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Abstract. The purpose of this paper is to investigate extension problems for the cat-
egory of finite commutative hypergroups. In fact, sufficiently many extensions will be
provided by applying the notion of a field of finite commutative hypergroups. More-
over, the duality of such extensions will be studied via fields of finite commutative
hypergroups.

1 Introduction Let H and L be finite commutative hypergroups. A finite commuta-
tive hypergroup K is called an extension of L by H if the sequence

1→ H → K → L→ 1

is exact, i.e. if the quotient hypergroup K/H is isomorphic to L. Here, the notions of
subhypergroup, quotient hypergroup and isomorphism between hypergroups are taken from
[B-H], a source from which all the elementary knowledge needed in the sequel will be taken.

In the previous papers [H-J-K-K] and [K-I] we constructed extensions K(H,G,α) and
K(Ĥ, Ĝ, α̂) for a regular action α of a finite abelian group G on a finite commutative
hypergroup H which satisfies by definition the exact sequence :

1→ Hα → K(H,G,α)→ K(G)→ 1

and

1→ K(Ĝ)→ K(Ĥ, Ĝ, α̂)→ Ĥ α̂ → 1.

respectively. Here, K(G) [resp. K(Ĝ)] denotes the class hypergroup [resp. the character
hypergroup] of G and Hα [resp. Ĥ α̂] denotes the orbital hypergroup by the action α [resp.
α̂] of G on H [resp. on the dual signed hypergroup Ĥ of H ]. The ways of constructing
K(H,G,α) and K(Ĥ, Ĝ, α̂) are different. The former depends on the theory of operator
algebras, and the latter depends on representation theory. However, observing the results of
the two constructions we found that K(H,G,α) and K(Ĥ, Ĝ, α̂) have a common structure
as hypergroups which we express in terms of fields of finite commutative hypergroups.

In the course of the paper, for two finite commutative hypergroups H and L we give an
explicit definition of a field ϕ : L � � �−→ H(�) ⊂ H of finite commutative hypergroups and
show that every such field ϕ gives rise to an extension K(H,ϕ,L) of L by H as described
in Theorem 1. This extension turns out to be a generalization of both the extensions
K(H,G,α) and K(Ĥ, Ĝ, α̂) above. Moreover, we shall introduce the dual ϕ̂ : Ĥ � χ �−→
Z(χ) ⊂ L̂ of the field ϕ and show in Theorem 3 that the extension K(L̂, ϕ̂, Ĥ) of Ĥ by L̂
is isomorphic to the dual of K(H,ϕ,L).

It is an important problem to determine the extensions of hypergroups in order to
understand their full structure. At this stage we can only establish a useful characterization
of the extensions obtained by fields of commutative hypergroups as is done in Theorem 2.
To find all extensions of finite commutative hypergroups remains a promising task.
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2 Preliminaries We recall some notions and facts on finite commutative hypergroups
from Wildberger’s paper [W]. K := (K,A) is called a finite commutative signed hypergroup
if the following conditions (1)‘(6) are satisfied.

(1) A is a ∗-algebra over C with the unit c0.

(2) K={ c0,c1, ... ,cn } is a linear basis of A.

(3) K∗=K .

(4) cicj =
n∑

k=0

nk
ijck, where nk

ij is a real number such that

c∗i =cj ⇐⇒ n0
ij > 0 and c∗i �= cj ⇐⇒ n0

ij = 0.

(5)
n∑

k=0

nk
ij = 1 for any i, j.

(6) cicj = cjci for any i, j.

In the case that nk
ij ≥ 0 for any i, j, k, K = (K,A) is called a finite commutative

hypergroup. We often denote ∗-algebra A of (K,A) by A(K).

The weight of an element ci ∈ K is defined by w(ci) := (n0
ij)

−1 where cj = c∗i , and the
total weight of K is given by w(K) :=

∑n
i=0w(ci).

