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DIFFERENCE EQUATIONS AS BIOLOGICAL MODELS
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Abstract. Difference equations have been used in population biology from Fibonacci
to May and Yorke and to the present day. They have also been used in other biological
fields. Here, we describe a number of fairly well know examples. We give techniques
and results about the analysis of linear and nonlinear difference equations. We also
show that there are practical and theoretical limitations on the analysis of nonlinear
models.

1 Introduction For almost 1000 years from Fibonacci’s rabbits of 1200 to the present
day, difference equations have been used as biological models. Here we will give a brief run
through some of the rudiments of difference equations and describe some simple models
used in biology. To keep the paper short, we will only discuss some models from population
biology.

We start with the story of Fibonacci’s rabbits, where we find and solve a simple difference
equation. We then generalize to kth order linear difference equations and outline the theory
of these equations. We give stronger results about estimating and computing the solutions
to nonnegative difference equations including those with inputs. We return to Fibonacci’s
model and show how it can be generalized to Leslie’s matrix model. After a brief discussion
of Leslie’s model, we describe the generalization of these results contained in the Perron-
Frobenius theorem. We then turn to a consideration of nonlinear models. We show that
a number of these models can be analyzed quite easily, but that chaos and particularly
sensitive dependence on initial conditions may make even simple appearing nonlinear models
difficult to use in practice. We briefly show that enveloping can be used for many common
population models. Finally, we consider universality and undecidability and argue that a
complete theory of nonlinear difference equations is impossible.

1.1 Notation There are a few items of notation in this paper which may not be familiar.
When we are talking about sequences, we often use the notation xn to mean the nth element
of the sequence. But we also, ambiguously, use xn to mean the entire sequence. When we
want to be careful, we use the notation 〈xn〉 to mean a whole sequence.

There are two notions of bounding with special notation. [16] We say that

f(n) = Θ( g(n) )

iff there exist constants c1 > 0 and c2 > 0 so that there exists an n0 and ∀n ≥ n0,

c1g(n) ≤ f(n) ≤ c2g(n).

We also say
f(n) = O( g(n) )
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if
f(n) ≤ c2g(n),

that is if g(n) is an upper bound but not necessarily a lower bound on f(n).

2 Fibonacci’s Rabbits In 1202 the Italian mathematician Fibonacci (also called Leonardo
Pisano or Leonardo of Pisa) published Liber Abaci, a book of problems to illustrate the supe-
riority of Arabic numerals over Roman numerals in arithmetic computation. (A translation
by L. Sigler [25] has recently been published .) Fibonacci posed this seemingly easy problem
about rabbits:

(a) You start at month 1 with one pair of immature rabbits.
(b) It takes rabbits 1 month to grow to reproductive maturity. After which, in each

succeeding month each mature pair produces an immature pair.
(c) Rabbits live forever.
(d) QUESTION: After 13 months how many pairs of rabbits do you have?

To formalize this problem we can let Mn be the number of mature pairs in month n,
and let In be the number of immature pairs in month n. Then by (b) and (c):

Mn = Mn−1 + In−1(1)

because each mature pair in Mn−1 survives into month n and each immature pair in month
n − 1 becomes mature in month n. We also have:

In = Mn−1

because each mature pair in month n−1 produces an immature pair in month n. This prob-
lem can now be analyzed as a pair of coupled difference equations. But, it will convenient
to use In−1 = Mn−2 to re-write (1) as:

Mn = Mn−1 + Mn−2.(2)

To start calculating we need two initial initial values of Mn. We are given I0 = 1 and
M0 = 0 and we can deduce that M1 = 1. From this point there is no difficulty in
computing M13 and M12, and since I13 = M12, the total number of rabbits will be
M13 + M12 which strangely enough is M14.

We have a very neat difference equation, namely,

xn = xn−1 + xn−2.(3)

which is satisfied by both Mn and In and even by their sum Mn + In = Tn. The three
sequences 〈Mn〉, 〈In〉, and 〈Tn〉 do have different initial conditions, but these sequences are
all simple shifts of the the Fibonacci sequence, 〈fn〉,

0, 1, 1, 2, 3, 5, 8, · · ·

or if you’d rather the bi-infinite sequence

· · · , −8, 5, −3, 2, −1, 1, 0, 1, 1, 2, 3, 5, 8, · · · .

From the difference equation and the initial conditions it is no great feat to compute
the 13th or the 20th term in these sequences. But, Fibonacci’s point that this is easier done
using Arabic rather than Roman numerals is well-taken.
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For an understanding of the long term behavior of these sequences, we should step
outside of the straight-jacket of the natural numbers. It is easy to show that

fn =
1√
5
(λn

0 − λn
1 )

where λ0 = (1 +
√

5)/2 and λ1 = (1 − √
5)/2. (E.g., one can show that this formula

satisfies the initial conditions, and then verify the formula by induction.) This solution,
sometimes called Binet’s formula, was not available to Fibonacci because he did not have
the notation to express it. (Modern algebraic notation is superior to Arabic numbers, as
Arabic numbers are superior to Roman numerals.) Notice that this formula tells us a strange
fact: we can take two irrational numbers raise them to a power, subtract them, and divide
by an irrational, and the result always turns out to be a natural number. This is surprising
because if we used other irrational numbers, we would get an irrational number rather than
a natural number as the result.

