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WHEN THE HEWITT REALCOMPACTIFICATION AND THE
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Abstract. If X is a Tychonoff space then its P -coreflection Xδ is a Tychonoff space

that is a dense subspace of the realcompact space (υX)δ, where υX denotes the Hewitt

realcompactification of X. We investigate under what conditions Xδ is C-embedded

in (υX)δ, i.e. under what conditions υ(Xδ) = (υX)δ. An example shows that this

can fail for the product of a compact space and a P -space. It is possible for a von

Neumann regular ring A to be isomorphic to a C(Y ) and lie between C(X) and C(Xδ)

without being isomorphic to C(Xδ). This cannot occur if X is realcompact or more

generally if υ(Xδ) = (υX)δ. Applications are given to the epimorphic hull of C(X).

1 Introduction Throughout the symbols ∼ and ∼= will signify, respectively, homeomor-
phism and isomorphism. Undefined notation and terminology can be found in [Gillman
& Jerison (1960)] and [Porter & Woods (1988)]. Let X denote a Tychonoff topological
space (henceforth abbreviated “space”). Then X is a dense, C-embedded subspace of the
realcompact space υX , its Hewitt realcompactification, and these properties determine υX

uniquely as an extension of X (see [Gillman & Jerison (1960), Chapter 8] or [Porter &
Woods (1988), Chapter 5]. If X is re-topologized by using its Gδ-sets (equivalently its zero-
sets) as a base for a new topology, the resulting space Xδ is a Tychonoff P -space. (Recall
a space is a P -space if its zero sets (equivalently its Gδ sets) are open). If j denotes the
identity map on the underlying set of X , then j : Xδ → X is a continuous bijection and
the pair (Xδ, j) is the coreflection of X in the category of P -spaces and continuous maps;
thus if T is another P -space and f : T → X is continuous, there is a continuous function
f∗ : T → Xδ such that f = j ◦ f∗. See [Walker (1974), chapter 10] for details.

Since X is Gδ-dense in υX (see [Porter and Woods, 5.11(b)], and since the subspace
topology that X inherits from (υX)δ is just the topology of Xδ, it follows that Xδ is a dense
subspace of the realcompact space (υX)δ (see 1.1 (b) below). The theme of this article is
an investigation of when Xδ is C-embedded in (υX)δ, ie. of when υ(Xδ) = (υX)δ.

The following known results show why the equality υ(Xδ) = (υX)δ holds for P -spaces
and for realcompact spaces.

Lemma 1.1. (a) [Gillman & Jerison (1960), 8A(4)]. If X is a P -space, then υX is a P

space.
(b) If a space X is realcompact then Xδ is also realcompact.
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We thank Professor W. Comfort for referring us to [Comfort & Retta (1985), 4.8(a)]
where the history of (b) is discussed. In particular this result appears in [Froĺık (1971),
Theorem 4 ] as pointed out by Comfort and Retta. It is also implicit in [Hewitt (1950)].

Remarks 1.2.

(a) In [Levy & Rice (1981), 5.3 R(iii)] the assertion of Lemma 1.1 (b) is justified by the
claim that if (Y, τ) is realcompact and if σ is a Tychonoff topology on Y containing τ , then
(Y, σ) is realcompact. In fact this claim is false in general, as an examination of the proof
of [Gillman & Jerison (1960), 8.17] reveals. A proof of 1.1 (such as that given in [Froĺık
(1971)]) is needed.

(b) “δ commutes with subspaces and finite products” in the following sense. Let X and
Y be spaces. First, if X is a subspace of Y , then X viewed as a subspace of Yδ is just Xδ.
Second, the identity map on the underlying set is a homeomorphism from Xδ × Y δ onto
(X × Y )δ, and we will identify (X × Y )δ with Xδ × Yδ. Each of these assertions is easily
verified.

It follows from Lemma 1.1 that if X is realcompact then (υX)δ = Xδ = υ(Xδ), the latter
equality holding because Xδ is realcompact. More generally, because every non-empty Gδ-
set of υX has non-empty intersection with X (see above), it follows that Xδ is a dense
subspace of the realcompact space (υX)δ. Hence (υX)δ = υ(Xδ) (up to equivalence of
extensions; see [Porter & Woods (1988), Chapter 4]) if and only if Xδ is C-embedded in
(υX)δ. We formalize this.

Definition 1.3. Let X be a Tychonoff space. We say that X is an υδ-commuting space if
Xδ is C-embedded in (υX)δ, and we write υ(Xδ) = (υX)δ.

Note that since Xδ is Gδ-dense in (υX)δ we have C-embedding if and only if Xδ is
z-embedded in (υX)δ (see [Blair & Hager (1974), 4.4].

We have seen that realcompact spaces and P -spaces are υδ-commuting spaces. In
[Porter & Woods (1988), 5F(7)] it is erroneously claimed that all Tychonoff spaces are
υδ-commuting spaces. (This error is the responsibility of Woods, not Porter). Here is a
class of counterexamples; more follow later.

Proposition 1.4. Let X be a space. Suppose that X ⊆ T � υX and that Tδ is realcompact.
Then X is not a υδ-commuting space.

Proof. Clearly Xδ ⊂ Tδ � (υX)δ. If X were a υδ-commuting space then Xδ would be C-
embedded in (υX)δ. It follows that Tδ would be C-embedded in (υX)δ, since if f ∈ C(Tδ)
then the extension of f |Xδ to (υX)δ would extend f . But Tδ is dense in the realcompact
space (υX)δ, and a C-embedded realcompact subspace of (υX)δ (such as Tδ) must be closed;
see [Gillman & Jerison (1960), 8A (1)]. This is a contradiction, and the result follows.

Corollary 1.5. (a) If X is a non-realcompact space for which Xδ is realcompact, then X

is not a υδ-commuting space.
(b) A non-realcompact space X of countable pseudocharacter and non-measurable cardi-

nality is not a υδ-commuting space. Consequently a space of countable pseudocharacter and
non-measurable cardinality is υδ-commuting if and only if it is realcompact.
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Proof. (a) Let T be X in Proposition 1.4.
(b) As X has countable pseudocharacter, Xδ is discrete and of non-measurable cardi-

nality, and hence realcompact (see [Gillman & Jerison (1960), 12.2] (a).

Thus, for example, the space of countable ordinals is not an υδ-commuting space. Nei-
ther is the space Ψ of [Gillman & Jerison (1960), 5I] although each of its points has a
υδ-commuting neighbourhood. We will show below that there are pseudocompact, non-
compact spaces that are υδ-commuting. Note that some results concerning υδ-commuting
spaces appear in [Levy & Rice (1981), 5.8, 5.9].

Note also (see [Hernandez-Hernandez, Ishiu (2004)]) that there are perfectly normal
spaces of cardinality ℵ1 that are not realcompact and hence not υδ-commuting by 1.5.
Thus perfect normality does not imply υδ-commutativity.

Baire Sets 1.6.

(a) Recall that a Baire set of a space X is a member of the σ-algebra S (X) of subsets
of X generated by the family Z (X) of zero-sets of X .

Since countable unions of clopen sets of a P -space are clopen, and since Z (X) ⊆ Z (Xδ)
, it follows that S (X) ⊆ S (Xδ) = Z (Xδ), which is the family of clopen subsets of Xδ.

(b) The map Z → Z ∩ X is a lattice isomorphism from Z (υX) onto Z (X) (see [Porter
& Woods (1988), 5.11(g)]). As S (X) is determined by Z (X) and its order structure (under
inclusion), it follows that the map A → A ∩ X is an order-isomorphism from S (υX) onto
S (X). We will denote the unique member of S (υX) whose intersection with X is A ∈ S (X)
by A∗.

