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Abstract. In this paper we introduce a modified version of Aleksandrov Theorem on
non-discrete Hausdorff locally compact groups. This also provides us a method to con-
struct Cantor type sets in any positive left Haar measure subset.

1. Introduction

Cantor sets widely appear as invariant sets and attractors of many chaotic dynamical
systems. Therefore Cantor sets in manifolds play a role in the dynamics analysis and
understanding topological nature of invariant sets of systems, e.g. [8, 9]. This signifies
the importance of study of Cantor sets in a more general spaces such as locally compact
groups. Concepts of perfect and Cantor sets were initiated by Georg Cantor, who introduced
the accumulation point set of a set in 1872. He also constructed Cantor ternary set, and
therefore Cantor set has been named after him. Note that in this paper a non-empty
set which is nowhere dense, compact and perfect is called Cantor set, and we are just
heading to deal with non-discrete Hausdorff locally compact groups. Constructing perfect
and Cantor sets was extended to separable complete metric spaces by P. S. Aleksandrov
in 1916. He proved that any uncountable Borel set, later extended to analytic sets, in a
separable complete metric space contained a nonempty perfect subset. In fact he introduced
an appropriate homeomorphism between uncountable Borel sets, analytic sets, and the unit
interval of real line. Then, simply by considering Cantor sets in the unit interval and
transferring them back into the original space provides desired perfect and Cantor sets, c.f.
[1, 4, 5, 10, 11, 12]. Most research and study of Cantor sets has been focused on the real
line and complete separable metric spaces and one cannot find many discussions and results
on locally compact groups. Naturally, a question arises: what categories of sets contain a
Cantor set?

Let us first recall that even on the real line there are uncountable sets with no non-empty
perfect subset, so-called totally imperfect set, c.f. [1, §1, Exercise 22.8, and §3, Lemma 35].
Aleksandrov Theorem strikes the mind that there may be no totally imperfect set in the
category of uncountable Borel sets. However, this is not true in a general locally compact
group, see Remark 2.4. In fact, even an uncountable closed subset of a locally compact group
may be a totally imperfect set. Therefore we are interested in some constraints on Borel or
analytic sets under which the category would not have totally imperfect set and, even more,
any set in the category would have some Cantor sets as its subsets. Further, let us recall
the fact that any Borel and analytic set is measurable due to any outer metric measure.
Thereby this leads us, instead, to think of category of measurable sets with positive left
Haar measure.
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In order to deal with this problem, we introduce condensation derivative, a Borel deriv-
ative, as its iterations on a suitable set approach to a perfect set, c.f. [3] and references
therein for relevant results in separable complete metric space cases. In the sequel we
are concerned with the sufficient conditions under which the reached perfect set would be
nonempty, nowhere dense and compact. We try to evaluate the impact of left Haar measure
to provide sufficient conditions which lead to Cantor sets. We prove that the Condensation
derivative is a measure-preserving and invariant set function on certain subsets of space.
Then it enables us to introduce Aleksandrov Theorem on locally compact groups, indicat-
ing that any positive left Haar measure set contains a Cantor subset. This facilitates us
to extend Cantor’s idea to construct Cantor sets in any set of finite and positive left Haar
measure. This also provides an efficient tool to discuss the measure of the obtained Cantor
sets.

2. Condensation derivative and perfect sets

Through out this section we introduce condensation derivative and present some prelim-
inary results related to perfect sets. Note that in this paper G is always considered to be a
non-discrete Hausdorff locally compact group and X ⊆ G.

A Borel derivative on 2X is a Borel map D : 2X → 2X which is monotone on the
closed subsets of X , i.e., D(H) ⊆ H for any closed set H . For instance Cantor-Bendixson
derivative is a Borel derivative, which is defined as follows:

D(K) = K ′,

where K ′ denotes the set of accumulation points of K, c.f. [10]. For an illuminating
presentation of Borel derivatives see Kechris [7].

