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RIEMANN ZETA FUNCTION, BERNOULLI POLYNOMIALS AND THE
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ABSTRACT. Green function for periodic boundary value problem of 2M-th order or-
dinary differential equation is found by symmetric orthogonalization method under
a suitable solvability condition. As an application, the best constants and the best
functions of the Sobolev inequalities in a certain series of Hilbert spaces are found and
expressed by means of the well-known Bernoulli polynomials. This result has clarified
the variational meaning of the special values ((2M) (M = 1,2,3,---) of Riemann
zeta function ((z).

1 Conclusion In this paper we clarified the variational meaning of the special values
¢(2M) (M =1,2,3,---) of Riemann zeta function ((z). A constant multiple of ((2M) is
a supremum of M-th Sobolev functional Sy;(u) in a suitable function space Hy.

As a preparation, we explain briefly about Riemann zeta function, Bernoulli polynomial
and Bernoulli number. Riemann zeta function is a meromorphic function defined by

((2) =) n"  (Rez>1) (1.1)

It has only one simple pole at z = 1. All its nontrivial zeros lie on a straight line Rez =
1/2, which is a famous Riemann hypothesis. Bernoulli polynomial b, (x) is defined by the
following recurrence relation.

bo(z) = 1 (1.2)

W, (2) = booi (@), /0 bo(z)dr = 0 (n=1,2,3") (1.3)
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That is to say b, () is a primitive of b,,_1 (z) having mean value 0 on an interval 0 < z < 1.

bo(z) = 1, bi(z) =z - %, ba(z) = %xQ— %x+1—12,

@) = o' = g g i) = gpet - et gt - o
b5(m):%0x5—%x4+%x3—%x
bﬁ(w):%xG—iox‘%—f—fin‘l—ﬁxQ—kr%

brl) = 50140 o= 14140 x6+14140 - 43120 x3+30;40x

bs(z) L8 = T+ LI 1 4 1 2 1

T 203207 T 100807 T 8640 T 17280 7 T 60480 ° 1209600

Bernoulli number is defined by
By = M) (=DM byp(0) (M =1,2,3,--) (1.4)

It can be obtained by the following recurrence relation

§<—1>j(3?>3j——n =)

7=0 (15)
By = —1
Bernoulli numbers are positive rational numbers. We know that
1 1 1 1
B — — B e J— B: = — B = —
1 6 ’ 2 30 ; 3 49 ) 4 30 )
5 691 7 3617
B: = — e - S _ 2070
®T660 % 21300 T 6 % B0
In order to present our main theorems, we prepare a sequence of function spaces
Hy = {u(m) u™) (z) = (d/dz)Mu(z) € L*(0,1),
‘ ‘ 1
uD(1) —u@0)=0 (0<i<M-1), / u(x)de = o} (1.6)
0

for M =1,2,3,--- and Sobolev functionals

Sui(u) = (02281'“@)2 /] a0 @) da (L7)

The main theorems we have obtained in this paper are as follows.
Theorem 1.1  For M =1,2,3,--- we have the following conclusions.

_ _2¢eM) _ By _ [ 2
(1) us%;{iM Spu(u) = Cy = @m (@M 7/0 |bar(z) |“da (1.8)
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(2) For any fized y satisfying 0 <y < 1 we have

Su (ban(|z —yl)) = Cu (1.9)
(3) inf Sp(u) =0 (1.10)
ko

The above theorem is rewritten equivalently in the following manner.

Theorem 1.2 For each fired M = 1,2,3,--- and for every function u(x) € Hpr, we have
a suitable positive constant C which is independent of u(x) such that the following Sobolev
inequality holds.

( sup |u(y)|>2 < C'/O1 ‘u(M)(m)rdm (1.11)

0<y<1

Among such C' the best constant Cyy is given in the previous theorem.
In the above inequality if we replace C by Cyy, the equality holds for u(z) = const. baps(|z—
y|) , where y is an arbitrarily fized number satisfying 0 <y < 1.

These main Theorems are proved in the later sections but the proof of (3) of Theorem 1.1
is very simple. In fact for n = 1,2,3,--- we have cos(2rnz) € Hy and
2 1

Sa(cos(2mnz) ) = (2m)2M 2M n—o0 0

dx

1 2
This shows (3) of Theorem 1.1. Positive definiteness of Sobolev energy / ‘U(M ) (.ﬁ)‘
0

is shown later.

For the sake of comparison we present the well-known theorem concerning Wirtinger
inequality.

Theorem 1.3 (Wirtinger) For each fited M = 1,2,3,--- and for every function
u(z) € Hpyr, we have a suitable positive constant C' which is independent of u(x) such
that the following Wirtinger inequality holds.