The following theorem appears in [Negrepontis (1967)].

Theorem 1.7. A Baire set of a realcompact space is realcompact.

2 Subspaces of υδ-commuting spaces and subspaces which are υδ-commuting
When one introduces a new topological property (such as that of being υδ-commuting) it
is traditional to consider whether it is preserved by certain sorts of subspaces, by products,
and by direct and inverse images under certain sorts of continuous functions. We begin by
investigating subspaces. Our first theorem is an analogue to 1.7.

Theorem 2.1. A Baire set of a υδ-commuting space is υδ-commuting.

Proof. Let X be a υδ-commuting space and let A ∈ S(X) ( see 1.6(a)). By Lemma 1.1 and
Theorem 1.7 it follows that (A∗)δ is realcompact and contains Aδ (see 1.6(b) for notation).

We claim that Aδ is dense in (A∗)δ. To see this, note that {Z ∩ A∗ : Z ∈ Z(υX)} is an
open base for (A∗)δ. But if Z ∈ Z(υX) and Z ∩A∗ 	= ∅, then Z ∩A∗ is a non-empty Baire
set of υX . As the map B → B∩X is an order-isomorphism (and, in particular, one-to-one)
from S (υX) onto S (X), it follows that (Z ∩A∗)∩X 	= ∅, i.e. Z ∩A 	= ∅. Thus Aδ is dense
in (A∗)δ as claimed. Thus (A∗)δ is a realcompact extension of Aδ.

Let f ∈ C(Aδ). As Aδ is clopen in Xδ (see 1.6(a)), f extends continuously to f∗ ∈
C(Xδ). As X is a υδ-commuting space, Xδ is C-embedded in (υX)δ, so f∗ extends to
υf∗ ∈ C((υX)δ). Then υf∗|A∗ ∈ C((A∗)δ), and so Aδ is C-embedded in (A∗)δ. Hence
υ(Aδ) = (A∗)δ.
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As A∗ is realcompact, the embedding map j : A → A∗ can be continuously extended to
υj : υA → A∗ (see [Gillman & Jerison (1960), 8.7 (I)]). It is easy to see that when regarded
as a function from (υA)δ to (A∗)δ, υj is continuous and fixes Aδ pointwise.

Now by Lemma 1.1, (υA)δ is a realcompact extension of Aδ so there is a continuous
function g : υ(Aδ) → (υA)δ that fixes Aδ pointwise. By the second last paragraph, g is
a function from (A∗)δ that fixes Aδ pointwise. Clearly υj ◦ g : (A∗)δ → (A∗)δ fixes the
dense set Aδ pointwise and hence is the identity. Similarly g ◦ υj : (υA)δ → (υA)δ fixes Aδ

pointwise. It follows that g : (A∗)δ → (υA)δ is a homeomorphism fixing Aδ pointwise; i.e.
g : υ(Aδ) → (υA)δ is a homeomorphism fixing Aδ pointwise. Thus υ(Aδ) = (υA)δ and Aδ

is a υδ-commuting space.

However, any Tychonoff space of non-measurable cardinality is homeomorphic to a C-
embedded closed subspace of a υδ-commuting space, and so being a υδ-commuting space is
not, in general, a property inherited by C-embedded closed subspaces. To establish this we
use a well known technique. We begin with some lemmas.

The following result is due to [Noble(1969)] and to Hager-Mrowka [Hager (1969)]. (Recall
that a map is z-closed if images of zero sets are closed sets).

Lemma 2.2. Let X and Y be spaces. Then the space X ×Y is C∗-embedded in X × βY if
and only if the projection map πX : X × Y → X is z-closed.

The following lemma is part of [Husek (1972), Corollary 4].

Lemma 2.3. Let X be a space and Y a pseudocompact space, each of non-measurable
cardinality. If πX : X × Y → X is z-closed, then υ(X × Y ) = υX × υY .

Lemma 2.4. Let S be a space of non-measurable cardinality and let λ be an ordinal of
non-measurable cardinality whose cofinality is greater than the cardinality |S| of S. Then
υ(S × [0, λ)) = υS × [0, λ]. ([0, λ) denotes the space of ordinals less than λ).

Proof. Since [0, λ) is pseudocompact, and since υ[0, λ) = β[0, λ) = [0, λ] by Lemmas 2.2
and 2.3 it suffices to show that S × [0, λ) is C∗-embedded in S × [0, λ]. Suppose that
f ∈ C∗(S × [0, λ)). As λ evidently has uncountable cofinality if S is infinite, for each s ∈ S

there exists an ordinal δ(s) < λ and a c(s) ∈ R such that f [{s} × [δ(s), λ)] = {c(s)}. As
the cofinality of λ is greater than |S|, the ordinal sup{δ(s) : s ∈ S}, which we denote by δ,
is less than λ. Hence if s ∈ S and α ∈ [δ, λ), it follows that f(s, α) = c(s). It is now clear
that if we define F : S × [0, λ] → R by F |S × [0, λ) = f , and F (s, λ) = c(s) for each s ∈ S,
then F is a continuous extension of f to S × [0, λ]. The lemma follows.

Proposition 2.5. Let X and T be spaces for which X ⊂ T ⊂ υX. If X is a υδ-commuting
space then T is a υδ-commuting space.

Proof. Clearly υT = υX so (υT )δ = (υX)δ = υ(Xδ) by hypothesis. But Xδ ⊆ Tδ ⊆
(υX)δ = υ(Xδ) , so υ(Tδ) = υ(Xδ). Combining these equations gives υ(Tδ) = (υT )δ.

Lemma 2.6. Let λ be an ordinal of cofinality at least ω2. If g ∈ C([0, λ)δ) then there exists
α(g) < λ such that g is constant on [α(g), λ).

Proof. A straightforward generalization of the proof of [Gillman & Jerison (1960), 9L(4)] ,
with λ in place of ω2, gives the result.
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Theorem 2.7. Each Tychonoff space of non-measurable cardinality is homeomorphic to a
closed C-embedded subspace of a υδ-commuting space.

Proof. Let S be Tychonoff and non-measurable, let λ be an ordinal satisfying cof(λ) >

max{ω2, |υS|} (but non-measurable) and let X = (υS× [0, λ])\((υS\S)×{λ}). By Lemma
2.4 υ(S × [0, λ)) ⊆ X ⊆ υS × [0, λ], so by Proposition 2.5 if υS × [0, λ) is an υδ-commuting
space it will follow that X is a υδ-commuting space. But obviously S × {λ} is closed in
X and homeomorphic to S. Furthermore, if f ∈ C(S × {λ}) one can clearly extend f

continuously to υS × {λ} and from there to υS × [0, λ]; the restriction of this extension to
X then shows that S × {λ} is C-embedded in X .

It remains to show that υS × [0, λ) is a υδ-commuting space. By Lemma 2.4 and 1.2 (b)
we see that

(υ(υS × [0, λ)))δ = (υS)δ × [0, λ]δ

while (υS×[0, λ))δ = (υS)δ×[0, λ)δ. So it suffices to show that (υS)δ×[0, λ)δ is C-embedded
in (υS)δ × [0, λ]δ.

If f ∈ C((υS)δ × [0, λ)δ) and x ∈ υS, then by Lemma 2.6 and the fact that λ ≥ ω2, there
is an ordinal δ(x) < λ such that f |{x} × [0, λ) is constant on [δ(x), λ). Let δ = max{δ(x) :
x ∈ υS}. As cof(λ) > |υS| it follows that δ < λ. Hence for each x ∈ υS there exists
c(x) ∈ R such that if δ ≤ α < λ and x ∈ υS then f(α, x) = c(x). It is now clear that if we
extend f to (υS)δ × [0, λ]δ by defining f(x, λ) = c(x) for each x ∈ υS, then this extension
is continuous and the proof is complete.