For an ordinal number α and a Borel derivative D : 2X → 2X , the α-th iterated derivative
Dα : 2X → 2X is defined inductively as follows:

D0(K) = K,
Dα+1(K) = D(Dα(K)), and
Dα(K) =

⋂
β≺α Dβ(K) for limit ordinal number α.

Each Dα is a Borel map, c.f [2] where the Borel complexity of the iterations is investigated.
Condensation derivative is an example of Borel derivative:

Definition 2.1. A point p ∈ X is called a condensation point of A ⊆ X if any neighborhood
of p contains uncountably many points from A. We call the set of all condensation points
of A as condensation derived set (CDS) from A and denote CD for condensation derivative
set function which maps any set to its CDS.

CDSs are always closed and CD is a Borel derivative. CD of a second-countable space
excludes at most countably many points and is a perfect set. This is called Cantor-Bendixon
Theorem. It, however, may be a non perfect set or a void set for non second-countable cases,
see Remark 2.4.

If {Fγ |γ ∈ Γ} is a family of perfect sets, then
⋃

γ∈Γ Fγ is always perfect. Therefore
definition of perfect kernel is well defined:

Definition 2.2. The maximal perfect subset of the closure of a set is called its perfect
kernel.

We define the α-th iterated condensation derivative, for any ordinal number α, the same
as what is defined for Borel derivatives.

Theorem 2.3. Let X be a closed subset of G and A ⊆ X.
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1. Then there is an ordinal number α0 which

P = CDα0(A) = CDα(A), where α � α0,

and P is the perfect kernel of A. In other words, for any perfect set H in X which

H ⊆ A ∪ CD(A) ⊆ A,

we have
H ⊆ P = CDα0(A).

2. Let G be first-countable space and X be σ-compact, then P = CD(A) is the perfect
kernel of A, for any set A ⊆ X, and P = CDα(P ) for any ordinal number α. In
particular, when A is an uncountable set, then P �= ∅.

Proof. It is straightforward that {CDα(A)}α is a descending chain of closed sets. Choose
an ordinal number α0 at which the cardinal number of its predecessor ordinal numbers is
Card(P(A)), where P(A) denotes the power set of A. It is easy to see that CDα(A) =
CDα0(A), for any α � α0. Now we need to prove that a set P is perfect if and only if
CD(P ) = P . Suppose that there exists a limit point x ∈ P which is not a condensation
point. Then, there is a countable and relatively open set G such that x ∈ G ⊆ P . Choose
another relatively open set N in P such that x ∈ N and N ⊆ N ⊂ G. Then, N is a
nonempty countable perfect set, which contradicts with the fact that there is no nonempty
countable perfect set in a Hausdorff locally compact group (space). This completes the
proof for Part (1). Proving Part (2) is straightforward from Cantor-Bendixon Theorem and
the fact that any first-countable locally compact group is metrizable and therefore X is
2nd-countable.

Remark 2.4. At the first glance, one might naively think that the chain in Theorem 2.3 is
just a single nonempty perfect set. It, however, is not true for a general locally compact
group. In fact, the hypothesis for the “first-countability” of G and “σ-compactness” of X
in Part (2), is crucial. Although it is easy to see that in a metric locally compact group, any
CDS of an uncountable closed set A is perfect and CD(A) = CD2(A). It, however, may be a
void set. Indeed, a non-discrete metric locally compact group may contain an uncountable
closed set, say A, satisfying CD(A) = ∅ and therefore it is a totally imperfect closed set,
see Proposition 2.5. It is not very difficult to generalize the idea used in Proposition 2.5
to construct a non-discrete locally compact group, non-metrizable of course, such that the
cardinal of mentioned chain in Theorem 2.3 is very large and the deriving sets would be
totally imperfect set. This topic, however, is out of the scope of this paper, and thus is not
further discussed.

Any nonempty CDS in a metric locally compact group is an uncountable perfect set. There
is also no totally imperfect set with positive left Haar measure, see Theorem 3.3. There,
however, exists a non-discrete metric locally compact group which contains uncountable
closed totally imperfect sets.

