following
identity:
(Va,y € X) (A(z) N A(y) = A(Ay)),
where A(x) is the initial section of x.
Applying Lemmas 3.9 and 3.12, we have a characterization of X = pi K (X1) W cK(Xs).

Theorem 3.13. Let X = K(X1) W K(X3). Then X = piK(X1) W cK(X2) if and only if
the following conditions are true.

(i) (Va,y € X) (xxy = (z*y)*y),
(ii) (Ya,be Xz) (A(a) N A(b) = A(a Ag b)).

Definition 3.14. [4] A set (G, +, ) with two binary operations + and e is called a bigroup
if there exists two proper subsets G; and Ga of G such that G = G; U Ga, (G1,+) is a
group, and (Ga,e) is a group. If both (G1,4) and (G2, e) are commutative, then we say
that (G, +, e) is a commutative bigroup.

Denote by X = pI(X;)Wpl(X2) the X = I(X1)wWI(X3) in which (X1, *,0) and (X2, ®,0)
are p-semisimple BCI-algebras.

Lemma 3.15. [1] A BCl-algebra X satisfies the identity
(Va,y € X) (2 + (zxy) = y)
if and only if it has a sum + and (X,4) is a commutative group.
Lemma 3.16. [2] In a BCI-algebra X, the following are equivalent.
(i) (Vo,y € X) (zx(xxy) =y).

(ii) X is p-semisimple.
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Theorem 3.17. If X = pI(X;)Wpl(X2), then X has operations + and e so that (X, +, e)
is commutative bigroup.

Proof. If X = pI(X;) W pl(Xsz), then X = X; U Xo, and (X1,%,0) and (X2,®,0) are p-
semisimple BClI-algebras. By means of Lemmas 3.15 and 3.16, X has two operations +
and e so that (X,+) and (X, e) are commutative groups, in which + and e are given by
r+y=zx(0xy)and xey =2 (0@ y) for all z,y € X. Hence (X, +, o) is a commutative
bigroup. [l

Theorem 3.18. Let (G, +,e) be a commutative bigroup. If we define operations x and @
on G as follows:

(Ve,y € G)(xxy=x—y) and (Va, b€ G)(a®b=aeb '),
then G = pI(G1) WpI(G2) for some G1,G2 C G.

Proof. It (G,+,e) is a commutative bigroup, then G = G1 U G2 for some G1,Gy C G,
and (G1,4) and (Ga,e) are (commutative) groups. It is easy to prove that (Gy,x*,0) and
(G2, ®,0) are p-semisimple BClI-algebras. Hence G = pI(G1) W pI(Ga). O
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