For a finite commutative signed hypergroup K a function χ on K is called a character
of K if

χ(ci)χ(cj) =
n∑

k=0

nk
ijχ(ck) whenever cicj =

n∑
k=0

nk
ijck.

The set K̂ of all characters of K also becomes a finite commutative signed hypergroup, and
the duality ˆ̂

K ∼= K holds in the sense of isomorphisms between signed hypergroups.

3 Fields of finite commutative hypergroups Let H = {h0, h1, . . . , hn} ⊂ A(H) and
L = {�0, �1, . . . , �m} ⊂ A(L) be finite commutative hypergroups. We assume that for each
element � ∈ L the subset H(�) of H satisfies the following conditions:

(1) (subhypergroup condition) H(�) is a subhypergroup of H for each � ∈ L with
H(�0) = {h0} and H(�∗) = H(�).

(2) (regularity condition) If �i�j =
∑m

k=0 n
k
ij�k, [H(�i)H(�j)] ⊃ H(�k) holds for all k

such that nk
ij �= 0 where [H(�i)H(�j)] is the subhypergroup of H generated by H(�i)

and H(�j).

We denote the correspondence L � � �−→ H(�) ⊂ H by ϕ and call it the field of finite
commutative hypergroups based on L.

Let e(�) denote the Haar measure of the subhypergroup H(�) of H for � ∈ L. Then,
condition (2) implies that
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(3) e(�i)e(�j) ≤ e(�k) for all k such that nk
ij �= 0.

Given a field ϕ;L � � �−→ H(�) ⊂ H we put

K(H,ϕ,L) := {he(�)⊗ � ∈ A(H)⊗A(L) ; h ∈ H, � ∈ L}.

Then we obtain the following

Theorem 1. K(H,ϕ,L) is a finite commutative hypergroup which is an extension of
L by H .

Proof. The set Q(�) := {he(�); h ∈ H} is a finite commutative hypergroup which is
isomorphic to the quotient hypergroup H/H(�) of H by H(�). Therefore, different elements
of K(H,ϕ,L) are linearly independent in A(K(H,ϕ,L)) =

⊕m
j=0 A(Q(�j))⊗C·�j . It is easy

to see that the elements of K(H,ϕ,L) form a linear basis of the ∗-algebra A(K(H,ϕ,L)).

Next we examine the product of K(H,ϕ,L). For all hp, hq ∈ H and all �i, �j ∈ L we
have

(hpe(�i)⊗ �i)(hqe(�j)⊗ �j) = hphqe(�i)e(�j)⊗ �i�j

= hphqe(�i)e(�j)⊗
m∑

k=0

nk
ij�k

=
m∑

k=0

nk
ijhphqe(�i)e(�j)e(�k)⊗ �k,

hence the product of K(H,ϕ,L) is well-defined.

In order to verify ∗-operation we compute

(he(�i)⊗ �i)(he(�i)⊗ �i)∗ = hh∗e(�i)e(�i)∗ ⊗ �i�∗i
= hh∗e(�i)⊗

m∑
k=0

nk
i �k

=
m∑

k=0

nk
i hh

∗e(�i)e(�k)⊗ �k.

From this formula we conclude that the structure constant at h0⊗ �0 is n0
i /w(he(�i)), and

w(he(�i)⊗ �i) = w(he(�i))w(�i).

It is easy to check that the structure constant at h0 ⊗ �0 of the product

(hpe(�i)⊗ �i)(hqe(�j)⊗ �j)
vanishes provided (hpe(�j)⊗ �j) �= (hqe(�i)⊗ �i)∗.

Altogether we have shown that K(H,ϕ,L) is a finite commutative hypergroup.

Now let e(H) be the Haar measure of H . Then

Q := {(e(H)⊗ �0)(he(�i)⊗ �i);h ∈ H, �i ∈ L} = {e(H)⊗ �i; �i ∈ L}
is isomorphic to K(H,ϕ,L)/H ∼= L, i.e. K(H,ϕ,L) is an extension of L by H .