Proposition 2.5. There exists a non-discrete metric locally compact group which contains
an uncountable closed set which is totally imperfect set, in particular its CDS is empty.

Proof. Let us first construct a non-discrete metric locally compact group. Denote Ω1 for
the first uncountable ordinal number and define the additive group G of all real valued
functions defined on [1, Ω1]. The group G is an ordered set, (G,≺), if we define f 
 g when
there exists an α0 ∈ [1, Ω1] such that

f(α0) 
 g(α0) and f(α) = g(α), for all α ≺ α0.
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Then (G,≺) is a totally ordered set and G equipped with order topology is a non-discrete
additive group. Let fa denote a function defined by

fa(α) =
{

0 for α ≺ Ω1,
a when α = Ω1.

Then, {(f−1/n, f1/n)}∞n=1 is a countable local neighborhood base at 0. It is easy to see that
for any real numbers a and b, where a ≺ b, we have (fa, fb) = [fa, fb]. Because [fa, fb] is also
compact for any a and b, then {(f−1/n, f1/n)}∞n=1 is a relatively compact local neighborhood
base at 0. Now for any f ∈ G denote

f + (f−1/n, f1/n) =
{
g ∈ G|g = f + h, where h ∈ (f−1/n, f1/n)

}

and consider the family of {
f + (f−1/n, f1/n)|n ∈ N

}
.

This is a countable and relatively compact local neighborhood base around f. Therefore
G is a first-countable locally compact group. Thus, G is metrizable by [6, §8, Theorem 8.3].
Now we claim that the set of all constant functions in G, say A, is an uncountable closed
set which contains no perfect subset. In fact for any real number a and constant function
fa, where fa(α) = a for any α ∈ [1, Ω1], fa + (f−1/2, f1/2) is an open set and

fa ∈ fa + (f−1/2, f1/2).

However, fa +(f−1/2, f1/2) does not contain any other constant function. Therefore, A is a
closed set and CD(A) = ∅. Hence, by Theorem 2.3, the perfect kernel of A is the void set,
and the proof is complete.

3. Constructing Cantor sets in locally compact groups via its left Haar
measure

Now, we present the main result of this paper. Let us denote λ for the left Haar measure
defined on G. The following theorem could be extended into the more general spaces. It,
however, is irrelevant to the purpose of this paper and will be discussed in the more relevant
treatise works, see e.g. [4].

Theorem 3.1. Let F ⊆ G be a closed set whose left Haar measure is finite and positive.
Then, there is an ordinal number α0 such that P = CDα0(F ) is a nonempty perfect set,
P = CD(P ) and λ(P ) = λ(F ) 
 0. Besides, P is the perfect kernel of set F.

Proof. For a closed set F ⊆ X , denote P1 = CD(F ), and assume that a = λ(P1) ≺ λ(F ) = b.
Then,

λ(F \ P1) = b − a 
 0.

Thus, there exists a compact set K such that K ⊆ F \ P1, and λ(K) 
 0. K is an
uncountable compact set because any left Haar measure of a countable set in a non-discrete
locally compact group is zero. Hence,

CD(K) �= ∅.
Since K ⊆ F thereby

CD(K) ⊆ CD(F ) = P1.

Furthermore, because K is a closed set, we have

CD(K) ⊆ K ⊆ F \ P1,

which is a contradiction. Therefore, a = λ(P1) � λ(F ) = b. However, we have P1 ⊆ F since
F is a closed set. Thus, λ(P1) = λ(F ) for any closed set F with a finite and positive left
Haar measure.
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Now let us first assume that there exists an ordinal number α such that

λ(CDα(F )) ≺ λ(F ).

Consider α0 as the least ordinal number which satisfies this. Therefore, α0 must be a limit
ordinal number. Let

Pα0 = CDα0(F ) and a = λ(Pα0 ) ≺ λ(F ) = b.

