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ABSTRACT. We present the results of a computer vision system intended to describe
in real time the trajectories of moving objects in a variety of speeds. The developed
computing mechanism includes channel processing for instant position and velocity
estimation, while trajectory plotting is made by combining direction and speed of
movement. Retinal ganglion cell-like computational elements are randomly distributed
thorough the input image, being direction-selective, allowing lateral interactions among
them to correct peep-hole effects in movement analysis, presenting a variable degree of
overlapping of their receptive fields (RF). We show results and errors of the working
system when all parameters of cells are varied. One unexpected characteristic is that
of the degradation of results in trajectory estimation when the size of receptive fields
or the number of receptive fields, i.e. of computing cells, increase. In order to get good
results for a variety of moving object speeds we have to reach a compromise between
size and number of cells. This effect has interesting implications when translated
back to the biological system which originally inspired the design of the computational
method and could be used as a rationale to explain the distribution, morphological
characteristics and number of movement detecting neurons.

1 General system description, implementation and results The study of biologi-
cal basis of motion detection and analysis and the modelling and artificial implementation
of those mechanisms has been a fruitful path of science in the last 60 years. When trying
to implement an artificial vision system that has to work in very demanding conditions
(e.g. real time, rapid changing visual environment etc) we found some of the biological
concepts quite useful, thus is the case with receptive fields, overlapping, lateral interactions
of computing units etc. [5], [6], [7]. However, some traditional approaches of visual com-
puting (formal mathematical analysis, strict geometric patterns of neuron-like processors,
selectivity of stimulae) have represented an extra restriction affecting to the overall perfor-
mance of the system. After questioning these traditional approaches and including some
"messy” characteristics of real biological systems such as random distribution of neuron-like
processors, non homogeneity of neural architecture, channel processing, sudden failure of
processing units and, in general, non deterministic behaviour of the system we found and
show how reliability of motion analysis, computational cost and extraction of pure geometri-
cal visual descriptors (size and position of moving objects) are improved in an implemented
model.

1.1 Image acquisition and control of moving objects The system has been imple-
mented on a Pentium™PC type computer in which an acquisition and digitation board
(IC-ASYNC, Imaging Technology™) has been installed. This image board processes b/w
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images, so a monochromatic progressive camera CV-M10 with 640x480 pixels resolution is
used, though the recorded images are 256x256 pixels and 256 grey levels. Software has been
developed under Visual Basic 5.0. All artificial vision systems being extremely sensitive to
illumination conditions, our image acquisitions take place in the close, strictly controlled
structure. This structure has a working surface of aprox. 1 m2, and is 2m high. The
camera is on top of the structure, located at 1.5 m from the surface where the object is
moving. This object, square shaped, is built using Lego’sTMRobotics Invention System(©),
a construction kit that includes a programmable microprocessor and several sensors (light,
touch, rotation) and motors that allows us to program, control and monitor its behaviour.
To detect motion, a sequence of images of the moving object that follow one after the
other is acquired and processed in its temporal order. However, the same kind of series of
receptive fields that have been generated may also be used to estimate the movement of an
object into the retina. To detect that an object is moving, the receptive fields working as
contrast detectors locate the borders of the object and then follow their movement. In case
of having a textured object moving across the retina, not only the borders of the object,
but also its contrast areas would be useful to identify its motion, e.g., the zones where the
grey level changes are followed in time and relocated to obtain an estimation of motion.

1.2 Direction selectivity and speed estimation. The randomly generated receptive
fields are now divided into 8 classes, one for each of the equidistant directions considered,
with an equal number of receptive fields for each one as we suppose that none of them is
more important for the system than the others.

The origins of the receptive fields are calculated only once for the eight directions, so
that each one has eight receptive fields associated as in a star, that act independently to
locate motion in one of the eight directions described above. When the origin of one of the
receptive fields detects a border, the weights are changed in the following way to find out
the direction and speed of the movement (Figure 1).