1 , 1 2
/0 |u(z)|“de < C/o ’u(M)(x)’ dx (1.12)

Among such C the best constant Chr is given by
Cy = 1/ (20)*M (1.13)
In the above inequality if we replace C by 5M, the equality holds for a special function
u(x) = const. cos(2mxz) + const. sin(2mx) 0<z<1) (1.14)

2 Bernoulli polynomials In this section, we explain important aspects of Bernoulli
polynomials which are used frequently in this paper. We omit their proofs, some of which
are given in appendix.

We start with definitions of (n + 1) x (n + 1) nilpotent matrix

v ()= (04
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and its exponential function
E(z) = exp(zN) = ( E;_; )(x) = (Ey - En\(x)

Ey

where 9; ; is a Kronecker delta symbol defined by
0ij=1 (i=3), 0 (i#0)
and E;(z) (1 =0,£1,42,---) are monomials defined by
Ei(x) = 2'/i! (i=0,1,2,---), 0 (i=-1,-2,---)
We also use the following abbreviation.
E;, = E;(1) (1=0,1,2,--)
E(z) satisfies an initial value problem
(d/dz) E(x) = N E(x), E0) =1
and an addition rule
E(r+y) = E(x)E(y) (r,y€C)

Lemma 2.1

) ey = L k@ (I <2n)
i=0
@) %‘Z(—njbw@(%)” (Itf<m)
j=0

Lemma 2.2

bi(l —z) = (=1) b() (i=0,1,2,---)
Lemma 2.3

bit1(z +1) = biyi1(z) = Ei(x) (i=0,1,2,---)
Lemma 2.4

bi(1) — bi(0) = ;1 (i=0,1,2,---)

Lemma 2.5

n

bp(z) = an_j(O)Ej(x) (n=0,1,2,---)
j=0

2

bon() = 3 botn(0) Esj(@) = = Boa(s)  (n=1,2,3,++)
=0

2

< 1
bont1(z) = Z b2(nfj)(0) E2j+1(x) — 5 Ean() (n=0,1,2,---)
§=0

(2.8)

(2.9)

(2.10)
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Lemma 2.6

1 )
bQH_l(O) = —551',0 (220,1,2,-'-) (2.11)
bpiv1 (1/2) =0  (i=0,1,2,---) (2.12)
From lemma 2.5 we have
Lemma 2.7
-1
E(z) = (Eo Ex\(x) = [ bo bn \(z) [ bo by \(0)
Eo bo bo
(2.13)
We introduce a matrix E;(z) defined by
E(z)=(E1 - Enpt1)(2)
: (2.14)
By
and its inverse
Ei(z) = BEy(x)"' =(E1 ++ Enq1\(2)
: (2.15)
Ey
The following lemma holds.
Lemma 2.8  The inverse of the matriz E1(1) is given by
E(1) = E,(1)" = Ey - Enp (1) = (b0 - by \(0)
: : (2.16)
El bO
that is
bi(0) = Eipr (i=0,1,2,--) (2.17)
Lemma 2.9
bn(z) = Ey Eo(x) (n=1,2,3,---)
(2.18)
En e E1 Enfl(l')
En+1 s E2 En(.’b)




68 Y. KAMETAKA, H. YAMAGISHI, K. WATANABE, A. NAGAI AND K. TAKEMURA

Lemma 2.10
bny1(z) —bpy1(0) \ = E (1) Entr \(z) (n=0,1,2,--+)
: : (2.19)
bl (l‘) - bl (0) E1
From the relation E(z+vy) = E(z) E(y) we have the following lemma.
Lemma 2.11
bo o ba N@4y) = [bo o bu \(@)E (1) Do - ba \(y)
bo bo bo
Lemma 2.12
(b1(@) = b1(0), -+ ba(2) = ba(0) ) Er(1) ( bay) = bn(0) ) =
bi(y) — b1(0)
b1 (@ +y) = bng1(®) = bpga(y) + bnga(0)  (n=1,2,3,--+) (2.21)

Next we derive the Fourier expansion formula of b;({z}), where {x} = x — [z] denotes
a decimal part of a real number x.

Lemma 2.13  If we expand b;({x}) in Fourier series as

bi({z}) = Z b n) exp(v/—127mnz) (2.22)

n=—oo

its Fourier coeficients

1
bi(n) = / bi({z}) exp (— vV—12mnz) da (2.23)
0
are given as follows.
bo(n) = 6po  (n=0,1,2,---) (2.24)
Fori=1,2,3,---
bitn) = | 0 =0
(n) =) 025)
— (vV=12mn) (n=+1,42,.-)
Lemma 2.14 Fort=1,2,3,---, Fourier series
bi({z}) = — Z (V—12mn) - exp (V—12mnz) (2.26)

n#0



RIEMANN ZETA FUNCTION, SOBOLEV INEQUALITY 69

can be differentiated with respect to x termwise in the sence of distribution as

(%) bi{z}) = biy({a}) = = (V=12mn)’ " exp (V=1 2mnz) (2.27)
n#0
(0<ji<i-1)

The right hand side converges in L*(0,1).
In the real form we have

boi({z}) = (—1)12 Z 2mn)~** cos(2mnx) (2.28)

boiv1({z}) = (1) '2 Z (27n) =Y sin(2mna) (2.29)
Lemma 2.15

(=) b2i(0) = #g(%) (i=1,2,3,--+) (2.30)

boi(1/2) = — (1 - 2—(21—”) boi(0)  (i=1,2,3,) (2.31)
Especially we have

[02:(0)[ > [b2i(1/2)] > 0O (2.32)

o0
where ((s) = Z n~° (Re s > 1) is Riemann zeta function.
n=1

From the Parseval identity, we have the following lemma.