This formula does display a fact that is not obvious from the direct computation. That
is, the sequence grows exponentially with a factor of about 1.618 at each step. Also, since
|λ1| < 1 and 1/

√
5 < 1/2,

fn = ROUND
( λn

0√
5

)
,

and the seemingly two-dimensional solution (depending on both λ0 and λ1) is really one-
dimensional (depending on only λ0). We will see that these features are NOT specific to the
Fibonacci example, but they appear in solutions to a wide variety of difference equations.

Is the difference equation (3) a reasonable biological model? I believe that it is. It
says that left alone a biological population should display exponential growth which seems
reasonable. The model is obviously unreasonable in that it says that rabbits are immortal
and eternally continue to reproduce. These features of the model are not serious objections
if the model is only used to predict the population size for several generations. In making
a model we should apply Occam’s razor which says that among a variety of possibilities we
should select the simplest. The only simpler model for the rabbits would be

xn = λ0 xn−1 ,

but here the simplicity of the difference equation comes at the cost of introducing an irra-
tional multiplier. So, it seems to me that the Fibonacci difference equation is the simplest
model.

We try to create robust models so that slight deviations from the model’s assump-
tions do not change the model’s predictions. As we will see the prediction of exponential
population growth is a robust property shared by a variety of difference equation models.

3 Linear Difference Equations The Fibonacci equation can be generalized to the ho-
mogeneous linear equation with constant coefficients. Here, xn+k is given as a linear function
of xn, . . . , xn+k−1. In other words, for all n ≥ 0

xn = c1xn−1 + · · · + ck−1xn−k+1 + ckxn−k .

where c1, . . . , ck are constants and ck �= 0. This is called a kth order homogeneous linear
difference equation with constant coefficients.

We will refer to the polynomial

ch(λ) = λk − c1λ
k−1 − · · · − ck−1λ − ck

as the characteristic polynomial of the difference equation and its roots will be called
the eigenvalues.
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Theorem 1. The solution to

xn = c1xn−1 + · · · + ck−1xn−k+1 + ckxn−k

is

xn =
k∑

i=1

ai λn
i = a1 λn

1 + . . . + ak λn
k

when ch(λ) has k distinct roots, and, in general,

xn =
j∑

i=1

pi(n)λn
i = p1(n)λn

1 + . . . + pj(n)λn
j

where λ1, . . . , λj are the distinct roots of ch(λ) and pi(n) is a polynomial in n, and one plus
the degree of pi(n) is the multiplicity of λi as a root of ch(λ).

Asymptotic Behavior

1. Dominant Eigenvalue – Multiplicity 1
If λ1 is larger than every other eigenvalue and λ1 is a simple root of ch(λ) then

lim
n→∞

xn

λn
1

= constant.

The constant may be 0. In other words,

|xn| = O(|λ1|n).

2. Dominant Eigenvalue – Multiplicity d + 1
If λ1 is larger than every other eigenvalue and λ1 has multiplicity d+! as a root of
ch(λ) then

lim
n→∞

xn

nd λn
1

= constant.

The constant may be 0. In other words

|xn| = O(nd |λ1|n).

3. Several Dominant Eigenvalues – Multiplicity 1

If there are several simple eigenvalues, λ1, λ2, · · · , λj all with largest magnitude then

|xn| = O(|λ1|n).
(Unlike in (2) limits may not exist.)
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4. Several Dominant Eigenvalues – Several Multiplicities
If there are several eigenvalues, λ1, λ2, · · · , λj all with largest magnitude, and d =

max{d1, d2, · · · , dj} where di + 1 is the multiplicity of λi as a root of ch(λ),

|xn| = O(nd |λ1|n).
(Again, limits may not exist.)

In each of these cases, we see that the k-dimensional solutions given in Theorem 1
asymptotically become 1-dimensional. So, some degree of long-range prediction of upper
bounds for linear models is possible. If a few extra conditions are satisfied, then the limits
can be shown to be non-zero and the O’s can be replaced by Θ’s, that is, the long range
predictions become exact orders of growth rather than just upper bounds.

The theory here is quite general. The ci’s and the xn’s can be complex numbers. For
reasonable biological models we may want to limit the coefficients to be real numbers, or
nonnegative real numbers, or even natural numbers. We consider such restrictions in the
following subsections.

3.1 Nonnegative Difference Equations In many biological situations (and also in
other applications), we can assume that xn really does behave like a quantity, that is, xn

is always nonnegative and usually positive. For these situations we can often model the
process with a nonnegative difference equation. The important point is that analyses of
these equations is easier. They have a dominant eigenvalue λ0 which has multiplicity 1,
and with the aperiodic condition, gcd{i|ci > 0} = 1, λ0 is strictly bigger than every other
eigenvalue. This allows us to get good bounds on the solutions to nonnegative homogeneous
equations because, as we expect, the solutions will be very like λn

0 . As we mentioned, this
is again a reduction in dimension from k to 1.