The first values allow us to locate the boundaries or changes when they pass over the
origin of the receptive fields, while the second ones make it possible to relocate the boundary
or change if it moves in the preferred direction of the receptive field, once it has arrived
to the origin. Although the eight receptive fields are represented here as a whole, they act
independently, once the border or contrast area of the object is located, so that, as the
object moves, some of them (none, one or more than one) react, depending on the direction
of its motion. With these new weights, if the border moves in the preferred direction, the
receptive field will react. These are the direction selective cells of the system.

In order to be able to discriminate not only the direction but also the speed, the response
of the receptive fields is divided into two components, one related to direction itself, that
will be 1 or 0, depending on the excitation of the receptive field by a border or change
moving in its preferred direction, and another one related to speed, that will be 1,2,3,...
according to the distance of the border from its position in the previous instant.

Thus, the larger the receptive fields are, the faster the maximal measurable speed will
be, since the distance into the receptive field that the object can cover in one step is longer
(in the example of figure 1, this distance is 3 pixels/ time step). As the outputs of the
receptive fields are divided into two components, each direction has two summing boxes,
one for direction itself, and another one for speed that receive the outputs of all the receptive
fields specialized in that direction. The direction that the object follows can be determined
by that whose direction summing box has the highest value, since that means that there
are more points moving this way as any other one. Similarly, the speed can be obtained by
averaging the speed of the points moving in this direction, that is to say, by dividing the
value of the speed summing box by the value of the direction summing box for the direction
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Figure 1: Change of the weights

previously selected (Figure 2). The different shapes that the object may have and the
simplicity of the receptive fields causes that a movement in a certain direction also activates
many receptive fields specialized in the 'neighbour’ directions, thus making it possible to
obtain a false or doubtful result in certain instances.
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Figure 2: System general diagram

1.3 Movement description and trajectory refining Although that also happens
in the natural systems, as cells react not only to a very specific direction, but also to a
whole range of directions around the preferred one, it represents a problem when trying to
determine approximately the direction of motion with a certain degree of accuracy.

To solve this problem, two different operations are carried out. First, the response for
each direction is integrated in time, that is to say, the value associated to each instant
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is obtained by the sum of the response in the last 3 instants, thus making isolated wrong
results disappear. Second, the value obtained for each direction is subtracted from the values
obtained for those directions located two places clockwise or two places counterclockwise,
in such a way that the neighbours of the real direction undergo a greater decrease than this
one.

This time integration makes the instantaneous false results disappear and this kind
of lateral inhibition enhances the values of the right direction and decreases those of the
neighbour directions thus making it easier to distinguish it among the group of directions
activated by the motion of the object. Once the direction of the object has been found, its
speed is calculated by dividing the total number of pixels that the borders have covered in
that direction by the total number of borders that have moved in the same direction.

2 Results for speed estimation and trajectory plotting The systems was put to
work by analyzing video films of the movement of an object following several simple trajec-
tories at a variety of speeds and making an exhaustive study of the influence of the several
possible parameters involved (number of computing units, size of receptive fields, effect of
lateral inhibition, facilitation and temporal integration). Some of the results for speed esti-
mation related to receptive field size are shown in the following tables (tables 1 and 2), for
a vertical trajectory of the object.

Size in Pixels RFS 3 pixels RFS 5 pixels RFS 7 pixels RFS 10 pixels RFS 15 pixels RFS 20 pixels
Estim. Speed (cm/sc) 6,83 6,96 6,96 6,96 6,96 6,96
% Error -0,29 +1,60 +1,60 +1,60 +1,60 +1,60

Table 1: Speed estimation related to receptive field size. Real object speed: 6,85 cm/s;
number of RF: 34992

Size in Pixels RFS 3 pixels RFS 5 pixels RFS 7 pixels RFS 10 pixels RFS 15 pixels RFS 20 pixels
Estim. Speed (cm/sc) 7,56 15,68 19,78 22,57 22,59 22,59
% BError -66,60 -30,74 -12,63 -0,30 -0,30 -0,30