Lemma 2.16
> 2
2dr = 2 z (2 - (24 2.
/ bi(2) |2 dz = ;)( ) Z:: )™ = e (20 (2.33)
(1=1,2,3,---)
Lemma 2.17
(- )”+1b2 11(z) = / (m/\y — 2xy>(—1)” bon—1(y)dy > 0 (2.34)
0

O<z<1/2, n=1,2,3,---)
Lemma 2.18 For n=1,2,3,---, We have

Jnax |bon(2)| = (=1)" " b2n(0) (2.35)
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3 Boundary value problem In this section, we treat the following boundary value

problem.
BVP
(—1)MuCM) = f(x) 0O<z<1) (3.1)
w(1) — uD(0) = 0 (0<i<2M—1) (3.2)
1
/ u(z)de =0 (3.3)
0
At first, we remark that the corresponding eigenvalue problem
EVP
(—1)My M) = Ny O<z<1) (3.4)
wWD(1) = uD(0) = 0 (0<i<2M—1) (3.5)

has an eigenvalue A = 0. Corresponding normalized eigen function is given by
plx) =1 0<z<1) (3.6)

The aim of this section is to prove the following theorem concerning the solvability of this
BVP.

Theorem 3.1  For any bounded continuous function f(x) on an interval 0 < z < 1, if
there exists a classical solution u(x) to BVP then we have

1 1
/f@@=/f@ﬂww=0 (3.7)
0 0
d

an

u(z) = /0 g(x,y) f(y) dy + const. 0<z<1) (3.8)

where const. is a suitable constant and

9@&)2(—DM1{EMFNW—yD—

[\

(B1,- , Eorr—1)(z) E1(1) { Barr—1 \(1 —y) —

By

(Br, - Bon—1)(y) E1(1) [ Ban—1 \(1 - 2)
' (3.9)

Ey

We call the above function g(x,y) the proto Green function.



RIEMANN ZETA FUNCTION, SOBOLEV INEQUALITY

Proof of Therome 3.1 If we introduce 2M new functions by
ui(x) = u®(x) 0<i<2M—-1,0<x<1)

then we have

{ wp = uip1 (0<i<2M —2)
w1 = ()M f (@)
Introducing notations
ot _t _
u = (UO;"'7U2M71)7 € = (0,"',0,1), N*<5i,j*1)
we have
u' = Nu+ (-1)Me f(z) 0<z<1)
N is a nilpotent matrix. Solving (3.14), we have
x
ulz) = B@)u(0) + [ (-)" Blz - y)e )y
0

1

mm::Eu—nuu>—/k—nMEu—ny@My

x

71

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

where E(z) = exp(z IN). Comparing the 0-th component of the above relations, we have

uo(z) = uo(0) + (B, , Eap—1)(x) [ w1 \(0)+

U2M—1

A?—DMEMIam—ynﬂwdy

uo(z) = uo(l) + (Ev,--, Bap—1)(x—1) [ w1 \(1)+

U2M —1
/(—DMEmnﬂm—yDﬂwdy

From the boundary condition we have

(3.17)

(3.18)



72 Y. KAMETAKA, H. YAMAGISHI, K. WATANABE, A. NAGAI AND K. TAKEMURA

These are rewritten equivalently in the following matrix forms.

1
0 B e B\ [ w \O) = — / (~D)M [(Bani 1 \(1 = y) F(y) dy
o . : 0 -
By
0 U2 —1 Ey
1
0 B o Bay\CD (w0 YO = [ 0¥ (B o sy
o . : 0 :
£y
0 UM —1 Ey

Noticing Ep(z) =1, we have

1
/0 fly)dy =0 (3.19)
i \O = = [ COME) (Eaa (1= y) ) dy
: ’ : (3.20)
U2M—1 El
i \O = [ COVED (B Y0 S0 dy
’ (3.21)

UM —1 Ey

Now we proved that the solvability condition (3.7) is a necessary condition for the existence
of the classical solution to BVP.
From (3.17), (3.18), (3.20), (3.21) we have

up(z) = uo(0) + /Ox(_l)ME2M1(|$—y|)f(y) dy —

/0 (—1)M(Ev, -+, Bay—1) (@) E1(1) [ Banr—1 \(1 - y) f(y) dy

(3.22)
Ey
up(x) = uo(1) + / (=)™ Bapgr (2 — ) f(w) dy +
/0 (—~)M(By, - Ban 1)@ — DBy (~1) [ Eavier \(—y) £(y) dy
: (3.23)