We can also consider models which have an input. (Such models are called inhomo-
geneous or non-homogeneous.) Again, reasonable long-term predictions are possible. The
general rule-of-thumb is that the larger of the input and λn

0 (the solution to the corre-
sponding homogeneous equation) should dominate the solution. There is even a reasonable
prediction when the input has the form p(n) λn

0 in which p(n) is a polynomial in n.
We summarize these long term prediction in the following outline.

1. Nonnegative Problem

(a) Difference Equation

xn = c1 xn−1 + c2 xn−2 + . . . + ck xn−k + g(n).

with c1 ≥ 0, c2 ≥ 0, . . . , ck−1 ≥ 0, and ck > 0, and g(n) ≥ 0.

(b) Positive Initial Conditions

x1 > 0, x2 > 0, . . . xk > 0.

(c) λ0 is the unique positive real root of

λk − c1 λk−1 − c2 λk−2 − . . . − ck = 0.
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2. Homogeneous ( g(n) ≡ 0 )

(a) then xn = Θ(λn
0).

3. Non-Homogeneous ( g(n) > 0 )

(a) If g(n) = O(γn) with γ < λ0
then xn = Θ(λn

0).

(b) i. If g(n) = λn
0 then xn = Θ(n λn

0).

ii. If g(n) = nd λn
0 then xn = Θ(nd+1 λn

0).

(c) If g(n) = Θ(γn) with γ > λ0
then xn = Θ(γn).

3.2 Integer Solutions and Rounding As we observed before,

fn = Round
(
λn

0 /
√

5
)

for all n ≥ 0,(4)

where Round(X) returns the integer nearest to X . Does such a result only hold for Fibonacci
numbers? In particular, if one generalizes to the k-binocci numbers which satisfy xn =
xn−1 + · · ·+xn−k, does such a rounding formula hold? The answer is YES. Two properties
are used to prove rounding, nonnegativity of the difference equation, and bounding the
absolute values of all eigenvalues (except λ0) by 1. The following results are from [3].

Definition 3.1. A difference equation xn = c1xn−1 + · · · + ckxn−k is 1-bounded iff

∀i ci ∈ N, and ck ∈ N
+, and

λ − 1
λ − λ0

ch(λ) is a nonnegative polynomial,

where ch(λ) = λk − c1λ
k−1 − · · · − ck is the characteristic polynomial of the difference

equation, and λ0 is the unique positive root of ch(λ). If, in addition, λ−1
λ−λ0

ch(λ) is primitive
(aperiodic), that is, gcd{i|ci > 0} = 1, the difference equation is strongly 1-bounded.

Theorem 2. If xn is an integer sequence which is a solution to a 1-bounded difference
equation, then there is an α so that

a)
∀n ≥ 0 |xn − αλn

0 | ≤ max
0≤j≤k−1

{|xj − αλj
0|}.

b) If also
max

0≤j≤k−1
{|xj − αλj

0|} < 1/2

then ∀n ≥ 0, xn = Round(αλn
0 ).

c) If the difference equation is strongly 1-bounded

∃n0 ∀n ≥ n0 xn = Round(αλn
0 ).
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The following theorem gives some easy to test sufficient conditions for rounding to hold.
Since we’re dealing with integer nonnegative polynomials, to test whether c1 + 1 ≥ λ0 uses
only one evaluation of the characteristic polynomial at an integer point

Theorem 3. Assume xn is an integer sequence which is a solution of the nonnegative
difference equation xn = c1xn−1 + · · · + ckxn−k, so that xn = αλn

0 + dn where λ0 is the
positive eigenvalue of the difference equation and dn has no λn

0 component. If

ck−1 ≥ · · · ≥ c1 and c1 + 1 ≥ λ0

and max{|d0|, |d1|, · · · , |dk−1|} < 1/2

then xn = Round(αλn
0 ) for all n ≥ 0.

If
ck−1 ≥ · · · ≥ c1 and c1 + 1 > λ0

then there is an n0 so that xn = Round(αλn
0 ) for all n ≥ n0, and n0 is the least integer so

that max{|dn0 |, |dn0+1|, · · · , |dn0+k−1|} < 1/2.

Here we have another example of dimension reduction. In this case, the solution is one-
dimensional in spite of the k in the difference equation. In contrast to previous examples,
here the reduction holds for all n ≥ 0 rather than only holding asymptotically. To obtain
these results we step out of the system in two ways – even though the sequences are integer
sequences, we use a real (irrational) number λ0; we also step out of the field of real or
complex numbers by using Round which is a non-standard operation.

3.3 Computing Solutions By their very nature, difference equations give an algorithm
for their solution:

For a kth order equation, use the k initial conditions to compute the next value.
Treat the this new value and the last k − 1 initial conditions as new initial
conditions, and compute the next value. Repeat this procedure for computing
a new value from the last k values.