Table 2: Speed estimation related to receptive field size. Real object speed: 22,64 cm/s;
number of RF: 34992

It can be seen that the estimated speed depends on the size of receptive fields: small
receptive fields work better for small speeds (in the sense that a stable estimation is reached
without greatingly increasing the size) and larger receptive fields for higher velocities. Mak-
ing the same experiments with an oblique movement of the object, the conclusion remains
the same as can be seen in tables 3 and 4:

Size in Pixels RFS 3 pixels RFS 5 pixels RFS 7 pixels RFS 10 pixels RFS 15 pixels RFS 20 pixels
Estim. Speed (cm/sc) 7,78 8,23 8,23 8,23 8,23 8,23
% Error -4,30 +1,23 +1,23 +1,23 +1,23 +1,23

Table 3: Speed estimation related to receptive field size. Real object speed: 8,13 cm/s;
number of RF: 34992
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Size in Pixels

RFS 3 pixels

RFS 5 pixels

RFS 7 pixels

RFS 10 pixels

RFS 15 pixels

RFS 20 pixels

Estim. Speed (cm/sc)

7,17

18,06

19,56

19,56

% Error

-62,65

+5,93

+1,87

+1,87

Table 4: Speed estimation related to receptive field size. Real object speed: 19,20 cm/s;
number of RF: 34992

As before, the estimate of speed stabilises with smaller RF size (5x5) at the lower speed,
vs. the larger RF size (7x7) at the higher speed.

To study the effect of the variation of the number of receptive fields, in determining
speed and the estimated trajectory we fix a speed of 22,64 cm/sc getting the following
results for a number of cells ranging from 46656 (which corresponds to one RF per input
pixel) to 100 (0.2% of the previous figure) and for the usual variation of the receptive field
size from 3 to 20 pixels/side (Figure 3):

Object Speed: 22,64 cm/sc

—— - - 46656
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L 3

7 8 910111213 141516 17 18 1920

Receptive Field Size (in pixels)

Figure 3: Percent error in the estimated speed vs. Receptive Field Size as function of the
number of Receptive Fields.

As can be seen, in order to get a reasonable figure for the estimated speed we need to
have at least 2000 receptive fields and a size of at least 10x10 pixels distributed on the
retina. Better results are yielded by increasing the number of receptive fields. But with
more than 11644 receptive fields there is no practical improvement in the error with a 10x10
pixels receptive field. This suggests that with these numbers of RF the system has a high
built-in fault tolerance that allows us to compute values very close to the correct speed
estimation (at least with an error margin between 0.31% to 1.37%). At the same time, the
computational costs of our system can be controlled. The results in the previous graph
refer to a vertical trajectory. The system yields similar results for horizontal and oblique
trajectories. With different speeds the number of receptive fields and their sizes for the best
estimates will be different.

In the following graphs the plotting of the real trajectory vs the estimated one using only
the data from speed and direction channels are shown when using a complex movement.
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They graphically show the effect of varying receptive field size with a fix RF distribution of
11664 cells and varying RF field number (keeping them in a random distribution) when a
fix size of RF is set to 10 pixels (Figure 4).
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Figure 4: The effect of varying receptive field size with a fix RF distribution of 11664
cells. (RFS=Receptive Field Size expressed in pixels). The solid darker line shows the real
trajectory of the object; the lightest shows the calculated trajectory using speed estimation
and direction selectivity cells data.