Ey
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Taking the average of (3.22) and (3.23), we have

ug(z) =

<uo<o>+-uouq) +»jﬁ1g<x,y>f<y)dy (3.24)

N | =

where g(z,y) is given by

o(ey) = (~)M = | Byvya(jz — o)) -

\o}

(El,"'7E2M_1)($)E1(1) Eonr—1 (1—y)+

Ey

(Er,- -+ Ean—1) (@ — 1) Eq(=1) [ E2n—1 \(—y)

(3.25)
Ey
Since
Ez(—x) = (—1)1E1(5L') (i:0’132"")
we have
By, Bay-a)@ = 1) = = (Bu - Ban—)(1 - @) ( (=1)'0i,5 ) (3.26)
El(_l) = — < (_1)1.51"]. >E1(1)< (_1)1'51"]_ ) (327)
Eonr—1 (—y) = — <(_1)i§m> Eanr—1 (y)
(3.28)
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Thus we have

(Ela"' aEQM—l)(x_l)El(_l) Eopr—1 (—y) =

Ey

—(Ey, - Boy 1) (1 —2) B (1) [ Bavr—1 \(y) =

—(Ey, -, Bap—1)(y) 1\ 'E(1) L\ Eov—1\(1-2) =

Ey
We note that E1(1) = Ey(1) = 1. From Lemma 2.8, we have
Bipa(1) = b:i(0)  (i=0,1,2,--) (3.29)

Finally we have obtained the expression

o(e,9) = (DM 3 | Baralle —yl) -

(B1,-- , Forr—1)(z) E1(1) { Barr—1 \(1 — y) —

By

(E1,--  Eapr1)(y) E1(1) [ Bang—1 \(1 — )
: (3.30)

Ey

which completes the proof. |

4 Proto Green function In this section, we show the following theorem concerning the
proto Green function g(z,y) introduced in the previous section.
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Theorem 4.1  If f(z) is a bounded continuous function on an interval 0 < x <1, then

u@) = [ @) fwdy  ©0<w<y) (4.0
0
satisfies
(—1)MyCM) = f () O<z<1) (4.2)
uP(1) — uD(0) =0 (0<i<2M —2) (4.3)
wM=1) (1) — 4 2M-1)(() = (_1)M/ f(y)dy (4.4)
0

Before proof, we present several expressions of g(z,y).

Lemma 4.1  Proto Green function g(x,y) is expressed in the following 4 ways.

(1) (o) = (DM L | Bar (- ) -

[\

(B1,-, Eorr1)(z) E1(1) { Banr—1 \(1 —y) —

By

(Br,--+ Bay1)(y) B (1) (Ben—a \(1—2) | = g(y,2) (0<z,y<1)

By

() g(e,) = ()M 3 [ Banra(z — ) -

(b1(z) — b1(0), -+ ,bapr—1(x) — bapr—1(0) ) [ Eonr—1 \(1 —y) —

By

(Ey,--- , Eapr1)(y) [benr—1(1 — ) — banr—1(0)

b1(1 —z) — b1(0)
0<z,y<l) (4.6)



76 Y. KAMETAKA, H. YAMAGISHI, K. WATANABE, A. NAGAI AND K. TAKEMURA

(3) ole.y) = (DM 5 | Baarala—l) -

(b1(z) — b1(0), -+ ,bans—1(x) — bansr—1(0) ) E1(1) [ b2nmr—1(1 —y) — bans—1(0) | —

bi(1 —y) — b1(0)

(b1(y) — b1(0), -+ ,bans—1(y) — bans—1(0) ) E1(1) [ b2nr—1(1 — ) — bans—1(0) }

bl(]. — (E) — bl(O)
O0<z,y<l) (4.7)

4) g(z,y) = ()M [sz(w —y|) = banm(x) — bam(y) + sz(O)] (O<az,y<1)
(4.8)

Proof of Lemma 4.1 (1) was obtained in the previous section. (2) and (3) follow from
Lemma 2.10. Applying Lemma 2.12 to (3), we have

olo.9) = (-1 3| Bangs o = ) -
bani (@ + 1 — y) + baps(x) + bapr (1 — y) — baps (0) —

bont (y + 1 — 2) + bans(9) + bons(1 — z) — sz(0>] _

(1 5 | Banros B = o) = b (1o = o) = b1 = o = ) +

bonr () + bopr (1 — ) + bapr(y) + banr (1 — y) — 2b2M(0)]
Since we have

bor (1 + [z —yl) = bam(|z — y|) + Eanr—1(|z — yl)
from Lemma 2.3 and

bom (1 — [z —yl) = banme (|2 — y),
bore(1 — ) = bans(x), banmr(1 —y) = bans(y)

from Lemma 2.2, we finally obtain
glz,y) = (=DM | ban(Jz — yl) = bare(x) = banr(y) + b2 (0)