Are there more efficient, i.e. quicker ways to compute solutions?
For example, the Fibonacci numbers can be computed as products of Lucas numbers.

The Lucas numbers are the sequence that is a solution to the Fibonacci difference equation

ln = ln−1 + ln−2

with the initial conditions l0 = 2 and l1 = 1. This sequence satisfies the formula:

ln = λn
0 + λn

1 .

It is relatively simple to show that if n is even then

l2n = (ln)2 − 2.

So the Lucas numbers, for n a power of 2, can be computed quite quickly. In fact, about
log n multiplies suffice. Since the numbers in this sequence grow quite quickly (ln has Θ(n)
digits), it would be reasonable to charge more for a multiplication of larger elements of the
sequence. The classical multiplication algorithm use Θ(n2) operations to multiply two n
digit numbers. It’s easy to see (using difference equations or summations) that in the series
of multiplications to compute a large Lucas number, the last multiply is really the only one
that counts. The rest of the multiplies all together cost at most 1/3 of the final multiply.
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Computing these Lucas numbers also gives a method for computing Fibonacci numbers.
It is easily seen by multiplying the two “Binet” formulas that

f2n = fn ln.

So, for n a power of 2, the nth Fibonacci number can be computed as a product of Lucas
numbers which can be iteratively computed by squaring and subtracting 2. With classical
multiplication, the nth Fibonacci number and the nth Lucas number can be computed in
Θ(n2) time. But as shown in Knuth [17], there are faster multiplication algorithms, and
even a sequence of algorithms so that for every ε > 0 there is an a multiplication algorithm
which runs in Θ(n1+ε). Hence using these faster multiplication techniques, the Fibonacci
numbers can be computed more quickly than by using the obvious addition algorithm. The
addition method is a Θ(n2), and the faster methods are almost Θ(n), so we expect the faster
methods to be much faster. Unfortunately, the faster multiplication methods are only faster
for large values of n. The addition method may be faster for small n.

We discuss various algorithms for Fibonacci numbers and give some timing data on run
times of implementations of these methods in our paper [9].

4 Multi-dimensional Difference Equations

4.1 Leslie’s Model In the Fibonacci story the rabbits are immortal, but with a few
exceptions, like the Energizer Bunny, real rabbits have small finite lifetimes. In matrix
form, this model is: (

Mt+1

It+1

)
=

[
1 1
1 0

](
Mt

It

)
.

where the 1 in the upper left of the matrix represents the immortality assumption. If we
flip M and I, we get (

It+1

Mt+1

)
=

[
1 1
1 0

](
It

Mt

)
,

which has the same form as the previous model, but we can change the interpretation to
make a more biologically reasonable model. Here we can let Mt mean the number of new
pairs and let It be the number of old pairs. The two 1’s in the first row now say that each
pair (new or old) produces a new pair at every time step. The 1 in the lower left indicates
that each new pair becomes an old pair. The 0 in the lower right means that each old
pair then dies. To make this model even more reasonable, we could introduce s1 to be the
probability of surviving from the new to the old group. We could also assume that the
number of offspring produced depends on the age class. With these assumptions, the model
becomes (

It+1

Mt+1

)
=

[
f1 f2

s1 0

] (
It

Mt

)
.

We can generalize the Fibonacci model with two age classes to a model with k age classes.
In population biology the model with k age classes is usually called Leslie’s model. In
1945, Leslie [18] published one of the most influential papers in population biology. In it he
introduced a generation of biologists to vectors and matrices. The model Leslie described
is quite similar to the renewal model [14] which was already used in population biology, see
for example, Lotka’s 1925 book, Elements of Mathematical Biology [20].

The Leslie model can be concisely stated as

Xt+1 = LXt
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where Xt and Xt+1 are population vectors and L is a Leslie matrix. A Leslie matrix
contains both survival rates and fertility rates, specifically,

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

f1 f2 . . . . . . fk

s1 0 . . . . . . 0

s2

...
. . .

...
sk−1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The first row of L consists of fertility rates where fi is the number of offspring (newborn)
produced by an individual of age class i in one time unit, and the subdiagonal of L contains
the survival rates where si is the probability that an individual in age class i will survive
to age class i + 1. All other entries in L are zero.

The usual assumptions on these parameters are that for each i, 0 < si ≤ 1 and fi ≥ 0.
The first assumption makes sense if one interprets si as a probability and assumes that
there is some possibility for an individual to survive from a particular age class into the
next age class. Further, if any si were zero, then in k− i steps the population would become
a population in which the last k− i age classes are empty, and all future developments occur
within and depend only on the first i age classes. For similar reasons, one usually assumes
that fk ≥ 0. That is, if one or several of the oldest age classes have zero fertility, then the
composition of these older age classes has no effect on the rest of the population and in a
small number of steps the composition of these age classes is determined by the younger
age classes with no effect from the original composition of these oldest age classes.