We cannot (as far as we know) replace “closed” by “open” in Theorem 2.7, but it is
easy to see that open subspaces of υδ-commuting spaces need not be υδ-commuting. Each
locally compact space is an open subspace of each of its compactifications, which (being
realcompact) are υδ-commuting spaces. But there are locally compact spaces (for example
the countable ordinals) that are not υδ-commuting spaces.

We now consider whether unions of υδ-commuting spaces are υδ-commuting.

Theorem 2.8. Let A be a Baire set of the space X. Assume that A and X\A are C-
embedded in A∗ and (X\A)∗ respectively. The following are equivalent.

(a) X is a υδ-commuting space.
(b) A and X\A are υδ-commuting spaces.

Proof. (a) ⇒ (b): This is a special case of Theorem 2.1; here the “C-embedded” hypothesis
is unnecessary.

(b) ⇒ (a): By hypothesis A is C-embedded in A∗ so A ⊆ A∗ ⊆ υA. Thus by Remark (b)
of 1.2, Aδ ⊆ (A∗)δ ⊆ (υA)δ and (υA)δ = υ(Aδ) by hypothesis. Thus as Aδ is C-embedded
in υ(Aδ), it is C-embedded in its subspace (A∗)δ. Similarly (X\A)δ is C-embedded in
((X\A)∗)δ. Now let f ∈ C(Xδ). Then f |Aδ extends continuously to fA ∈ C((A∗)δ) and
f |(X\A)δ extends to fX\A ∈ C(((X\A)∗)δ). As (υX)δ = (A∗)δ ⊕ ((X\A)∗)δ, it follows
that fA ∪ fX\A is a continuous extension of f to (υX)δ. Thus Xδ is C-embedded in (υX)δ

and so X is an υδ-commuting space.

Corollary 2.9. Let Z be a C-embedded zero-set of the space X. The following are equiva-
lent.

(a) X is an υδ-commuting space.
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(b) Z and X\Z are υδ-commuting spaces.

Proof. By Theorem 2.8 it suffices to show that the cozero-set X\Z is C-embedded in
(X\Z)∗. By [Gillman & Jerison (1960), 8.8(b)] clυXZ ∈ Z(υX) so υX\clυXZ is a cozero-
set of υX that intersects X in X\Z. Thus (X\Z)∗ = υX\clυXZ. By [Gillman & Jerison
(1960), 8G (1)], X\Z is C-embedded in (X\Z)∗. Our result follows.

Remark 2.10.

“C-embedded” cannot be dropped from the hypotheses of “(b) ⇒ (a)” in Corollary 2.9,
as let T be a “Ψ-space” (see [Gillman & Jerison (1960), 5I]) and let Z = T \N . (Note that
by (b) of Corollary 1.5, T is not a υδ-commuting space, while its discrete subspaces Z and
T \Z are.)

Corollary 2.11. Let X be a normal space. The following are equivalent:
(a) X is an υδ-commuting space.
(b) There exists a zero-set Z of X such that X\Z and Z are υδ-commuting.
(c) For each zero-set Z of X, X\Z and Z are υδ-commuting.

The following is an easy consequence of work by Blair and Hager.

Lemma 2.12. Let X be dense and z-embedded in Y . Let g(Y ) be the intersection of the
cozero sets of Y that contain X. Then every function in C(X) extends to g(Y ). If Y is
realcompact, then g(Y ) is a copy of υX.

Proof. By [Blair & Hager (1974), 2.4] each function on X extends to a countable intersection
of cozero sets of Y containing X and hence to the smaller set g(Y ). When Y is realcompact,
so is g(Y ).

Theorem 2.13. Suppose that X is the union of z-embedded υδ-commuting subspaces Xi.
Suppose furthermore that the family {Xi} is locally finite in (υX)δ and that for each i, Yi,
the Gδ-closure of Xi in υX, is Gδ-open. Then X is υδ-commuting. In particular, the free
union of non-measurably many υδ-commuting spaces is υδ-commuting.

Proof. We must show that Xδ is z-embedded in (υX)δ. (See the remarks following 1.3).
Since Xi is z-embedded in X , and hence in υX , each Yi is a copy of υXi by 2.12. Since the
family {Xi} is locally finite in (υX)δ so is the family {Yi}. Furthermore since Xδ is dense
in (υX)δ, the Yi cover υX . Let Z be a zero set in (υX)δ with trace Ai and complement Bi

in Xi. Since Xi is υδ-commuting, there are clopen sets Ci and Di in (Yi)δ so that Ci has
trace Ai on Xi and Di has trace Bi on Xi. The families {Ci} and {Di} are locally finite
families of clopen sets of (υX)δ so their respective unions C and D are clopen. Thus C\D
is also clopen and its trace on X equals Z.

The assertion about the free union of non-measurably many spaces holds because the
free union of non-measurably many realcompact spaces is realcompact, and υX is the free
union of the υXi if X is the free union of the Xi.

Recall that a space X is called almost Lindelöf , if of any two disjoint zero-sets, at least
one must be Lindelöf.
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Proposition 2.14. (a) If X is a Tychonoff space such that Xδ is almost Lindelöf , then
X is υδ-commuting.

(b) Suppose that X is the union of z-embedded subspaces Xi. Suppose also that the
family {Xi} is locally finite in (υX)δ and that for each i, Yi, the Gδ-closure of Xi in υX is
Gδ-open. Then X is υδ-commuting. The free union of non-measurably many spaces, each
almost Lindelöf in the δ-topology, is υδ-commuting.

Proof. (a) It suffices to show that Xδ is z-embedded in (υX)δ. Suppose that A is a zero-set
in Xδ and let B denote its complement, also a zero-set. One of A and B is Lindelöf. Assume
without loss of generality that it is A that is Lindelöf. Since Lindelöf subspaces of P -spaces
are C-embedded ([Blair & Hager (1974), 4.6 ]), A is C-embedded in (υX)δ. Since A is also
realcompact, it is closed in (υX)δ by [Gillman & Jerison (1960), 8A(1)]. If C is the closure
of B in (υX)δ then C is disjoint from A and so A = (υX)δ\C. Thus A and C are clopen
in, and hence zero-sets of, (υX)δ, and B = C ∩ Xδ.

(b) follows from (a) and 2.13.

Remark 2.15.

The spaces of [Hrusak, Raphael, & Woods (2005), Theorem 6] satisfy the hypothesis of
Proposition 2.14. They are almost Lindelöf, but not Lindelöf in the δ-topology. Another
example with additional properties is given in [Levy & Rice (1981), Example 4].

Note that if Xδ is almost Lindelof then X is also, but the converse fails. In fact “
Xδ is almost Lindelof” cannot be replaced by “X is almost Lindelof” in 2.14; ω1 is a
counterexample.

We now consider other ways of generating υδ-commuting spaces.

Theorem 2.16. Let X be a υδ-commuting dense z-embedded subspace of the realcompact
space Y . Let g(Y ) be the copy of the Hewitt realcompactification υX in Y (See 2.12.)
Suppose that {Kn} is a countable family of subsets of Y that are closed in Yδ and form a
locally finite family in Yδ. Then the space W = X∪(

⋃
Kn) is υδ-commuting. In particular,

this holds if the Kn are closed and pairwise disjoint in Y , or more generally if no point of
Y lies in infinitely many Kn.