[Q.E.D.]
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We observe that H × L := {h ⊗ �;h ∈ H, � ∈ L} is an extension of L by H with
A(H × L) = A(H) ⊗ A(L) and H(�) = {h0} for all � ∈ L. Here we consider the map
ψ : h ⊗ � �−→ he(�) ⊗ � from H × L onto K(H,ϕ,L) which induces a linear map ψ from
A(H)⊗A(L) onto the ∗-subalgebra A(K(H,ϕ,L)) of A(H)⊗A(L).

In this way we obtain the following characterization theorem on extensions arising from
a field of finite commutative hypergroups.

Theorem 2. The map ψ is an A(H)-module map from A(H) ⊗ A(L) onto the ∗-
subalgebra A(K(H,ϕ,L)) of K(H,ϕ,L) such that ψ(h0 ⊗ �) = e(�) ⊗ � where e(�) is the
Haar measure of some subhypergroup H(�) of H satisfying e(�0) = {h0}, e(�∗) = e(�)
and e(�i)e(�j) ≤ e(�k) for all k such that nk

ij �= 0, �i�j =
∑m

k=0 n
k
ij�k. Conversely, if

an extension K of L by H satisfies the above condition, then K = ψ(H × L) is equal to
K(H,ϕ,L) defined by a field ϕ : L � � �−→ H(�) ⊂ H .

Proof. It is clear that the map ψ defines a linear map from A(H) ⊗ A(L) onto
A(K(H,ϕ,L)) such that

(hp ⊗ �0)ϕ(h⊗ �) = hphe(�)⊗ � = ϕ((hp ⊗ �0)(h⊗ �))

for all hp ∈ H , which implies that ψ is an A(H)-module map. Now we see that the map ψ
satisfies the conditions described in the theorem.

Suppose that the map ψ from A(H)⊗A(L) onto the ∗-subalgebra A(K) of A(H)⊗A(L)
satisfies the conditions of the theorem. Since ψ(h0 ⊗ �) = e(�)⊗ �, it is easy to see that

K = ψ(H × L) = {(he(�)⊗ �);h ∈ H, � ∈ L} = K(H,ϕ,L).

[Q.E.D.]

Remark 1. If H(�) = {h0} for all � ∈ L, K(H,ϕ,L) is equal to H × L.

Remark 2. If H(�0) = {h0} and H(�) = H for all � ∈ L such that � �= �0, then
K(H,ϕ,L) = H ∨ L which is the hypergroup join of H and L ([B-H], p.59).

Remark 3. If H(�0) = {h0} and H(�) = W for all � ∈ L such that � �= �0, where
W is a subhypergroup of H , then, K(H,ϕ,L) = S(Q× L;Q→ H) which is a hypergroup
obtained by substituting Q := H/W in Q× L by H in the sense of Voit [V].

Remark 4. In this section we constructed the finite commutative hypergroupK(H,ϕ,L)
for two finite commutative hypergroups H and L. In a similar way we can also construct
the finite commutative signed hypergroup K(H,ϕ,L) for two finite commutative signed
hypergroups H and L.

4 The dual of a field of finite commutative hypergroups For two finite commu-
tative hypergroups H and L let ϕ : L � � �−→ H(�) ⊂ H be a field of finite commutative
hypergroups based on L. We denote the annihilator A(Ĥ,H(�)) of H(�) by X(�) for � ∈ L.
Then the family {X(�) ⊂ Ĥ ; � ∈ L} satisfies the following conditions:

(i) X(�) is a signed subhypergroup of Ĥ for each � ∈ L such that X(�0) = Ĥ and
X(�∗) = X(�).
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(ii) X(�i) ∩X(�j) ⊂ X(�k) holds for all k such that nk
ij �= 0 where �i�j =

∑m
k=0 n

k
ij�k.