An extra assumption made in Leslie’s original model and often used in demographic
applications is that at least two adjacent fertility rates are positive. This assumption is
often enforced by averaging fertilities. That is, the number of offspring from females in
each age class is measured, but a fraction of these are attributed to females in the next
age class because the females are assumed to be aging as the measurements are taken. A
mathematically more appropriate assumption, which includes the Leslie assumption as a
special case, is that there is a power of the Leslie matrix which is strictly positive. Luckily
this can be checked easily using the greatest common divisor of the indices of positive
fertility rates.

Theorem 4. Let L be a Leslie matrix. Then there exists an m ≥ 0 with Lm � 0 iff gcd{i|fi >
0} = 1, where A � 0 means that every entry in the matrix A is strictly positive.

This convergence of the Leslie matrix is usually not the result that is used. Instead,
biologists look for the stable age distribution, and see how the population is converging
to this distribution. The stable age distribution, D, is the (unique, positive) eigenvector
associated with the positive eigenvalue λ0. In the aperiodic case (forced by the Leslie’s
averaging of fertility rates), for every non-negative initial vector X0 the population vector
converges to a multiple of D, in the sense that

lim
n→∞

Xn

λn
0

= αD.

The scalar constant does depend on the initial X0. Under the further assumption that
λ0 > 1, The components of D decrease in a roughly exponential fashion, that is, D[i] ≤
D[i − 1]/λ0. From its decreasing shape the stable age distribution is sometimes called the
inverted pyramid distribution.
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(a) Projected population distribution for
2003.

(b) Projected population distribution for
2050.

Figure 1: Two population predictions from the Bureau of the Census.

The graphs in Figure 1 show the census bureau’s estimates for the US population in 2003
and 2050. Both demonstrate a roughly “pyramidal” rather that the “inverted pyramid” of
the Leslie model because these graphs have the older age classes at the top rather than at
the bottom. The graphs also show the “pig in a python” caused by the “baby boom”. As
time goes on the wide part of the pyramid passes through all the age classes and dies out.

A weaker form of convergence occurs even if the aperiodic condition is not fulfilled. Let
xi(n) be the ith component of Xn, then simply assuming that X0 has all positive components
(or that there is some m so that X0 has all positive components) implies that for each i,

xi(n) = Θ(λn
0 ).

But here the distribution is not necessarily the stable age distribution. More details about
the periodic case are in [10] [11] [8]. In spite of Leslie’s desire to avoid the periodic model,
the use of such a model in population biology was discussed by Bernardelli [2] a few years
before Leslie’s paper.

4.2 Perron-Frobenius Theory The Perron-Frobenius Theorem simplifies working with
nonnegative matrix difference equations. Provided that the matrix is primitive, the equa-
tions are as simple as the Leslie models and not much more complicated than scalar equa-
tions.

Definition 4.1. A matrix M is nonnegative if every element mi,j is ≥ 0. A matrix M
is primitive if M is nonnegative and there is a positive integer t so that every element in
M t is strictly positive, which we will write as M t � 0.

Theorem 5 (Perron-Frobenius). If M is a primitive matrix then
(a) M has a maximum positive real eigenvalue λ0

(b) λ0 has multiplicity 1, (it is a simple root of the characteristic polynomial)
(c) for every other eigenvalue λi, λ0 > |λi| (it is strictly dominant)
(d) mini

∑
j mi,j < λ0 < maxi

∑
j mi,j

minj

∑
i mi,j < λ0 < maxj

∑
i mi,j

(e) the row and column eigenvectors associated with λ0 are strictly positive, and are unique
up to scaling
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(f) the sequence M t is asymptotically one-dimensional, its columns converge to the column
eigenvector associated with λ0, and its rows converge to the row eigenvector associated
with λ0.

We will not prove this theorem; proofs appear in many places including [1, Chapter 2]
and [24, Chapter 1].

The Perron-Frobenius result is somewhat weaker than the Leslie results. In particular
the inverted pyramid is not promised for the stable distribution. On the other hand, the
Perron-Frobenius applies to a much wider range of models including, for example, finite
Markov chain models. Graph theory is very useful in working with these models. It often
gives a nice pictorial description, and can even lead to improved computational methods.
For example, using graph theory one can show that determining if an n × n matrix is
primitive can be accomplished in Θ( n2 ) time which is much faster than the time for even
one matrix multiplication.

5 Nonlinear Equations Let us now consider one-dimensional equations of the form

xn+1 = f(xn).

There is essentially only one linear one-dimensional equation, but to paraphrase Tolstoy:
Equations can be linear in only one way, but equations can be nonlinear in many different
ways. So we should not expect to have a general theory for nonlinear equations. Rather,
we hope to have different theories for different classes of nonlinear equations.

As a simple example, consider
xn+1 =

√
xn .

For this equation to make sense, we assume that x0 ≥ 0 and that
√

x returns the nonnegative
square root of x. We can calculate some iterates

x1 = x
1/2
0

x2 = x
1/2
1 = (x1/2

0 )1/2 = x
1/4
0

x3 = x
1/2
2 = (x1/4

0 )1/2 = x
1/8
0

and see that the solution is
xn = x

1/2n

0 .