Proof. The last claim follows from the theorem because Gδ-sets of Y are open in Yδ.
To prove the theorem one must show that Wδ is C-embedded in (υW )δ. First we claim

that T = g(Y ) ∪ (
⋃

n Kn) is realcompact and is a copy of υW . As Kn is closed in Yδ,
each Kn is an intersection of cozero-sets of Y (see [Blair & Hager (1974)] before 2.6). As
well g(Y ) is an intersection of cozero-sets. It now follows from infinite distributivity that
T = g(Y ) ∪ (

⋃
n Kn) =

⋂{V ∪ (
⋃

n Un)} where V denotes an arbitrary cozero-set of Y

containing g(Y ) and Un an arbitrary cozero-set containing Kn. As countable unions of
cozero-sets are cozero-sets, T is the intersection of cozero-sets of the realcompact space Y

and hence is realcompact.
We claim that W is C-embedded in T . This follows as X is dense in T , and given any

function f ∈ C(W ), by lemma 2.12, f |X extends to g(Y ) and also extends continuously to
each point of each Kn as f |X extends to W . Thus f extends to T and thus T is a copy of
υW .

Now one must show that Wδ is C-embedded in Tδ. Given a function h ∈ C(Wδ) , h|X
extends continuously to (g(Y ))δ because X is υδ-commuting. So we have a set-theoretic
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extension H of h to all of T . We need to show that H is continuous. Now the space (g(Y ))δ

is closed in Yδ and if one adjoins it to the family {Kn} the result is a locally finite family of
closed sets of Yδ. So Tδ is the union of the closed sets in the new family, and the new family
is locally finite in Tδ. Now the continuity of H follows from [Gillman & Jerison (1960),
1A.3].

Examples 2.17.

The conditions hold if {Kn} forms a locally finite family of closed sets of Y . They also
hold if the family {Kn} is hypothesized to be a locally finite (in Yδ) family of Lindelöf
subspaces of Y , since a Lindelöf subspace of Y is an intersection of cozero-sets of Y and
hence is closed in Yδ.

There are two other applications of the theorem.

Corollary 2.18. Let X be dense and z-embedded in Y . Suppose that C is a countable
subspace of Y . If X is υδ-commuting then so is X ∪ C.

Proof. By replacing Y by υY if necessary, we can assume that Y is realcompact. Now
invoke theorem 2.16 taking the points of C as the closed sets.

Corollary 2.19. Let X be dense and z-embedded in a realcompact space Y . Suppose that
C is a cozero set of Y . If X is υδ-commuting then so is X ∪ C.

Proof. Let C be the cozero-set of a function f that maps Y into the interval [0, 1]. Then
C is the union of the disjoint sets f−1(1/(n + 1), 1/n] each of which is clopen in Yδ. They
form a locally finite family in Yδ so theorem 2.16 applies.

For brevity’s sake we omit the proofs of the results in the remainder of this section.
They follow from the properties of z-embeddings, locally finite families, P -spaces, and C-
embedded subspaces. The flavour of the proofs is similar to that of 2.16.

Proposition 2.20. Let Y = X ∪K, where X is an υδ-commuting space and K is realcom-
pact. Suppose further that X is z-embedded in Y and that K is C-embedded in Y . Then Y

is υδ-commuting.

The third part of the next result relies on [Barr, Raphael & Woods (2005), 5.1] where
it is shown that P -subspaces that induce epimorphisms in the category of rings must be
z-embedded.

Corollary 2.21. Let Y = X∪K, where X is an υδ-commuting space and K is realcompact
and C-embedded in Y . Then Y is υδ-commuting if X satisfies any of the following condi-
tions: (i) X is almost compact, (ii) X is Lindelöf, (iii) X is a P -space whose inclusion in
Y induces an epimorphism in the category of rings.

Theorem 2.22. Let Y be a topological space with a subspace K =
⋃

Ki where each subspace
Ki is υδ-commuting and closed and C-embedded in Y . Suppose further that the {Ki} form
a locally finite family in υY . Let X = Y \K and assume that for all f ∈ C(Yδ), f |Xδ

extends continuously to the closure of Xδ in (υY )δ. Then Y is υδ-commuting.
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The corollary which follows will apply to the spaces constructed below in 4.12 in the
case that one begins with a space which is υδ-commuting (the copy of X will be closed and
C-embedded and its complement will be discrete).

Corollary 2.23. Let Y be a topological space with a family of realcompact C-embedded
subspaces {Ki} that is locally finite in υY . Assume X = Y \⋃

Ki is υδ-commuting. Then
Y is υδ-commuting. In particular, if Y has an υδ-commuting subspace X such that Y \X
is the union of a finite family {Ki} of realcompact C-embedded subspaces of Y , then Y is
υδ-commuting. Thus if K is a compact subspace of a space Y and Y \K is υδ-commuting,
then Y is υδ-commuting.

Remark 2.24. Note the importance of the demand for C-embedding in the previous results.
The space Ψ is not υδ-commuting, but it is the union of two spaces that are disjoint and
υδ-commuting, one z-embedded, and the other a zero-set.

We get a more general version (without disjointness) of Corollary 2.23 when X is a
P -space.

Corollary 2.25. Let Y be a topological space with a family of realcompact C-embedded
subspaces {Ki} that is locally finite in υY . Assume X is a subspace of Y that is a P -space
and that furthermore Y = X ∪ ⋃

Ki. Then Y is υδ-commuting. In particular, if Y is the
union of a P -subspace X and a subspace K that is a finite union of realcompact C-embedded
subspaces of Y , then Y is υδ-commuting. The union of a subspace that is a P -space and a
compact subspace is υδ-commuting.

Nothwithstanding the results above we have not been able to settle the following question
in general.

Question 2.26.

Let Y = X ∪ K, where X is an υδ-commuting space and K is compact. Must Y be
υδ-commuting? (see the open questions in section 5).

There is a variant of Theorem 2.16, that allows for an arbitrary locally finite family but
it makes demands on the original topology rather than the δ-topology.

Theorem 2.27. Let X be υδ-commuting subspace of the realcompact space Y . Let X be
C-embedded in clY X (a copy of υX). Suppose that {Ki} is a locally finite family of υδ-
commuting subsets of Y that satisfy the condition clY Ki = υKi (for example, the spaces Ki

are compact, or C-embedded in Y ). Then the space W = X ∪ (
⋃

Ki) is υδ-commuting.

Several of the previous results postulate a realcompact ambient space, or that families
be locally finite in a Hewitt realcompactification. It is possible to drop these demands if
one strengthens the demand for local finiteness, to a demand for strong discreteness (see
the remarks preceding [Henriksen, Raphael, & Woods (2002), 2.9].

Proposition 2.28. Suppose that Y is the union of a P -space X and a family of compact
subsets {Ki}. Suppose furthermore that there exists a discrete family of open subsets {Ui}
of Y with the property that Ki ⊂ Ui for each i. Then Y is υδ-commuting.
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Remark 2.29. The result also holds, by invoking 2.23, if Y is normal, and each Ki is a
finite union of closed realcompact subspaces because Ki and Y \Ui are completely separated.
It also works if one only assumes that X is υδ-commuting but postulates the disjointness of
X and

⋃
Ki, and that Y has a base of clopen sets.

3 Products of υδ-commuting spaces In this section we investigate when the product
of two υδ-commuting spaces is υδ-commuting. Although “δ commutes with finite products”
(see remark (b) of 1.2), υ does not in general. We will use the following results of H. Ohta
that give criteria for when υ(X × Y ) = υX × υY (i.e. when X × Y is C-embedded in
υX × υY ).