Then, by a similar argument we can show that there exists a compact set K, K ⊆ F \Pα0 ,
such that λ(K) 
 0. Because

K ⊆ F \ Pα0 =
⋃

α≺α0

F \ CDα(F ),

K is compact and {F \ CDα(F )| α ≺ α0} is a family of relatively open sets in F , there
exists a finite number of ordinal numbers, α1 ≺ α2 ≺ · · · ≺ αn ≺ α0, such that

K ⊆
n⋃

i=1

F \ CDαi(F ) = F \ CDαn(F ).

Therefore, K
⋂

CDαn(F ) = ∅ and λ(CDαn(F )) ≺ λ(F ). But αn ≺ α0 contradicts with the
choice of α0 which is the least ordinal number with this property. Thus, we have

λ(F ) = λ
(
CDα(F )

)
,

for any ordinal number α. Now, by Theorem 2.3, there is an ordinal number α0 for which
P = CDα0(F ) is a perfect invariant set for CD and λ(P ) = λ(F ) 
 0. The proof is
complete.

Remark 3.2. The closeness of set F in Theorem 3.1 cannot be substituted with being a
Fσ-set, even when the space is the real line. For instance, let K ⊆ [0, 1] be a Cantor set
with positive Lebesgue measure, and consider F to be a Fσ-set such that

F ⊆ (Qc
⋂

[0, 1]) \ K,

and
λ(F ) = λ(Qc ∩ [0, 1] \ K) ≺ 1.

Then, CD(F ) = [0, 1]. Thus,

λ(CD(F )) = 1 
 λ(F ), where F is a Fσ.

The following theorem is a version of Aleksandrov Theorem on locally compact groups. It
indicates that any positive left Haar measure set contains compact perfect sets of positive
left Haar measure.

Theorem 3.3. Let A be a measurable subset of a locally compact group with a finite and
positive left Haar measure, say λ(A) = α 
 θ 
 0. Then, there exists an uncountable perfect
compact set Kθ ⊆ A such that λ(Pθ) = θ.

Proof. For any real number θ, 0 ≺ θ ≺ α, there exists a compact set H ⊆ A such that
λ(H) 
 θ. Now, we need to find a compact subset Pθ from H with λ(Pθ) = θ. To achieve
this, consider the ordered set

(Λ = {K ⊆ H |λ(K) � θ and K is perfect and compact},�)

where
K1 � K2, if K1 ⊇ K2.

By Theorem 3.1, the ordered set Λ is non-empty. Based on Zorn’s Lemma we claim that
any maximal set K from Λ has the measure of θ. Consider an arbitrary chain {Kι} ⊆ Λ,
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then B =
⋂

ι{Kι} is a nonempty compact set. If λ(B) ≺ θ, then there is an open set U
such that

B ⊆ U and λ(U) ≺ θ.

Because
⋂

ι{U c ∩ Kι} = ∅, there is a finite number of ιi such that
n⋂

i=1

{U c ∩ Kιi} = ∅.

Thus, there exists a Kιi ⊆ U such that

θ � λ(Kιi) � λ(U) ≺ θ

which is a contradiction.
For our convenience, let us denote αA for the least ordinal number satisfying Theorem

2.3 due to set A. Therefore,

λ(B) = λ(CDαB (B)) � θ.

In other words,
Kι � PB = CDαB (B) ∈ Λ

is the least upper bound for the chain {Kι}. Therefore, by Zorn’s Lemma, Λ has a maximal
set Pθ. Assume that λ(Pθ) 
 θ and choose a point x ∈ Pθ. Because λ({x}) = 0, for any
ε 
 0 such that ε ≺ λ(Pθ) − θ, there is an open set V with x ∈ V and λ(V ) ≺ ε. Thus, if
PV

θ = Pθ\V , we have

CD
α

P V
θ (PV

θ ) = λ(PV
θ ) 
 θ, and CD

α
P V

θ (PV
θ ) ⊂ Pθ,

and therefore,
CD

α
P V

θ (PV
θ ) ∈ Λ and CD

α
P V

θ (PV
θ ) � Pθ

which is a contradiction. Therefore,

λ(Pθ) = θ 
 0 and Pθ ⊆ A

is an uncountable compact perfect set, and the proof is complete.