(4) is proved. |

Lemma 4.2

(1) glz,y) = gly,z) (0<zy<l1) (4.9)
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(2)  dig(x,y) — 9ig(x,y) = { 0
y=x—0 y=x+0
(=M
0<ax<l)
(3)  dig(z,y) — dig(x,y) = { 0
rz=y—+0 x=y—0
(=M
0<y<1)
4) g(1,y) = 9(0,y) = (O<y<1)
() olg(zy)| =0 g(xy)| =
=1 =0
0<i<2M -3, 0<y<1)

© 0 gen) = 0 (n)+ )
82M=1(z. M (i — X
T g(w,y) » (-1) ( 1(y) 2)
8§M_1g(-r7y) - 8§M_1g(-r7y) = (_1)M
=1 =0
(1) EMg(z,y) =0 (O<z,y<l, z#y)

Proof of Lemma 4.2 (1) is obvious.
From Lemma 4.1 (1), we have

y=z—0

dig(w,y)

y=z+0

(=M

0
(=DM

which shows (2). (3) follows from (2).
From Lemma 4.1 (4), we have

O Eon—1(|z — yl)

N~

y=z—0
(0<i<2M—2)
(i=2M —1)

— .Ean—1(lz —yl)

(0<i<2M—2)
(i=2M—1)

(0<i<2M—2)
(i=2M —1)

()M [(—nibm_l_m T barrai(0)

yz+0]

g(1y) = (~1)M-1 [bm(l )~ bane(1) - b2M<y>+b2M<o>] i

g(0,y) = (—M-! [bm(y) = e (0) — bane () +b2M<o>} ~ 0

7

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
(4.15)

(4.16)

(4.17)
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which proves (4).
Taking a-derivatives on both sides of Lemma 4.1 (4), we have

9 g(z,y) = (-D)M! [(sgn(x —y)) " ban—a—i(lz —y)) - sz—l—i@]
(0<i<2M-2)

Especially if i = 2M — 2,
Mg (z,y) = (~1)M-! [sgn@c )bl — y]) - bl<x>]

Putting = 1 and « = 0, we have (5) and (6).
Differentiating the above equality with respect to x, we obtain (7) and this completes
the proof of Lemma 4.2. [ ]
Theorem 4.1 follows from Lemma 4.2.

5 Symmetric orthogonalization In this section, we construct Green function G(z,y)
of BVP under the following condition.

/ flz)dxe =0 (5.1)
0

Finally we show that

u(z) = / Glr.y) fw)dy  (0<z<1) (5.2)

is a true solution to BVP. Starting from a proto Green function g(z,y), we can construct
Green function G(z,y) by the following formula.

1

G(z,y) =g(z,y) — (z) / (@) oo, y) da’ — / o) o) dy o(y) +

1 1
o(2) / / o@)g(@ o) dy de' o) (0 <2,y < 1) (5.3)

©(z) is the normalized eigenfunction of EVP in section 3 corresponding to the eigen value
A = 0. In this case we have ¢(x) =1 and G(x,y) is expressed as follows.

1 1 1 1
Gla,y) = glary) — /0 o, y) e’ — /0 oz dy + /0 /0 o, y) dy do’
O<z,y<1) (5.4)

Since G(z,y) thus obtained has both symmetric and orthogonal properties, as is shown
later in Theorem 5.1, we call this procedure gerenating G(z,y) from g(x,y) the symmetric
orthogonalization method.

At first we show the following Lemma.

Lemma 5.1  The function

1 1
(a) = / 9(.y) oly) dy = / say)dy  (0<z<1) (5.5)
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s expressed as

P(x) = (=DM [sz(x) - sz(O)] 0<z<l)
and satisfies

(=1)MypCM)(z) = p(z) = 1 0<xz<1)
P (1) — p@D(0) = 0 (0<i<2M —2)
(-n)M  (i=2M-1)

Proof of Lemma 5.1 From Lemma 4.1 (4) we have
1
¥(x) :/ gla,y)dy =
0
1
<—nM*/”Pmﬂu—yn—mMu»—mM@»+meﬁdy=
0
( M 1|:/ bgM |x—y|)dy— bgM( +b2M / bgM dy]

Noticing that

1 T 1
/ sz(Iw—yl)dy:/ sz(x—y)der/ boni(y — ) dy =
0 0 T
y=x

+banr1(y — )
y=0

— banr4+1(0) + bapsg1 () + banr1(1 — ) — bapr+1(0) = 0

1
/ bans(y)dy = 0
0

we have

— bamri(z —y)

wuaz(—nM[mMm»—mMm>

The latter half follows from Theorem 4.1.