Theorem 3.1. [Ohta (1982), 1.1]. Let X be a space of non-measurable cardinality. The
following are equivalent.

(a) X is locally compact and realcompact
(b) υ(X × Y ) = υX × υY for any space Y .

The following result is a special case of [Ohta (1982), 1.3], where the cardinal n mentioned
there is ℵ1.

Theorem 3.2. The following conditions on a Tychonoff space X of non-measurable cardi-
nality are equivalent:

(a) υ(X × Y ) = υX × υY for any P -space Y .
(b) Each point of υX has an υX-neighbourhood G such that G ∩ X is weakly Lindelöf.

(Recall that a space S is called weakly Lindelöf if each open cover of S has a countable
subfamily whose union is dense in S. It is well known and easily proved that if S is weakly
Lindelöf and V is open in S, then clSV is weakly Lindelöf).

If X is realcompact then Theorem 3.2 becomes:

Theorem 3.3. Let X be a realcompact space of non-measurable cardinality. The following
are equivalent.

(a) υ(X × Y ) = υX × υY for any P -space Y .
(b) X is locally weakly Lindelöf (i.e. each point of X has a neighbourhood base of weakly

Lindelöf neighbourhoods).

We now investigate the relation among X , Y , and X × Y being υδ-commuting.

Theorem 3.4. Let X and Y be spaces for which X × Y is υδ-commuting. Then X and Y

are υδ-commuting.

Proof. We show that X is υδ-commuting. Let y0 ∈ Y . Then X×{y0} is C-embedded in X×
Y and hence in υ(X×Y ). Thus X×{y0} is dense and C-embedded in the realcompact space
clυ(X×Y )(X ×{y0}). Hence clυ(X×Y )(X ×{y0}) = υX ×{y0} � υX , and so (clυ(X×Y )(X ×
{y0}))δ � (υ(X × {y0}))δ � (υX)δ. Thus if (X × {y0})δ is C-embedded in (clυ(X×Y )(X ×
{y0}))δ we will have, in effect, that Xδ is C-embedded in (clυ(X×Y )(X ×{y0}))δ and hence
X will be an υδ-commuting space.

Now (X×{y0})δ = Xδ ×{y0}, which is C-embedded in Xδ ×Yδ and hence in υ(Xδ ×Yδ)
which is just υ((X × Y )δ) by Remark (b) of 1.2. But X × Y is a υδ-commuting space so
υ((X × Y )δ) = (υ(X × Y ))δ. Thus (X × {y0})δ is C-embedded in υ(X × Y )δ and hence is
dense and C-embedded in its subspace (clυ(X×Y )(X × {y0}))δ. Our result follows.
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Next we prove a partial converse to Theorem 3.3.

Theorem 3.5. Let X and Y be two υδ-commuting spaces for which υ(Xδ ×Yδ) = υ(Xδ)×
υ(Yδ). Then X × Y is an υδ-commuting space.

Proof. As υX × υY is a realcompact extension of X × Y there is a continuous function
j : υ(X × Y ) → υX × υY that fixes X × Y pointwise. If we apply the P -coreflection, then
the underlying map j (now denoted jδ) remains continuous and we have jδ : (υ(X×Y ))δ →
(υX × υY )δ.

But (υX × υY )δ = (υX)δ × (υY )δ (by Remark (b) of 1.2)=υ(Xδ) × υ(Yδ) (as X and
Y are υδ-commuting)= υ(Xδ × Yδ) (by hypothesis) = υ((X × Y )δ) (by remark (b) of 1.2)
so jδ : (υ(X × Y ))δ → υ((X × Y )δ) is continuous and fixes (X × Y )δ pointwise. However,
(υ(X × Y ))δ is a realcompact extension of (X × Y )δ, by remark (a) of 1.2 , so there is a
continuous function k : υ((X × Y )δ) → (υ(X × Y ))δ that fixes (X × Y )δ pointwise. But
then k ◦ jδ|(X × Y )δ and jδ ◦ k|(X × Y )δ both fix (X × Y )δ pointwise, so by a standard
argument k is a homeomorphism from υ((X × Y )δ) onto (υ(X × Y ))δ that fixes (X × Y )δ

pointwise. Thus υ((X × Y )δ) = (υ(X × Y ))δ and so X × Y is υδ-commuting.

We now show that the assumption that υ(Xδ ×Yδ) = υ(Xδ)× υ(Yδ) cannot be dropped
in the preceding theorem. We begin with a lemma. Its proof is straightforward but we
include it for convenience.

Lemma 3.6. (βN\N )δ is not locally weakly Lindelöf.

Proof. It is well-known and easily verified that a weakly Lindelöf P -space is Lindelöf.
Furthermore, each zero-set of βN\N contains a clopen copy of βN\N . Consequently if
(βN\N )δ were locally weakly Lindelöf it would be a Lindelöf P -space and hence function-
ally countable, ie if f ∈ C((βN\N )δ), then |f [(βN\N )δ]| ≤ ℵ0. Consequently βN\N would
be functionally countable, which is a contradiction as it contains no isolated points (see, for
example, [Levy & Rice (1981), 3.1]).

Lemma 3.7. Let X be a realcompact locally weakly Lindelöf space of non-measurable car-
dinality such that Xδ is not locally weakly Lindelöf. Then there is a P -space T such that
X × T is not υδ-commuting.

Proof. By Theorem 3.3, since Xδ is realcompact by Lemma 1.1 there exists a P -space T

for which υ(Xδ × T ) 	= υ(Xδ) × υT = Xδ × υT. It follows that

υ((X × T )δ) = υ(Xδ × Tδ) = υ(Xδ × T ) 	= Xδ × υT (1)

However, υ(X × T ) = υX × υT by 3.3. Thus

(υ(X × T ))δ = (υX × υT )δ = (X × υT )δ = Xδ × (υT )δ = Xδ × υT (2)

see [Gillman & Jerison (1960), 8A (4)].
By combining (1) and (2) we see that υ((X × T )δ) 	= ((υX) × T )δ, so X × T is not

υδ-commuting.

Example 3.8. The product of a compact space and a P -space need not be υδ-commuting.



54 R. RAPHAEL AND R. GRANT WOODS

Proof. If X is a space satisfying the hypotheses of Lemma 3.7 then its product with some
P -space is not υδ-commuting (both spaces are υδ-commuting, of course). By Lemma 3.6,
βN\N satisfies the conditions on X . Thus there is a P -space T such that (βN\N ) × T is
not υδ-commuting.

We can use Theorem 3.1 to derive a positive result.

Theorem 3.9. Let X and Y be spaces, one of which is of non-measurable cardinality and
countable pseudocharacter. The following are equivalent

(a) X and Y are υδ-commuting
(b) X × Y is υδ-commuting

Proof. (b) ⇒ (a). This is Theorem 3.3 (with an unnecesary extra hypothesis). (a) ⇒ (b).
Assume X has countable pseudocharacter. Then Xδ is discrete and of non-measurable
cardinality. Then by Theorem 3.1 υ(Xδ ×Yδ) = υ(Xδ)×υ(Yδ) so (b) follows from Theorem
3.4.

Remark 3.10.

The statements “υ(X × Y ) = υX × υY ” and “υ(Xδ × Yδ) = υ(Xδ) × υ(Yδ)” are inde-
pendent of each other. To verify this note that by the paragraph preceding Theorem 3.9
, there exists a P -space T such that υ((βN\N )δ × Tδ) 	= (υ((βN\N ) × T ))δ. However,
βN\N is locally compact, realcompact and of non-measurable cardinality, so by Theorem
3.1 it follows that υ((βN\N ) × T ) = υ(βN\N ) × υT .