There are four cases:
(a) x0 = 0, and then xn = 0 for all n ≥ 0,
(b) 0 < x0 < 1, and then 1 > xn+1 > xn > 0,
(c) x0 > 1, and then 1 < xn+1 < xn,
(d) x0 = 1, and then xn = 1 for all n ≥ 0.

We summarize these cases by saying that 0 and 1 are fixed points of the system since
f(p) = p for p = 0, 1. The fixed point 0 is unstable, while 1 is a stable fixed point which
attracts all solutions with x0 > 0.

Some nonlinear equations have oscillations. For example,

xt+1 =
1
xt

.

with initial condition x0 will generate the sequence x0, 1/x0, x0, 1/x0, · · · and we say that
this sequence is an oscillation of period 2.
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Fixed points can have local instead of global stability, which we’ll demonstrate in the next
example. For a differentiable function, f(x), local stability at the fixed point, p, requires

|f ′(p)| ≤ 1.

In general, this condition does not imply global stability, in the next subsection Enveloping
we will see that for many of the usual population models, local stability does imply global
stability.

The difference equation xt+1 = f(xt) , with the following:

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3x 0 ≤ x < 1/2
(9 − 6x)/4 1/2 ≤ x ≤ 3/4
(6 − 2x)/4 3/4 ≤ x ≤ 5/4
(11 − 6x)/4 5/4 ≤ x ≤ 11/6
0 x ≥ 11/6

displays a several features common in population models. Here, the 3x for x ∈ (0, 1/2)
indicates the expected exponential growth when the population size is small – less than 1/2
of the equilibrium value which is normalized to 1. If the population size is very large – at
least 11/6 of the equilibrium value, then the population crashes to 0. In between these two
extremes, there are some interesting phenomena. Near x = 1, f(x) is a straight line with
slope −1/2. Since −1 < f ′(x) < 0 and f(1) = 1, x = 1 is a locally stable fixed point and
trajectories in this region should display damped oscillations of period 2. For example, one
of these trajectories is

3
4
,

9
8
,

15
16

,
33
32

,
63
64

, · · ·
and as you can see these iterates are rapidly approaching 1. There is also a period 2 cycle,
i.e.,

1
2

−→ 3
2

−→ 1
2

−→ · · ·.
Although it is possible to give a full analysis of all starting points for this model we shall
not do so here. The main point about this model is that it is similar to various population
models and that it does display local stability without global stability, e.g. a trajectory
starting at 1/2 will stay in a cycle and not converge to 1.

Our point, so far, is that some nonlinear equations are not difficult to analyze. But
there are nonlinear equations which are more difficult.

As Yorke [19] and May [21, 22] have shown even seemingly simple models, such as,

xn+1 = xn (1 + r (xn − 1)).

are exceedingly hard to understand because of a phenomena called chaos. (See Figure 2.)
Basically, chaos means that it is very difficult to predict long term behavior from the model
and measured initial conditions. In this model r is the reproductive rate. This model is
predictable when r is small, but chaos occurs for larger values of r.

Specifically, these models display the butterfly effect which is also called sensitive de-
pendence on initial conditions. The metaphor is that the flapping or non-flapping of a
butterfly’s wings in Borneo can affect the rainfall in Brazil. Less picturesquely, to answer
a question like is xn > 1? or is xn > 1/2? requires more and more knowledge of x0 as n
increases. So, we might be able to predict the value of x1 if we know x0 to a few bits of
accuracy, but to predict x100 we would need a much more accurate estimate of x0. This
sensitive dependence puts a practical limitation on our use of such models. In practice, we
can usually measure data to an an accuracy of a few digits, but (at least when r is large)
long term predictions from chaotic models will be practically meaningless.
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(a) Chaos (xn as a function of n.)
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(b) Web plot (xn+1 as a function of xn.)

Figure 2: A chaotic trajectory and its web plot; quadratic map with r = 2.99.

5.1 Enveloping Contrary to the chaos in the above section, stability properties of many
nonlinear population models can be dealt with a a technique that we call enveloping.[5] The
idea is that the function f(x) in the difference equation is bounded by a self-inverse function.
The bounding is from above for x’s less than the fixed point of f(x) and the bounding is
from below for x’s greater than the fixed point of f(x). Under these circumstances the fixed
point is globally stable. The surprising result is that for the commonly used population
models this bounding function can be chosen to be a simple ratio of two linear functions.
Here, we give some of the results and refer the reader to our other papers for more details.
[7, 6, 12, 4]

A linear fractional function is a function of the form

φ(x) =
1 − αx

α − (2α − 1)x
where α ∈ [0, 1) .

These functions have the properties

• φ(1) = 1

• φ′(1) = −1

• φ(φ(x)) = x

• φ′(x) < 0.