Lemma 5.2

1 1
90 =/ / g(w,y) dy dz
0 0

is expressed as

%—/w —)M by (0)

Since the above lemma is shown through direct calculations, we omit its proof.

79

(5.8)
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From Lemma 4.1(4), 5.1, 5.2 we have
G(z,y) = gl,y) = ¥(x) = ¥(y) + 90 =

(=DM banr (| — yl) = bans (x) = bars (y) + b2 (0) | —

(=DM (banr(x) = b20s(0) ) = (1) (b2 (y) = b2as(0) ) + (=) b2ar (0)

(=DM banr (|2 — y)

The next Theorem shows that G(z,y) is Green function of BVP under solvability condition

(5.1).
Theorem 5.1

Glz,y) = (DY T bau(je —yl)  (0<zy<1)
has the following properties.

(1) G(z,y) = Gly,z) (0<z,y<1)

(2) 0,G(z,y) - 0,G(z,y) = [ o (0<i<2M—2)
y=x—0 y=z+0
' (-HM (i=2M —1)
0<z<1)
(3) 9G(z,y) - 9,G(z,y) = [o (0<i<2M—2)
rz=y-+0 x=y—0
' (—1)M (i=2M—1)
0<y<1
(4) 9;G(z,y) = 9,G(z,y) = (=DM bani(y)
=1 =0

O<y<l, 0<i<2M-1)

5) BMG(zy) = (DM (0O<zy<l, z#y)

(6) /0 Glz,y)dz = 0

Proof of Theorem 5.1 (1) is obvious.
Since

LG (x,y) — 9.G(z,y) = dig(x,y) — dig(z,y)

y=z—0 y=z+0 y=z—0 y=x+0

then (2) follows from Lemma 4.2 (2). (3) follows from (2).

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)



RIEMANN ZETA FUNCTION, SOBOLEV INEQUALITY 81

Differentiating (5.10) ¢ times with respect to « we have
0,G(z,y) = (=) (sgn(z — y) ) barr—i(Jx — y) (5.17)

(4) follows from the following facts.

9,G(x,y) = (=DM bopr (1 —y) = (=)™ banri(y)
r=1
0,Glz,y)| = (1M T an—i(y)
=0
(5) and (6) are obvious. |

From Theorem 5.1, we have the following existence theorem of solution to BVP.

Theorem 5.2  For any bounded continuous function f(x) on an interval 0 < x < 1 which
satisfies the solvability condition (3.7)

1
_ /0 Gla.y) fy)dy  (0<z<1) (5.18)

is the solution to BVP.
From Lemma 2.14, we have the following conclusion.

Theorem 5.3

(o)
Glz,y) = ()M T bops(lz —y|) = Z 21n) "M cos( 2mn(z —y)) (5.19)
0<z,y<l)
Especially its diagonal part is given by
— 2
_ M-1 _ —2M
G(y,y) = (-1) ban (0) = 2 Z (27n) = WC(QM) (5.20)

n=1

0<y<1)

6 Reproducing kernel Green function G(z,y) is at the same time a reproducing kernel
for suitable set of a Hilbert space Hys and its inner product (-, -)as.

Theorem 6.1  For function space

Hy = {u(m) u™) () € L*(0,1),

u (1) —uP(0)=0 (0<i<M-1), /01 u(z)dz = 0} (6.1)

a sesquilinear form

1
(u,v) :/0 u™) (2)TM)(2) da: (6.2)

is an inner product.
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Proof of Theorem 6.1 By Fourier series expansion, we have

u(z) = ;a(j) exp(V=127jz) (6.3)
where

u(j) = /01U(y) exp(—vV—-12mjy)dy  (j€Z) (6.4)
Especially

o) - [ Cu(y)dy = 0 65)

The right hand side of the above expansion converges in L?(0,1). Differentiating (6.3) M
times termwise with respect to z, we have

WM (@) = 3 (V=1215) " @) exp(V=12mjz) (6.6)

l7]>1
From Parseval equality we have
! 2 2M 2
wun = [ || o = 3 (2nli a0)] (6.7)
0 31>1
The above equality implies that (u,u)ys = 0 holds if and only if 4(j) = 0 (j € Z), that is

to say u(x) = 0. This shows that (-,-) is an inner product in Hyy. [ |
From Theorem 5.1 and Theorem 6.1, we can show the following fact.

Theorem 6.2 (1) If «*)(z) € L?(0,1) then we have

1 1
| 0@ 0¥ Gag)do = ut) ~ [ uta)ds +
0 0
M-—1

3 ()Mt (umm - u<f><o>) MG e, y)

Jj=0

=0
Or equivalently

y 1
= [ @) barly — 2o~ (1M [ @) g ) ds =
0 Y

1 M—-1
) - [ uwyas - Y <u<ﬂ‘><1> - u<j><o>> b)) (O<y<) (6.9)

=0

(2) If u(x) € Hp then we have the following reproducing relation.