By contrast, the space Q of rational numbers is not locally compact so by Theorem 3.1
there exists a space T such that υ(Q× T ) 	= υQ× υT . However, Qδ is a countable discrete
space, so again by Theorem 3.1 υ(Qδ × Tδ) = υ(Qδ) × υ(Tδ).

We close this section by showing that υδ-commutativity is not preserved either directly
or inversely by perfect continuous surjections.

Examples 3.11.

(a) Let A denote the so-called “Dieudonné plank” constructed as follows. Let N∗ =
N ∪ {p} denote the one-point compactification of N and let L = D ∪ {q} denote the one-
point Lindelöfication of the discrete space D of cardinality ℵ1 (neighbourhoods of q are
co-countable sets). The space A is defined to be (N∗ × L)\{(p, q)}. It is shown in [Kato
(1979), Example A, Page 1256] that A is almost realcompact but not realcompact and that
υA = N∗ × L, and in [Dykes (1969), 1.7] that the absolute EX of any almost realcompact
space X is realcompact. ( See [Porter & Woods (1988), chapter 6] for a discussion of
absolutes, and [Porter & Woods (1988), Problems 6U, 6V, and 6W] for a discussion of
almost realcompactness and the space A). Note that there is a perfect irreducible continuous
surjection from the absolute EX of a Tychonoff space X onto X). The space Aδ is easily
seen to be the free union of the Lindelöf space N × L and the discrete space {p} × D of
cardinality ℵ1; hence Aδ is realcompact. It follows from Proposition 1.4 that A is not a υδ-
commuting space. Hence the perfect irreducible continuous image of a realcompact (hence
υδ-commuting) space need not be υδ-commuting.

(b) As noted before Theorem 3.9, there is a P -space T (which thus is υδ-commuting)
such that the product (βN\N ) × T is not υδ-commuting. As βN\N is compact, the
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projection map from (βN\N ) × T onto T is a perfect continuous surjection. Hence the
perfect continuous pre-image of a P -space need not be υδ-commuting.

We do not have an example of a perfect irreducible pre-image of a υδ-commuting space
that fails to be υδ-commuting.

4 Regular ring extensions of C(X) Let X be a Tychonoff space, and let F (X) denote
the ring of all real-valued functions with domain X . The smallest (von Neumann) regular
ring A for which C(X) ⊆ A ⊆ F (X) is denoted G(X). In [Henriksen, Raphael, & Woods
(2002)] and [Raphael & Woods (2000)] conditions on X were investigated that are equivalent
to G(X) being ring-isomorphic to a ring of the form C(Y ), where Y is a Tychonoff space.
If X is realcompact, this is equivalent to G(X) being equal to C(Xδ). Such spaces are
called RG-spaces; in [Henriksen, Raphael, & Woods (2002)] compact RG-spaces and metric
RG-spaces are characterized, although no characterization of realcompact RG-spaces is yet
available.

In this section we generalize this result by showing that if X and Y are Tychonoff
spaces for which G(X) is ring isomorphic to C(Y ), then C(Y ) ∼= C((υX)δ). Thus X is
an RG-space if and only if G(X) is isomorphic to some C(Y ) and X is an υδ-commuting
space.

We begin with a theorem on regular rings between C(X) and F (X).

Theorem 4.1. If X is realcompact and if A is a regular ring that is isomorphic to a C(Y )
such that C(X) ⊆ A ⊆ C(Xδ) then A = C(Xδ).

Proof. We can assume without loss of generality that Y is realcompact. Let m be the
isomorphism from A to C(Y ), with n being its inverse. Let i embed C(X) in A and let j

embed A in C(Xδ). Then mi : C(X) → C(Y ) is a ring embedding. As X is realcompact,
by the proof of [Gillman & Jerison (1960), 10.6] (with X and Y interchanged) there is a
continuous map t : Y → X such that for all g ∈ C(X) and all y ∈ Y , (mi)(g)(y) = g(t(y)).
As i embeds C(X) in A this becomes, for all g and y as above,

m(g)(y) = g(t(y))(1)

Similarly the map jn : C(Y ) → C(Xδ) is a ring homomorphism fixing 1 so again using
[Gillman & Jerison (1960), 10.6], we similarly get a continuous function s : Xδ → Y such
that for all k ∈ C(Y ) and all z ∈ Xδ, we have (jn)(k)(z) = k(s(z)), which becomes, for all
k and z as above, (n)(k)(z) = k(s(z)). Hence as Xδ is Tychonoff it follows that for each
k ∈ C(Y ),

n(k) = ks(2)

If g ∈ C(X) then m(g) ∈ C(Y ), so replacing k by m(g) in (2) and using nm = 1, we get
that for all g ∈ C(X) and all z ∈ Xδ,

g(z) = m(g)(s(z))(3)
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Replacing y by s(z) in (1) we have, for all z ∈ Xδ and g ∈ C(X),

m(g)(s(z)) = g(t(s(z))(4)

Combining (3) and (4) gives, for all g ∈ C(X) and z ∈ Xδ, g(z) = g(t(s(z)) (note z is
a point of X and of Xδ). As X is Tychonoff this implies that for all z ∈ Xδ, z = t(s(z)).
Thus ts = 1, and as 1 is the canonical map from Xδ to X , and as Y is a P -space since A

and hence C(Y ) is regular, it follows that there is a continuous map a : Y → Xδ such that
1a = t (see [Porter & Woods (1988), 1W(7)]). Thus as is the identity on Xδ.

We complete the proof by establishing three claims.
Claim 1. s[Xδ] is dense in Y

Proof of the claim. If not, let p ∈ Y \cl(s[Xδ]). As Y is Tychonoff there exists h ∈ C(Y )
such that h(p) = 1 and h[s[Xδ]] = 0. Apply (2) to h and get: for all z ∈ Xδ, (n(h))(z) =
h(s(z)) = 0. Thus n(h) = n(0) is the constant function 0 but h is not equal to 0 as h(p) = 1.
This contradicts n′s being a ring isomorphism, so our claim holds.

Claim 2. s : Xδ → Y is a homeomorphism.
Proof of the claim. We know that a : Y → Xδ is continuous and since as = 1, the

restriction a|s[Xδ] is a homeomorphism. Since by claim 1, a maps a dense subset of Y

(since as is the identity on Xδ ) onto its image, it follows from [Gillman & Jerison (1960),
6.11] that s[Xδ] = Y and hence s is a homeomorphism.

Claim 3. A = C(Xδ).
Proof of the claim. It suffices to show that the inclusion j : A → C(Xδ) maps A onto

C(Xδ). But since by claim 2, s : Xδ → Y is a homeomorphism, the map k → ks is a ring
isomorphism from C(Y ) onto C(Xδ). Hence by (2), n maps C(Y ) onto C(Xδ). But n maps
C(Y ) onto A, so A = C(Xδ).

By replacing A with G(X) in theorem 4.1 we have:

Corollary 4.2. If X is realcompact and if G(X) ∼= C(Y ) for some space Y , then X is an
RG-space.

Remarks 4.3.

There is an easy algebraic proof of corollary 4.2 using properties of epimorphisms, but
not one for theorem 4.1. It is possible for an algebra strictly between C(X) and C(Xδ) to
be regular, uniformly closed in the sense of [Henriksen, Johnson (1961)] , and have X be
realcompact. One example is given by the algebra of Baire functions on the real line X

discussed in [Henriksen, Johnson (1961), 5.1].