Remark 3.4. Note that Pθ in Theorem 3.3 can be chosen as a Cantor set, when A is nowhere
dense or A contains a zero measure subset which is dense in interiour(A), e.g. when X is
separable.

Theorem 3.1 indicates that any positive left Haar-measure closed set in a non-discrete
locally compact group has the same measure with its perfect kernel. Therefore, totally im-
perfect sets in non-discrete locally compact groups are null-left Haar measure set. Theorem
3.3, on the other hand, implies that when a non-discrete locally compact group is separable
or contains a dense subset whose measure is less than the measure of space, then we can
construct a Cantor set. This leads us to look for an efficient method for constructing Cantor
sets in positive left Haar measure sets of non-discrete locally compact groups without these
concerns. Indeed, we have extended Aleksandrov Theorem such that any finite and positive
left Haar measure set contains a Cantor set, with no constraint. The interesting point is
that Cantor’s method can be directly applied to prove this modified version of Aleksandrov
Theorem for Cantor sets on locally compact groups.

Theorem 3.5. Let A be a subset of a locally compact group with a finite and positive left
Haar measure, say λ(A) = α. Then, for any real number β, α 
 β � 0, there is a Cantor
set Pβ ⊆ A such that λ(Pβ) = β.
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Proof. Consider 0 ≺ α− β =
∑∞

i=1 γi, where γi are positive numbers. By Theorem 3.3, for
γ1 
 0 there is a perfect compact set K0 ⊂ A such that λ(K0) = α/2 − γ1/2. Then, we
have

λ(A \ K0) = α/2 + γ1/2 
 α/2 − γ1/2.

Let α/2 − γ1/2 ≺ θ ≺ α/2. Then, there exists an open set N0 ⊃ K0 such that λ(N0) ≺ θ.
Now, because G is locally compact, there is a relatively compact open set N0 such that

K0 ⊆ N0 ⊆ N0 ⊆ N0.

Thus, λ(A \ N0) 
 α/2 and therefore there is a compact set

K1 ⊂ A \ N0 ⊆ (N0)
c

= N1

such that
λ(K1) = α/2 − γ1/2 ≺ α/2.

Thereby we have separated compact perfect sets K0 and K1, i.e.

K0 ⊆ N0, K1 ⊆ N1, N0
⋂

N1 = ∅,
where N0 and N1 are open sets, and λ(K0

⋃
K1) = α−γ1. By the same procedure we find

the compact sets
K00, K01 ⊂ K0, and K10, K11 ⊂ K1

which are mutually separated, and so

λ
( ⋃

i,j∈{0,1}
Kij

)
= α − γ1 − γ2 and λ(Kij) = α/4 − γ1/4 − γ2/4.

By induction we construct the separated compact perfect sets:

Ki1i2···in , where ij ∈ {0, 1}, j = 1, 2, . . . n,

such that

Ki1i2···in ⊂ Ki1i2···in−1 , λ(
⋃

Ki1i2···in) = α −
n∑

i=1

γi

and
λ(Ki1i2···in) = α/2n − γ1/2n · · · − γn/2n.

It is easy to see that

F =
∞⋂

n=1

⋃
ij∈{0,1}

Ki1i2···in �= ∅

is a compact set and λ(F ) = β 
 0. Theorem 3.3 indicates that there exists compact perfect
set Pβ ⊆ F such that

λ(Pβ) = λ(F ) = β.

We claim that Pβ is nowhere dense, and in fact so is F . Otherwise, F contains an open set.
Consider N to be a connected component of this open set, therefore N ⊆ F and λ(N) 
 0.
Because

λ(Ki1i2···in) ≺ α/2n,

thus for a sufficient large number n, N is not included in Ki1i2···in for any i1i2 · · · in ∈
{0, 1}n.

Since Ki1i2···in , i1i2 · · · in ∈ {0, 1}n, are mutually separated, N is not connected. This
contradicts with the choice of N.
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