We call the correspondence L � � �−→ X(�) ⊂ Ĥ the adjoint of the field ϕ : L � � �−→
H(�) ⊂ H and denote it by ϕ∗.

For each χ ∈ Ĥ = {χ0, χ1, · · · , χn} we denote the subset {� ∈ L ; χ ∈ X(�)} of L by
Y (χ). Then it is easy to see that conditions (i) and (ii) yield the following conditions:

(iii) Y (χ) is a subhypergroup of L for each χ ∈ Ĥ such that Y (χ0) = L and Y (χ∗) = Y (χ).

(iv) Y (χi) ∩ Y (χj) ⊂ Y (χk) for all k such that mk
ij �= 0, where χiχj =

∑n
k=0m

k
ijχk.

Here we note that condition (iii) follows from (ii) and condition (iv) follows from (i).
By this procedure we have produced the dual adjoint field Ĥ � χ �−→ Y (χ) ⊂ L which

will be denoted by ϕ̂∗.

For each χ ∈ Ĥ , take the annihilator A(L̂, Y (χ)) of Y (χ) and denote it by Z(χ).

Thus we obtain the field ϕ̂ : Ĥ � χ �−→ Z(χ) ⊂ L̂ which we call the dual of the field
ϕ : L � � �−→ H(�) ⊂ H .

Consequently we have a finite commutative signed hypergroup

K(L̂, ϕ̂, Ĥ) = {ρe(χ)⊗ χ ; ρ ∈ L̂, χ ∈ Ĥ}.

Lemma In the above situation we get

(1) For each χ ∈ Ĥ and � ∈ L, � ∈ Y (χ) if and only if χ ∈ X(�).

(2) For each χ ∈ Ĥ and the Haar measure e(�) of H(�),

χ(e(�)) =
{

1 if χ ∈ X(�)
0 if χ /∈ X(�).

(3) For each � ∈ L and the Haar measure e(χ) of Z(χ),

e(χ)(�) =
{

1 if � ∈ Y (χ)
0 if � /∈ Y (χ).

(4) For each χ ∈ Ĥ and � ∈ L, we have χ(e(�)) = e(χ)(�).

Proof. (1) follows immediately from the definition of Y (χ). (2) and (3) are obtained
by the property of the Haar measure of subhypergroups. (4) follows directly from (1), (2),
and (3). We omit the details.

[Q.E.D.]

Now we arrive at the duality theorem.

Theorem 3. Under the above assumptions we have

(1) K(L̂, ϕ̂, Ĥ) ∼= K̂(H,ϕ,L),
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(2) K(H,ϕ,L) ∼= K̂(L̂, ϕ̂, Ĥ).

Proof. It is clear that K̂(H,ϕ,L) ⊃ K(L̂, ϕ̂, Ĥ). It remains to show that K̂(H,ϕ,L) ⊂
K(L̂, ϕ̂, Ĥ). Let χ be a character of K(H,ϕ,L). Then there exists χj ∈ Ĥ such that

χ(he(�)⊗ �) = χj(h)χj(e(�))χ(h0 ⊗ �) = χj(h)e(χj)(�)ρ(�).

for some ρ ∈ L̂. Hence we get χ = χje(χj)⊗ ρ, and this proves statement (1).
Statement (2) follows immediately from the isomorphisms

K̂(L̂, ϕ̂, Ĥ) ∼= ˆ̂
K(H,ϕ,L) ∼= K(H,ϕ,L).

[Q.E.D.]

Remark 1. We have established the exact sequence

1 −→ L̂ −→ K(L̂, ϕ̂, Ĥ) −→ Ĥ −→ 1

which is the dual of the exact sequence

1 −→ H −→ K(H,ϕ,L) −→ L −→ 1.

Discussion Here we describe the relationship between hypergroups arising from fields
and hypergroups associated with group actions studied in [H-J-K-K] and [K-I].