Theorem 4.4. Let X and Y be Tychonoff spaces for which G(X) is ring-isomorphic to
C(Y ). Then C(Y ) is ring isomorphic to C((υX)δ) and υY ∼ (υX)δ. In particular an
RG-space is υδ-commuting.

Proof. We know that G(X) ∼= G(υX) (see [Raphael & Woods (2006), 4.1]) so G(υX) ∼=
G(X) ∼= C(Y ) ∼= C(υY ). Hence by 4.2 it follows that G(υX) ∼= C((υX)δ). Applying the
above isomorphisms, it follows that C(υY ) ∼= C(Y ) ∼= C((υX)δ). As noted in Lemma 1.1
above, (υX)δ is realcompact, as is υY , so it follows from [Gillman & Jerison (1960), 8.3]
that υY ∼ (υX)δ.
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Corollary 4.5. A perfectly normal scattered space of finite Cantor-Bendixon index is υδ-
commuting. A perfectly normal scattered space of finite Cantor-Bendixon index and non-
measurable cardinality is realcompact.

Proof. The first assertion follows from [Henriksen, Raphael, & Woods (2002)][2.12] where
these spaces are shown to be RG. The second assertion follows by part (b) of corollary 1.5.

Remark 4.6.

Note that the space Ψ is not υδ-commuting by corollary 1.5 because it is not realcompact.
But it is of countable pseudocharacter, scattered, and of finite Cantor-Bendixon index. Thus
the corollary holds for perfectly normal spaces, but not for general spaces of countable
pseudocharacter. Note also that the space of [Levy & Rice (1981)][Example 2] given under
Lusin’s Hypothesis is perfectly normal, hence υδ-commuting by the corollary. It is therefore
realcompact.

There are many examples of υδ-commuting spaces that are not RG. Compact spaces
are always υδ-commuting but rarely RG (see [Henriksen, Raphael, & Woods (2002), 3.4]).
The scattered space of [Henriksen, Raphael, & Woods (2002), Example 2.10] is realcompact
hence υδ-commuting but not RG.

We can now generalize 4.2 using υδ-commuting spaces. (The analogous generalization
of 4.1 also holds).

Theorem 4.7. If X is an υδ-commuting space, and if G(X) is ring-isomorphic to C(Y )
for some space Y , then G(X) = C(Xδ) (i.e. X is an RG-space).

Proof. It suffices to show that C(Xδ) ⊆ G(X). As noted in the proof of Theorem 4.4,
G(υX) = C((υX)δ), so by hypothesis G(υX) = C(υ(Xδ)). Let f ∈ C(Xδ). Then its
Hewitt extension fυ belongs to G(υX). But the map g → g|X is a ring isomorphism from
G(υX) onto G(X) (see [Raphael & Woods (2006), 4.1]). Thus f = fυ|X ∈ G(X).

Remark 4.8.

Since RG-spaces are υδ-commuting the work in [Hrusak, Raphael, & Woods (2005)]
shows that there are υδ-commuting spaces that are pseudocompact, non compact, almost
compact, and almost-P .

Our central result is as follows.

Theorem 4.9. Let X be a Tychnoff space, and suppose that there exists a space Y such
that G(X) is ring-isomorphic to C(Y ). The following are equivalent:

(a) (υX)δ = υ(Xδ)
(b) X is an RG-space.
If these equivalent conditions hold, then υY ∼ (υX)δ.

Proof. (a) ⇒ (b). This is Proposition 2.5 above.
(b) ⇒ (a). As noted in the proof of 4.4, G(υX) = C(υX)δ). Hence if f ∈ C(Xδ), then

fυ ∈ C((υX)δ), and thus the space Xδ is dense and C-embedded in the realcompact space
(υX)δ (see 1.1). It follows that υ(Xδ) = (υX)δ.

The next result will provide us with a technique for generating examples of spaces X

for which G(X) ∼= C(Y ) but X is not an RG-space (ie G(X) 	= C(Xδ)).
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Theorem 4.10. Let X be a non-realcompact space for which υX is a Lindelöf scattered
space of finite CB-index and Xδ is realcompact. Then G(X) is ring-isomorphic to a C(Y ),
but X is not an RG-space.

Proof. By [Henriksen, Raphael, & Woods (2002), 2.12] υX is an RG-space and so C((υX)δ) =
G(υX). But G(X) ∼= G(υX), so (υX)δ is the desired Y . By part (a) of 1.5 X is not an
υδ-commuting space.

Examples 4.11.

(a) As observed in 3.11 (a), the Dieudonné plank A is a non-realcompact space for which
Aδ is realcompact, and υA is the product of a compact scattered space of finite CB-index
and a Lindelöf scattered space of finite CB-index. Hence A satisfies the hypotheses of 4.10.

(b) There are “Ψ-spaces” (see 2.10 ) that are almost compact, ie for which |βΨ\Ψ| = 1;
see [Mrowka (1977)] and [Teresawa (1980)]. For such a Ψ, βΨ is a compact scattered space
of CB-index 3. Hence if K is any compact scattered space of finite CB-index, (βΨ)×K is
also such a space, and as Ψ×K is pseudocompact, it follows that (υΨ)×K = β(Ψ×K) =
(βΨ) × K.

We conclude this paper by considering the epimorphic hull H(X) of C(X). One can
characterize H(X) as the smallest regular ring lying between C(X) and Q(X), its complete
ring of quotients (see [Raphael & Woods (2000)] for background).

Recall that a Tychonoff space X is almost-P if its zero-sets are regular closed; equiv-
alently, if X has no proper dense cozero-sets. As noted in [Raphael & Woods (2000),
paragraph before 5.1], if X is an almost-P space then H(X) = G(X). In 4.10 we exhibited
a non RG-space X for which G(X) was nevertheless isomorphic to a ring of continuous
functions. We now want to find an almost-P space T with the same property. If so, we will
have an example of a space for which H(T ) is ring-isomorphic to a C(Y ) but not to C(Tδ).
To do this, we will first (in 4.12 below) describe a technique for producing an almost-P
space AP (X) from any Tychonoff space X . We then (in 4.13) apply this construction to
specific sorts of X to produce spaces T with the properties described above.

Construction 4.12.

The following construction is based on ideas that appeared in [Dashiell, Henriksen &
Hager (1980)] and in an earlier version of [Barr, Kennison & Raphael (2005)]. Let X be a
Tychonoff space. Let α be a regular cardinal larger than |X |, let D be a set of cardinality
α, and let L(α) = D ∪ {p} (where p /∈ D) topologized as follows: points of D are isolated,
and if p ∈ A ⊆ L(α) then A is open if and only if |D\A| < α.

Let AP (X) = L(α) × X , topologized as follows. Its topology τ has B1 ∪ B2 = B as
an open base where B1 = {{(d, x)} : d ∈ D, x ∈ X} and B2 = {A × V, p ∈ A, |D\A| <

α, V is open in X}.
Clearly nonempty intersections of members of B are in B , and hence B is a base for

a topology τ which is clearly Hausdorff. It is completely regular, for if {(d, x)} ∈ D × X

then the characteristic function χ{(d,x)} witnesses this, while if (p, x) ∈ A × V where V is
open in X , let f ∈ C(X) such that f(p) = 0 and f [X\A] = {1}. Define F : AP (X) → R

by letting F ((d, y)) = f(y) for each y ∈ X . Clearly F ∈ C(AP (X)), F ((p, x)) = 0, and
F [AP (X)\(A × V )] = {1}.
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Next, note that AP (X) is an almost-P space; for let G be a non-empty Gδ-set of
AP (X). If G\({p} × X) 	= φ clearly the AP (X)-interior of G is non-empty. If (p, y) ∈ G,
there is a countable family (An × Vn)n∈ω of basic open sets of AP (X) for which (p, y) ∈
⋂

n{An × Vn} ∈ G. Choose z ∈ (
⋂

n∈ω An)\{p}. This is possible as α, being regular, has
uncountable cofinality. Clearly (z, y) ∈ intAP (X)(G). Thus non-empty Gδ-sets of AP (X)
have non-empty interiors and AP (X) is an almost-P space.