Theorem 6. Let φ(x) be a monotone decreasing function which is positive on (0, x−) and
so that φ(φ(x)) = x. Assume that f(x) is a continuous function such that:

• φ(x) > f(x) on (0, 1)

• φ(x) < f(x) on (1, x−)

• f(x) > x on (0, 1)

• f(x) < x on (1,∞)

• f(x) > 0 on (1, x∞)

then for all x ∈ (0, x∞), limk→∞ f (k)(x) = 1.
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The following seven fairly standard population models can be shown to be globally stable
by enveloping with a linear fractional:

• xt+1 = xte
r(1−xt)

• xt+1 = xt[1 + r(1 − xt)]

• xt+1 = xt[1 − r lnxt]

• xt+1 = xt( 1
b+cxt

− d)

• xt+1 = (1+aeb)xt

1+aebxt

• xt+1 = (1+a)bxt

(1+axt)b with a > 0, b > 0

• xt+1 = rxt

1+(r−1)xc
t
.

To understand what we are doing take a look at Figure 3. In the first panel, we’ve
plotted f(x) from the sixth model in the above list, namely,

xt+1 =
(1 + a)bxt

(1 + axt)b
= f(xt)

using b = 2 and two different values of a. These two curves show how f(x) sharpens as a
is increased. The dotted line shows 1/x. As you can see, 1/x > f(x) on the open interval
(0, 1), and 1/x < f(x) on the open interval (1,∞). This enveloping demonstrates that for
b = 2, the fixed point 1 is globally stable. In fact, for b ≤ 2 and a > 0, the linear fractional
1/x serves as an enveloping curve and establishes global stability.

When b > 2, the situation is more complicated. If the local stability condition, ab ≤
2 (1 + a) is satisfied, then it can be shown that a linear fractional envelopes f(x), and so
x = 1 is the globally fixed point, but the linear fractional used does depend on the values
of the parameters a and b. In the second panel of Figure 3, we use b = 3 and a = 2 giving

xt+1 =
(1 + a)bxt

(1 + axt)b
=

27xt

(1 + 2xt)3

which is represented as the solid curve. For an enveloping function we use the linear frac-
tional with α = 1/4 giving

φ(x) =
4 − x

1 + 2 x

which is represented by the dotted curve.

6 Universality Surprisingly enough, difference equations are completely general. They
capture the ideal of general computability. According to Turing’s analysis [26], the state
of any computation can be represented by a natural number, say x. This state uniquely
determines the next state of the computation by following the Turing transformation T. So,
any computation can be represented in the form

xn = T(xn−1)

where T represents the program for the computation. But, Turing also argued that there was
a universal program (the Universal Turing Machine) which could carry out any computation.[15]
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Figure 3: Two examples of model 6. The model with b ≤ 2 is enveloped by 1/x. (The curve becomes
steeper as a is increased.) With b = 3 and a = 2 the model 27x/(1 + 2x)3 is enveloped by (4− x)/(1 + 2x).

This universal machine, let’s call it M, takes two inputs, a state x and a program p. It then
computes the next state by

xn = TM (xn−1, p)

where TM represents the operation of this universal machine M . Then clearly

(xn, p) = (TM (xn−1, p), p).

We can reduce this pair of natural numbers to a single natural by using an invertible pairing
function, P. For example, we can use

P(x, y) =
(x + y)(x + y + 1)

2
+ y

as a pairing function because it maps pairs of naturals one-to-one onto the naturals. Letting
yn = P(xn, p) we get

yn = P( TM (xn−1, p), p)
= P( TM (P−1

1 (P(xn−1, p)), P
−1
2 (P(xn−1, p)), p)

= P( TM (P−1
1 ( yn−1 ), P

−1
2 ( yn−1 ) ), P

−1
2 ( yn−1 ) )

= U( yn−1 )

where we’ve invented the function U( yn−1 ) to emphasize that the right hand side is solely a
function of yn−1. This function U() is a universal function so that the universal difference
equation

yn = U( yn−1 )

contains within itself every possible computation. This means, in particular, that given
U() and y0, we cannot, in general, decide if yn goes to a fixed point or eventually cycles
or ever visits a particular value. All of these questions are equivalent to the infamous
Halting Problem and Turing showed that NO ALGORITHM CAN SOLVE THE
HALTING PROBLEM.(see [13])

One might object that this is only true in theory because the function U must be so
complicated that it will never arise in practice. On the contrary, U can be computed as
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follows:

(L, R, q) := UNPACK(x)
α := h(q, L mod 2)
β := g(q, L mod 2)

L̂ := α L/2 + (1 − α)(2L + β)

R̂ := α (2R + β) + (1 − α) R/2
q̂ := δ(q, L mod 2)

x̂ := PACK(L̂, R̂, q̂).