/ D) MGy d = uly)  (0<y<1) (6.10)
0
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Theorem 6.2 (2) shows that the Green function G(z,y) is a reproducing kernel in a Hilbert
space Hjys with an inner product (-,-)as.

Proof of Theorem 6.2 For functions « = u(z) and v = v(z) = G(z,y) with y
arbitrarily fixed in 0 < y < 1, we have

M-—1
WD GO _ (LM ygCM) = 37 (21)M-1d ) 5eM-1-9)

J=0

Integrating this with respect to x on intervals 0 < z < y and y < z < 1, we have

1 1
/ uM) ()T () do — / (=DM w(z) M) (z) da
0 0

M—-1 z=y—0 =1
[ (—1)yM-1= u(j)(x)@(ZM—l—j)(x) { + } —
= x=0 x=y+0
M-1
(_1)M—1—j<u(j)(1) — u(j)(O)) p(M=1=3) () 4
7=0
M-1
(M0 (T 0) = BB 40) ) = uly
3=0

Using Theorem 5.1 we have (6.8). (6.10) follows at once from (6.8). Theorem 6.2 is proved.
|

Another proof of Theorem 6.1 Applying Schwarz inequality to (6.10), we have

1 1
) < [ a0 [do [0 o)t
0 0

Putting wu(z) = G(x,y) in (6.10), we have

1
/0 10M Gla,y) [P dz = Gly,y) = (—1)™ " banr(0)

and therefore

) < DY (o) [ a0 @) ao

1 2
This inequality implies that (u, U)M = / ”U,(Ju) (l‘) ‘ dr = 0 holds if and only if 'u,(q;) =
0

0, which shows that the form (-,-)as is an inner product in Hjy. |

7 The best constant of Sobolev inequality In this section, we prove the main The-
orem 1.2 in this paper.

Proof of Theorem 1.2 As shown at the final part in the previous section, the inequality

( sup |u<y>|)2 < max Gly,y) / 1\u<M><x>\2dx (7.1)

0<y<1 0<y<1
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holds for any function wu(x) € Hys . Since G(y,y) = (—=1)M~1byp(0) does not depend on
y, for any yq satisfying 0 < yo < 1 we have

max G(y,y) = Glyo,yo) = (=)™ baps (0) (7.2)

Now we showed that for any function u(z) € Hys there exists a positive constant C' which
is not depend on u(z) such that the following Sobolev inequality holds.

( sup |u<y>|)2 < c/ol\u<M><x>\2dx (73)

0<y<1
We denote by Cj the best constant among such C. The above inequality (7.1) shows that

Cu < G(yo,90) (7.4)

Applying the Sobolev inequality (7.3) with C' = C}; to a special function u(x) = G(z,%0) ,
we have

2
( sup |G<y,yo)|) < CrGlyo, o)

0<y<1

Now we have the trivial relation

2
G(yo,y0)* < ( sup IG(y,yo)I)
0<y<1

Combining these two inequalities we have

2
Glyoumo)? < < sup |G<y,yo)|) < Car Glyo, o)
0<y<1

Combining this with (7.4), we finally have

Cu = G(yo,%0) (7.5)
and
2 1 9
( sup |G<y,yo)|) — CarGlaossn) = Cur [ 026Gl [ o (7.6)
0<y<1 0

If we replace C' by Cjs in the Sobolev inequality (7.3), the equality holds for w(z) =
G(z,y0) . This completes the proof of Theorem 1.2. [ |
We give some interesting properties of the best constant C;.

Lemma 7.1 The best constant
, B,
—_— J— _1 . —_— ? ] — e
C; = (=1)"""b(0) = @] (t=0,1,2,--+) (7.7)

which appeared in Theorem 1.1 satisfies the following recurrence relations.

n—1
Cot+ > (=1Y2n@2n—1)---(2n-2j+1)C; = —n  (n=2,3,--")
j=1

Co = -1
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The above recurrence relation is a direct consequence of (1.5). From this relation, we can
easily calculate exact values of the best constants C;.

1 1 1 1
=1 “=m %= 3m0 “ = 200600
o 1 o 691 B 1
> 7 479001607 ® T 1307674368000° ' 74724249600’
3617
CS - ’
10670622842880000

Lemma 7.2 A generating function of C; is given by

e -G (i< (79)

8 Application of Theorem 1.2 In this section, we consider an application of Theorem
1.2. We start with the following theorem, which is a special case M = 1 of Theorem 1.2.

Theorem 8.1  For every function u(x) € Hi, we have a suitable positive constant C
which is independent of u(x) such that the following Sobolev inequality holds.

sup [u(y)| e (o) de (8.1)
(0<y<1 ) ]C

Among such C the best constant is C1 = 1/12. In the above inequality if we replace C
by C1, the equality holds for a special function u(x) = const.ba(|x —y|) , where y is an
arbitrary fized number satisfying 0 < y < 1.