3 Implications in retinal functioning Ganglion cells have been described and studied
in all animal retinae, being classified in numerous subtypes that differ in morphology and
in their response to visual stimulation. It is widely admitted that they extract different
image parameters (or descriptors) and transmit them to the brain in independent parallel
channels, [4]. Since the ability to see motion is ubiquitous in visual animals, several of these
subtypes are related to movement detection and analysis, and in some animals, like the frog,
different movement detection cells are categorized depending also on their responses to more
specific characteristics of the moving stimulus, showing that, if necessary, movement is not
processed by a unique, differentiated channel but by a number of specialized subchannels
(e.g. the bug detector cells and the moving-edge detectors, [3]. In rabbits too, specialization
of ganglion cells in the discrimination of objects moving at different speeds lead to subtypes
division thus showing at least two systems for motion description, [1], and the extensive
study of the direction selective ganglion cells has yield a direct correlate between functional
properties as the response to sinusoidal gratings and structural design, e.g. receptive field
diameter [2].
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RFS=10, NRF=500 RFS=10, NRF=2000 RFS=10, NRF=2916

RFS=10, NRF=5832 RFS=10, NRF=11664 RFS=10, NRF=34992
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Figure 5: The effect of varying receptive field number with a fix RF size of 10 pixels.
(NRF=Number of Receptive Fields randomly distributed over the input image). The solid
darker line shows the real trajectory of the object; the lightest shows the calculated trajec-
tory using data from speed estimation and direction selectivity cells.

Given a determined experimental species, network parameters like number of cells or
receptive field size within each motion detection subchannel are constant, or at least no
significant variations between individuals has been reported. In rabbit, for instance, 45% of
all ganglion cells are specialized in movement detection and they have been divided in two
specialized classes: one for fast moving land predators, the other for slow moving airborne
predators, [1], while in frog, movement detection devotes at least 30 times more fibers (e.g.
ganglion cells) than to any other image descriptor [3], one strictly focused in bug catching,
the other in more general moving edges. Every channel or subchannel is, then, perfectly
designed to detect whatever descriptor is tuned to. Moreover, in order to the system to
work properly, a minimum number of cells is necessary within the channel and a distribution
that covers the greater part of the retina is needed. But, what are the optimal figures for
cell population? A very small number of cells may make the system inoperative, so one can
expect that the more cells, the more accurate the information on moving objects will be.
On the other hand an excess of detecting cells may have undesirable performance for the
network, as it does happen in our computational model, where increasing the computing
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units from a certain point has a negative effect in estimating the position of the moving
object. Increasing the number of receptive fields increases redundancy and in this case
redundancy is rather a problem than a solution. Thus, too many specialized cells imply a
higher computational cost for the retina and, which is worse, the possibility of being caught
by predators due to the degrading performance of the positioning subsystem.

4 Conclusions Channel processing is a key computing mechanism both for natural and
artificial visual systems: it keeps computational complexity within tractable limits, permits
the extraction of several visual descriptors in parallel and allows reliability against com-
puting unit (cells) failures. This channel division of the overall network, however, seems to
work in a recursive way in the sense that each channel (e.g. motion) is usually divided in
sub channels (e.g. low vs fast moving objects detection) permitting a finer analysis of the
outside world. A system containing several subchannels might be more reliable and less
costly (both in complexity and computational operations) than a single do-it-all channel,
even when the number of processors of this last channel could be less than the total sum of
them in the former scheme.

The developed example of an artificial, but biologically flavoured, visual system gives
us a hint on how individual function and network processing influences each other. One
unexpected characteristic is that of the degradation of results in trajectory estimation when
the size of receptive fields or the number of receptive fields, i.e. of computing cells, increase.
To get good results for a variety of moving object speeds we have to reach a compromise
between size and number of cells (position of cells in the processing network is random).
Both a lack of and an excess in the number of computing elements lead to a bad performing
network in trajectory description tasks. An explanation of the effect resides in the fact that
when the size or RF is big the direction selectivity mechanism is affected, thus misleading the
overall system behaviour. Also, an excessive number of receptive fields increases redundancy
in the system and in this sense, redundancy seems to be rather a problem than a solution.
This can be used as an advantage, since loss of processors (reducing the number of receptive
fields) need not dramatically affect the performance of the movement detection and analysis
system provided there is a minimum overlap and the RF sizes are big enough to cope with
a range of speeds. Computational cost, then, can be also controlled to a minimum and
benefits from this property.
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