Let α be an action of a finite abelian group G on a finite commutative hypergroup
M = {c0, c1, · · · , cn}. Then the action α induces an action of G on the ∗-algebra A(M),
which we also denote by α. Let E be a conditional expectation from A(M) onto the fixed
point algebra A(M)α defined by

E(x) :=
1
|G|

∑
g∈G

αg(x) for x ∈ A(M).

Then the orbital hypergroup is given by

Mα := {d ∈ A(M)α; d = E(c), c ∈M}.
The action α of G on M induces an action α̂ of G on the dual signed hypergroup M̂ and
also on A(M̂) by

α̂g(χ)(c) = χ(α−1
g (c)) for χ ∈ M̂, c ∈M.

In a similar way we define a conditional expectation F from A(M̂ ) onto A(M̂ α̂) and also
the orbital signed hypergroup M̂ α̂ defined by this action α̂ of G.

We denote by K(G) the hypergroup associated with the group G, i.e.

K(G) = {�g; g ∈ G} with �g1�g2 = �g1g2 .

For each �g ∈ K(G) we take the sets

X(�g) = {χ ∈ M̂ ; α̂g(χ) = χ}



EXTENSIONS OF FINITE HYPERGROUPS 133

and

X(�g) = {ρ ∈ M̂ α̂; ρ = F (χ), χ ∈ X(�g)}.

The regularity of the action α is required as the assumption which assures that the fam-
ily {X(�g); �g ∈ K(G)} satisfies the above conditions (i) and (ii). Let H(�g) denote the
annihilator A(Mα, X(�g)) of X(�g) and e(g) denote the Haar measure of H(�g).

In [H-J-K-K] we introduced the hypergroup associated with the regular action α of G
on M by

K(M,G,α) := {he(g)⊗ �g;h ∈Mα, g ∈ G},

which coincides with the extension K(Mα, ϕ,K(G)) arising from the field ϕ;K(G) � �g �−→
H(�g) ⊂Mα.

Next we review the other hypergroup K(M̂, Ĝ, α̂) associated with the regular action α
which is studied in [K-I]. For each χ ∈ M̂ we put

Y (χ) = {�g ∈ K(G);χ ∈ X(�g)} = {�g ∈ K(G); α̂g(χ) = χ}.

It is easy to see that Y (χp) = Y (χq) if F (χp) = F (χq). We denote Y (χ) by Y (ρ) for each
ρ ∈ M̂ α̂ such that ρ = F (χ). Take the annihilator Z(ρ) := A(K(Ĝ), Y (ρ)) of Y (ρ) and
denote the Haar measure of Z(ρ) by τ(ρ).

Then we obtain the hypergroup K(M̂, Ĝ, α̂) investigated in [K-I] as

K(M̂, Ĝ, α̂) = {ρ⊗ τ(ρ)τ ; ρ ∈ M̂ α̂, τ ∈ K(Ĝ)},

which coincides with the extension K(K(Ĝ), ϕ̂, M̂ α̂) of M̂ α̂ by K(Ĝ) arising from the dual
field ϕ̂; M̂ α̂ � ρ �−→ Z(ρ) ⊂ K(Ĝ).

5 Applications and examples We apply our results for some concrete examples.
Let H = {h0, h1, h2, h3} be a finite commutative hypergroups whose structure equations
are given by

h2
1 =

1
2
h0 +

1
2
h1,

h2
2 =

1
2
h0 +

1
2
h2,

h2
3 =

1
4
h0 +

1
4
h1 +

1
4
h2 +

1
4
h3,

h1h2 = h3,

h1h3 =
1
2
h2 +

1
2
h3,
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h2h3 =
1
2
h1 +

1
2
h3.