Here, PACK(L̂, R̂, q̂) is an invertible function which maps triples of naturals to a single
natural. (For example, we could use PACK(L̂, R̂, q̂) = P(P(L, R), q).) Both h and g are
Boolean valued functions, so α ∈ {0, 1} and β ∈ {0, 1} . Further, δ is a function from
Q × {0, 1} to Q, where Q is a finite set. The set Q can be reasonably small. A few dozen
elements are enough. For the details of this construction see Minsky. [23]

Here one difference equation
yn = U( yn−1 )

contains all computable sequences. For each computable sequence 〈xk〉 there is a Turing
machine program p〈x〉 so that when p〈x〉 is given k as an input, p〈x〉 will eventually halt
and output the value of xk. {At the risk of a slight confusion, we’re using p〈x〉 for a Turing
machine, for a program, and for the natural number representing this program.} so that
Setting L0 = P(p〈x〉, k) and starting at y0 = PACK(L0, 0, q0) the sequence 〈yn〉 reaches
a fixed point which when UNPACKed yields the triple (xk, 0, qSTOP ).

7 Conclusions In this brief sketch, we can only outline some of the theory and applica-
tions of difference equations. More details can be found in our book Difference Equations.
[8]

Our big points are:
(a) difference equations are useful biological models
(b) linear models have a very simple theory
(c) nonnegativity often implies stronger conclusions
(d) stepping outside a system may simplify the analysis of the system
(e) some nonlinear models can be analyzed
(f) chaos puts a practical limitation on what can be predicted from data
(g) unsolvability implies that a complete theory of nonlinear difference equations is im-

possible.

References

[1] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM,
Philadelphia, PA, 1994.

[2] H. Bernardelli. Population waves. J. Burma Res. Soc., 31:3–18, 1941.

[3] R. M. Capocelli and P. Cull. Rounding the solutions of Fibonacci-like difference equations.
Fibonacci Quarterly, 41:133–141, 2003.

[4] P. Cull. Convergence of iterations. In R. Moreno-Diaz et al, editor, EUROCAST 2005. LNCS
3643, pages 457–466. Springer-Verlag, Berlin Heidelberg, 2005.

[5] P. Cull. Enveloping Implies Global Stability. In L. Allen B., Aulbach, S. Elaydi, and R. Sacker,
editors, Difference Equations and Discrete Dynamical Systems, pages 170–181. World Scien-
tific, Hackensack, NJ, 2005.



DIFFERENCE EQUATIONS AS BIOLOGICAL MODELS 981

[6] P. Cull and J. Chaffee. Stability in discrete population models. In D. M. Dubois, editor,
Computing Anticipatory Systems: CASYS’99, pages 263–275. Conference Proceedings 517,
American Institute of Physics, Woodbury, NY, 2000.

[7] P. Cull and J. Chaffee. Stability in simple population models. In Cybernetics and Systems
2000, pages 289–294. Austrian Society for Cybernetics Studies, 2000.

[8] P. Cull, M. Flahive, and R. Robson. Difference Equations: From Rabbits to Chaos. Springer,
New York, 2005.

[9] P. Cull and J. Holloway. Computing Fibonacci numbers quickly. Information Processing
Letters, 32:143–149, 1989.

[10] P. Cull and A. Vogt. Mathematical analysis of the asymptotic behavior of the Leslie population
matrix model. Bulletin of Mathematical Biology, 35:645–661, 1973.

[11] P. Cull and A. Vogt. The periodic limit for the Leslie model. Mathematical Biosciences,
21:39–54, 1974.

[12] Paul Cull. Stability in One-dimensional Models. Scientiae Mathematicae Japonicae, 58:349–
357, 2003.

[13] M. Davis. Computability and Unsolvability. Dover, New York, NY, 1982.

[14] W. Feller. An Introduction to Probability Theory and its Applications. John Wiley, New York
City, NY, 1968.

[15] R. Herken, editor. The Universal Turing Machine. Oxford University Press, Oxford, UK,
1988.

[16] D. Knuth. Big Omicron and Big Omega and Big Theta. SIGACT News, 8:18–24, April-June
1976.

[17] D. E. Knuth. The Art of Computer Programming. Addison-Wesley, New York City, NY, third
edition, 1997.

[18] P. H. Leslie. On the use of matrices in certain population mathematics. Biometrika, 33:183–
212, 1945.

[19] T-Y. Li and J. Yorke. Period three implies chaos. American Mathematical Monthly, 82:985–
992, 1975.

[20] A. J. Lotka. Elements of Mathematical Biology. Dover Publications, New York City, NY, 1956.

[21] R. M. May. Biological populations with nonoverlapping generations: stable points, stable
cycles, and chaos. Science, 186:645–647, 1974.

[22] R. M. May. Simple mathematical models with very complicated dynamics. Nature, 261:459–
467, 1976.

[23] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs, NJ,
1967.

[24] E. Seneta. Non-negative Matrices. John Wiley & Sons, New York City, NY, 1973.

[25] L. Sigler. Fibonacci’s Liber Abaci. Springer-Verlag, New York City, NY, 2002.

[26] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. In
M. Davis, editor, The Undecidable, pages 116–154. Raven Press, Hewlett, NY, 1965.

Paul Cull
Computer Science Dept., Oregon State University
Corvallis, OR 97331 USA
Email: pc@eecs.oregonstate.edu