Fora; >0(0<i<n-—1,n=1,23,---), we assume that

n—1

u(z) = Z i+2ai [|2x— 1+ — 1 0<z<1) (8.2)

2o i1 i+2
Suppose a; = 0 (i # 1), then we have u(z) = 12a1ba(z). u(z) satisfies u(1) — u(0) = 0 and

i
/ u(z)dr = 0. That is to say u(z) € H;.
0

Since
n—1 ‘
u'(z) = 2 (i+2)a;2z-1)" >0 (1/2<z<1)
i=0
and
n—1 1 n—1
1/2)| = —u(1/2) = ;< ;= u(l
w1/ = w12 = 3 e < e = )
we have

sup |u(y)| = u(1)
0<y<1
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On the other hand, we have

n—1 2
u der = 8 14+ 2)ay 2z —1)° dr =
/' o)l //2<;(+) ( ))
4/0 (;(z—FZ)aiy) dy:4/ i;O(i+2)(j+2)aiajyi+jdy:

(1+2)( ]+2)
4 a; G;
Z i

Applying (8.1) to u(z) (8.2), we have a nontrivial inequality.

Theorem 8.2 Fora; >0 (0<i<n-—1,n=1,2,---), the following inequality holds.

DN Gt
<Z GJZ‘) S g Z Wai aj (83)

i,j=0

Proof of Theorem 8.2 Although the above theorem is a direct consequence of Sobolev
inequality, we prove the theorem directly. It is enough to prove the following inequality.

n—1 . .
(i+2)(G+2)
X (S - o)em 2o .

Left hand side of the above inequality is calculated as follows.
n—1

(-1G-1
S T

1,j=0

S - . . 1 1
<_Z+1> +m~zz(l_1m_l)<i+j+1_<z‘+1>(j+1>>“l“”

2
-l W=D E-1)
(ao_ z’+1ai> +,Z (ritDatnG+D % =0

=2 i,j=2

The equality in (8.3) holds if and only if a; =0 (i # 1). [

9 Appendix : Proofs of Lemmas in section 2 In this appendix, we give proofs of
some key lemmas concerning Bernoulli polynomials in section 2.

Proof of Lemma 2.8 Replacing z by £ in (2.13) of Lemma 2.7 and integrating it with
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respect to £ on an interval 0 < £ < x, we have

Ey - Epn\(z) =

Ey
bl (l‘) — bl (0) o bn+1(.13) — bn+1(0) b() o bn (O)

b1 (.13) — bl (0) b()
Putting £ = 1 and applying Lemma 2.4, we have
-1

Bl - Epm) = (b o e \(0)

E1 bO

This proves Lemma 2.8.
Proof of Lemma 2.9 From Lemma 2.7, 2.8 we have

E@x) = (b - by \ax(E1 - Epn

b() El

Taking 0-th row we have

(EOa"'vEn)(x):(bOv"'abn)(x) Ey o Ba

By

or equivalently

Ey bo \(z) = [ Eo \(z)

En+1 .. E by, E,

87

Solving the above equation with respect to b, (z), we have the expression in Lemma 2.9

from Cramer formula.

Proof of Lemma 2.10 Replacing = by £ in (9.1) and integrating it with respect to £ on

an interval 0 < & < x, we have (2.19).
Proof of Lemma 2.12 From Lemma 2.11 we have

E bo
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Replacing (n,z,y) by (n—1,£,17) we have

bn—l(f“‘n) = (bo, -+ ,bp—1 )(5) Ey - E, bpn—1 (77)

E, bo

If we integrate this with respect to & on an interval 0 < £ < x, with respect to n on an
interval 0 < n <y then we have

/!/ n15+ndn%-—/‘(n@+yw—m@0ds—

bop1(z +y) — bur1(z) = bpy1(y) + bnr1(0)

Proof of Lemma 2.17 For .
f) = —ban—a(x),  w(@) = banta(x)
we have
{—u” = f(x) 0<z<1/2)
u(0) = u(1/2) =0
Using Green function
xAy — 2zy = min{z,y} — 2zy > 0 0<z,y<1/2)
we have the formula (2.34). Starting with
—bi(z) >0 (0<z<1/2)
we can show
(—=1)" by ii(z) > 0 O<z<1/2, n=1,23,---)
by induction. ]

Proof of Lemma 2.18 Owing to Lemma 2.17, we have

% (—1)" ban(z) = (—1)" hana(z) <0 (0<z<1/2)

Considering that ba,(z) = b2, (1 — ), the function (—1)""! by, (z) behaves as follows.

(—1)" 1 b (0) > 0 (z=0)
monotone decreasing (0<z<1/2)
(=1)" 1 ban(1/2) < 0 (z =1/2)
monotone increasing (1)2<x<1)
(=" ban(1) = (=1)" b2 (0) > 0 (z=1)

from which we have Lemma 2.18. |
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