Hence, the weight w(hi) of hi and the total weight w(H) of H are

w(h0) = 1, w(h1) = 2, w(h2) = 2, w(h3) = 4, and

w(H) = w(h0) + w(h1) + w(h2) + w(h3) = 1 + 2 + 2 + 4 = 9,

respectively. The subhypergroups of H are

H0 = {h0},

H1 = {h0, h1},

H2 = {h0, h2} and

H3 = H = {h0, h1, h2, h3},
and the Haar measures ei of Hi ( i = 0, 1, 2, 3 ) are given by

e0 = h0,

e1 =
1
3
h0 +

2
3
h1,

e2 =
1
3
h0 +

2
3
h2 and

e3 = e(H) =
1
9
h0 +

2
9
h1 +

2
9
h2 +

4
9
h3.

Let Ĥ = {χ0, χ1, χ2, χ3} be the dual of H which are determined by the following char-
acter table.

h0 h1 h2 h3

χ0 1 1 1 1
χ1 1 1 − 1

2 − 1
2

χ2 1 − 1
2 1 − 1

2

χ3 1 − 1
2 − 1

2
1
4

From this table we see that Ĥ is isomorphic to H by the correspondences χi ←→ hi

(i = 0, 1, 2, 3).

The subhypergroups of Ĥ are

X0 = {χ0},
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X1 = {χ0, χ1},

X2 = {χ0, χ2} and

X3 = Ĥ = {χ0, χ1, χ2, χ3}.

We note that the annihilators of X0, X1, X2, X3 are H3, H1, H2, H0 respectively.

Let L = {�0, �1, �2, �3} be another finite commutative hypergroup whose structure equa-
tions are

�21 = �22 = �23 = �0,

�1�2 = �3, �1�3 = �2, �2�3 = �1.

Here, we present a list of all possible extensions Ki := K(H,ϕi, L) of L by H arising
from fields ϕi which satisfy both subhypergroup condition and regularity condition among
all subhypergroups of H described in section 3. We obtain 16 kinds of fields ϕi as given in
the following list.

H(�0) H(�1) H(�2) H(�3)
ϕ1 H0 H0 H0 H0

ϕ2 H0 H3 H3 H3

ϕ3 H0 H1 H1 H1

ϕ4 H0 H2 H2 H2

ϕ5 H0 H3 H1 H2

ϕ6 H0 H3 H2 H1

ϕ7 H0 H1 H3 H2

ϕ8 H0 H1 H2 H3

ϕ9 H0 H2 H3 H1

ϕ10 H0 H2 H1 H3

ϕ11 H0 H0 H1 H1

ϕ12 H0 H1 H0 H1

ϕ13 H0 H1 H1 H0

ϕ14 H0 H0 H2 H2

ϕ15 H0 H2 H0 H2

ϕ16 H0 H2 H2 H0

Example 1.

H(�0) = H(�1) = H(�2) = H(�3) = H0

X(�0) = X(�1) = X(�2) = X(�3) = X3

K1 = K(H,ϕ1, L) = {hi ⊗ �j ; i, j = 0, 1, 2, 3} = H × L
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The number | K1 | of elements of K1 is 16.

Example 2.

H(�0) = H0, H(�1) = H(�2) = H(�3) = H

X(�0) = X3, X(�1) = X(�2) = X(�3) = X0

K2 = K(H,ϕ2, L) = H ∨ L, | K2 |= 7

Example 3.

H(�0) = H0, H(�1) = H(�2) = H(�3) = H1

X(�0) = X3, X(�1) = X(�2) = X(�3) = X1

K3 = K(H,ϕ3, L) = S(Q1 × L;Q1 → H) for Q1 = H/H1, | K3 |= 10

Example 4.

H(�0) = H0, H(�1) = H3, H(�2) = H2, H(�3) = H1

X(�0) = X3, X(�1) = X0, X(�2) = X2, X(�3) = X1

K6 = K(H,ϕ6, L), | K6 |= 9

Example 5.