Next observe that {p} × X is C-embedded in AP (X). To see this, suppose that f ∈
C({p} × X) and extend f to F : AP (X) → R by letting F (L(α) × {y}) = f(p, y) for each
y ∈ Y . As the topology on AP (X) is stronger than the topology on the product L(α)×X ,
and as F is continuous with respect to the product topology, clearly F ∈ C(AP (X)).

Construction 4.13.

We now apply the construction described above to produce an example of a space T

with the properties described in the paragraph preceding 4.12. Let us suppose that X is a
non-realcompact space for which |υX\X | = 1 and υX is a scattered Lindelöf space of finite
CB-index. (Note that the Dieudonné plank, or an almost compact version of Ψ, satisfies
the above hypotheses on the space X). Then clυAP (X)({p}×X)\({p}×X) = {q} for some
q ∈ υAP (X)\AP (X). Let T = AP (X) ∪ {q} and E = ({p} × X) ∪ {q}. We will show that
E is C-embedded in T .

Let g ∈ C(E). Define G : AP (X) → R by : G(x, y) = g(p, y) for all x ∈ L(α) and
y ∈ X . It is clear (as in the previous paragraph) that G ∈ C(AP (X)). Hence as AP (X)
is C-embedded in T (as q ∈ υAP (X) ) there is a continuous extension G′ of G to T . Now
G′|{p} × X = g|{p} × X and {p} × X is dense in E, so G′|E = g. Thus G′ is a continuous
extension of g to T , so E is C-embedded in T as claimed.

Thus T is the union of the discrete space D × X and the realcompact C-embedded
(hence closed) subspace E. It follows (as in the proof of 2.20) that T is realcompact.

We will now show that T is an RG-space, and that AP (X)δ is realcompact. We can
then argue as in the proof of 4.10 that H(AP (X)) is ring-isomorphic to a C(Y ), but AP (X)
is not an RG-space.

To show that T is an RG-space, suppose h ∈ C(Tδ). Then h|E ∈ C(Eδ). Now E is
homeomorphic to υX , a scattered Lindelöf space of finite CB-index. Thus E is an RG-
space and so h|E ∈ G(E). Thus there are fi, gi ∈ C(E) such that h = Σ(fi)(g∗i ). As E

is C-embedded in T there exist Fi, Gi ∈ C(T ) such that fi = Fi|E and gi = Gi|E. By an
argument similar to one used earlier there exists a subset M of D such that M is clopen
in L(α) and h agrees with ΣFiG

∗
i on T \((D\M ) × X). Now hm ∈ C(T ) where m is the

characteristic function of (D\M )×X , and clearly h = hm + (1−m)ΣFiG
∗
i represents h as

a member of G(T ). Thus C(Tδ) = G(T ) and so T is an RG-space.
Finally, note that ({p} × X)δ ∼ Eδ and hence Eδ is realcompact as Xδ is hypothesized

to be realcompact. It is easily seen that if g ∈ C(Eδ) then G : AP (X) → R defined by
G((d, y)) = g(p, y) is in C(AP (X)δ) , so AP (X)δ is the union of a realcompact C-embedded
subset ({p} × E)δ and a discrete (hence realcompact) space D × X . Thus AP (X)δ is
realcompact. It follows that H(AP (X)) is ring-isomorphic to a C(Y ) but AP (X) is not an
RG-space.

5 Remarks and Questions 1. Let T denote the category of Tychonoff spaces and
continuous functions. As the realcompact spaces define a reflective full subcategory of T
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and the Tychonoff P -spaces define a coreflective full subcategory of T it is reasonable to
ask whether the υδ-commuting spaces define yet another reflective and/or coreflective full
subcategory of T . Now reflective subcategories of T are closed-hereditary -see [Walker
(1974), 10.21] so by 2.7 the υδ-commuting spaces do not form a reflective subcategory.
Similarly, the objects of coreflective subcategories of T are preserved by quotient maps
(see [Walker (1974), 10C.5]). However the space ω1 of countable ordinals can be written
as the continuous image under an open (hence quotient) map of a realcompact space (see
[Gillman & Jerison (1960), 8 I] ). Thus the υδ-commuting spaces do not define a coreflective
subcategory of T either.

2. Is a regular closed set in a υδ-commuting space υδ-commuting? In particular, is the
closure of a cozero-set of an υδ-commuting space another υδ-commuting space?.

3. (a) Is the free union of any collection of υδ-commuting spaces υδ-commuting? (i.e.
is the property preserved by free unions of spaces indexed by measurable cardinals)? (See
Remark 2.13).

(b) Are all paracompact spaces υδ-commuting? (i.e. must paracompact spaces of mea-
surable cardinality be υδ-commuting ?)

4. Let Y = X ∪ K, where X is a υδ-commuting space and K is compact. Must Y be
υδ-commuting? The disjoint case, the case where X is z-embedded, and the case where X

is a P -space appear above in section 2. The case where X ∩ K is a Baire set of X follows
from the disjoint case and 2.1. The result is also clear if X\K is υδ-commuting (again by
the disjoint case).

5. Is there an example of a space Y that is not υδ-commuting, but is of the form X ∪K,
where X is υδ-commuting and z-embedded in Y , and K is realcompact and C∗-embedded
in Y ? Is there such an example, where X and K are disjoint, and K is C∗-embedded? Note
(see 4.8) that in the example in [Levy & Rice (1981)] the space D is C∗-embedded and the
space is υδ-commuting.

6. Is there an example of a perfect irreducible pre-image of an υδ-commuting space that
fails to be υδ-commuting?

7. If “z-embedding” is dropped from the hypotheses of 2.18, does the resulting assertion
remain true? What happens if one removes the demand for denseness?

8. The concepts of being a P -space, and being realcompact, have well-know generaliza-
tions to higher cardinals. Let α be an uncountable cardinal. A subset of a Tychonoff space
X is a Gα-set if it can be written as the intersection of fewer than α open subsets of X . A
Tychonoff space is a Pα-space if each Gα-set is open. The Pα-coreflection of X (denoted
Xα) is obtained by declaring the Gα-sets of X to be an open base for a new topology. See
[Comfort & Negrepontis (1974), chapter 2] for an extensive discussion of these ideas.

A z-ultrafilter A on X has the α-intersection property if the intersection of fewer than
α members of A is non-empty. We recall that Herrlich [Herrlich, (1967)] has called a
space X α-compact if each z-ultrafilter with the α-intersection property is fixed. The
α-compactification υαX of X is the subspace X ∪ {A ∈ βX\X} where the A have the
α-intersection property, and as in [Gillman & Jerison (1960)] we regard the points of βX

as the z-ultrafilters on X). Note that if α = ℵ1, the above concepts reduce to the notions
of P -space, Xδ, realcompactness, and υX .

Professor W. Comfort has raised the question of when υα(Xγ) = (υαX)γ for any pair
(α, γ) of uncountable cardinals. This is a question of obvious interest that is beyond the
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scope of this paper. We hope to address it in a forthcoming paper.
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