H(�0) = H0, H(�1) = H0, H(�2) = H(�3) = H1

X(�0) = X3, X(�1) = X3, X(�2) = X(�3) = X1

K11 = K(H,ϕ11, L), | K11 |= 12

Remark 1. Since the roles of h1 and h2 ( χ1 and χ2 ) and also those of �1, �2, �3 can
be exchanged we can see that mutually non-isomorphic hypergroups among the extensions
Ki = K(H,ϕi, L) (i = 1, 2, · · · , 16) of L by H are essentially the 5 kinds as shown in
Examples 1, 2, 3, 4, and 5.

Remark 2. Let N and G be abelian groups with N = {(ni, nj); i, j = 0, 1, 2} ∼= Z3×Z3

and G = {e, g, h, gh} ∼= Z2 × Z2 so that n2
1 = n2, n

2
2 = n1, n1n2 = n2n1 = n0, and

g2 = h2 = e. Let α be the action of G on N defined by
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(i) αg((ni, nj)) = (n2
i , n

2
j) (i, j = 0, 1, 2)

(ii) αh((ni, nj)) = (nj , ni) (i, j = 0, 1, 2)

Then by simple calculations we can show that

K6 = K(H,ϕ6, L) ∼= K(N �α G),

where L = K(G), H = K(N)α, and K(N �α G) is the class hypergroup of the semi-direct
product N �α G, referred to in Example 4 of the paper [H-J-K-K].

Indeed, the structure equations of

K6 = K(H,ϕ6, L) = {c0, c1, c2, c3, c4, c5, c6, c7, c8}
where

c0 = h0 ⊗ �0, c1 = h1 ⊗ �0, c2 = h2 ⊗ �0, c3 = h3 ⊗ �0,

c4 = e3 ⊗ �1, c5 = e2 ⊗ �2, c6 = h1e2 ⊗ �2, c7 = e1 ⊗ �3, c8 = h2e1 ⊗ �3,
are given as follows:

c21 =
1
2
c0 +

1
2
c1 , c22 =

1
2
c0 +

1
2
c2 ,

c23 =
1
4
c0 +

1
4
c1 +

1
4
c2 +

1
4
c3 ,

c24 =
1
9
c0 +

2
9
c1 +

2
9
c2 +

4
9
c3 ,

c25 =
1
3
c0 +

2
3
c2 ,

c26 =
1
6
c0 +

1
6
c1 +

1
3
c2 +

1
3
c3 ,

c27 =
1
3
c0 +

2
3
c1 ,

c28 =
1
6
c0 +

1
3
c1 +

1
6
c2 +

1
3
c3 ,

c1c2 = c3 , c1c3 =
1
2
c2 +

1
2
c3 , c1c4 = c4 , c1c5 = c6 ,

c1c6 =
1
2
c5 +

1
2
c6 , c1c7 = c7 , c1c8 = c8 ,
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c2c3 =
1
2
c1 +

1
2
c3 , c2c4 = c4 , c2c5 = c5 ,

c2c6 = c6 , c2c7 = c8 , c2c8 =
1
2
c7 +

1
2
c8 ,

c3c4 = c4 , c3c5 = c6 , c3c6 =
1
2
c5 +

1
2
c6 ,

c3c7 = c8 , c3c8 =
1
2
c7 +

1
2
c8 ,

c4c5 =
1
3
c7 +

2
3
c8 , c4c6 =

1
3
c7 +

2
3
c8 ,

c4c7 =
1
3
c5 +

2
3
c6 , c4c8 =

1
3
c5 +

2
3
c6 ,

c5c6 =
1
3
c0 +

2
3
c3 , c5c7 = c4 , c5c8 = c4 ,

c6c7 = c4 , c6c8 = c4 ,

c7c8 =
1
3
c2 +

2
3
c3 .
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Mathematisches Institut
Auf der Morgenstelle 10
D-72076, Tübingen
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