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REAL K-COHOMOLOGY OF COMPLEX PROJECTIVE SPACES
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ABSTRACT. In this paper, we determine the structure of KO-cohomology of complex
projective space C' P! and its product space CP'x CP™ as algebras over the coefficient
ring KO*. We also give a description of the map KO*(CP't™) — KO*(CP' x
CP™) induced by the map that classifies the tensor product of the canonical line
bundles and show that its image is not contained in the image of the cross product
KO*(CP") ®ko+ KO*(CP™) — KO*(CP' x CP™) to see that non-existence of the
formal group structure on KO*(CP).

Introduction A commutative ring spectrum F is said to be complex oriented if an element
x of the reduced E-cohomology of the infinite dimensional complex projective space C P>
is given such that x maps to a generator of the reduced E-cohomology of 1-dimensional
complex projective space CP! ([2]). We call such an element x a complex orientation of
E. On the other hand, if F-homology F.FE of F is a flat over the coefficient ring E,., F.FE
has a structure of a Hopf algebroid and E-homology theory takes values in the category of
E, E-comodule, in other words, the category of representations of the groupoid represented
by the affine groupoid scheme represented by E.E ([1]).

If F is a complex oriented ring spectrum, the FE-cohomology of the complex projective
space is just a truncated polynomial algebra over F, and it is shown that E-homology F. F of
FE is a flat over E.. Moreover the product structure of C' P> gives a one dimensional formal
group law over E* ([5]) which closely relates with the structure of the Hopf algebroid ([2]).
The complex K-theory is one of the most basic examples of complex oriented cohomology
theories. However, K O-spectrum representing the real K-theory is one of a few well-known
examples of spectra E without any complex orientation such that E,F is flat over E, ([2],
[7]). In fact, we see that K O-spectrum does not have any complex orientation by showing
that the Atiyah-Hirzebruch spectral sequence converging to KO*(CP') has a non-trivial
differential (2.2).

The purpose of this paper is to determine the structure of K O-cohomology of complex
projective space CP' and its product space CP' x CP™ as algebras over the coefficient
ring KO* in order to understand the behavior of the following map ~*. Let us denote by
v : CP'x CP™ — CP'""™ the map induced by the classifying map C P> x CP>® — C P>
of the tensor product of the canonical line bundles. We give an explicit description of the
map v* : KO*(CP*™) — KO*(CP' x CP™) and show that image of v* is not contained
in the image of the cross product KO*(CP') ®xo- KO*(CP™) — KO*(CP' x CP™)
(3.13). This implies a negative result that the classifying map CP>* x CP>® — CP>
does not give a formal group structure on KO*(CP>). In [3], M. Fujii has described the
structure of KO*(CP') as a graded abelian group and the ring structure of the subring of
KO*(CP') consisting of even dimensional elements and our result on K O*(CP!) is slightly
sharper than his result in the point that we give a complete description of KO*(CP') as
an algebra over KO*.
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This paper grew out of a seminar with Hiroyuki Oyama and the author acknowledges
him to have chance of working on this subject.

1 Preliminaries We first recall the Bott periodicity
0 ~Q(Z x BO), 0O/U~Q0, U/Sp~QO0/U), Z x BSp=~QU/Sp)

Sp~Q(Z x BSp), Sp/U~QSp, U/O~Q(Sp/U), Z x BO~QU/O).
Thus the KO-spectrum KO = (e, : SKO,, = KO, 11)nez is given as follows.

KOs, =Z x BO, KOgn+1 =U/O, KOgpi2=Sp/U, KOgni3=>Sp,

KO8n+4 =Z X BSp, K03n+5 = U/Sp, KO8n+6 = O/U, KO8n+7 = 0.

We also recall that K* = Z[t,t71], KO* = Z[a,z,y,y ']/ (20, o, ax, 2% — 4y), where
t, @, v and y are generators of K2 = my(K) =2 Z, KO™! = m(KO) =2 Z/2Z, KO~ =
11(KO) =2 Z, KO8 = 13(KO) = Z, respectively. Note that ¢, a are the homotopy classes
of the inclusion maps S? = CP! — BU = K, S' = RP!' — BO = KO to the bottom
cells.

Let us denote by hy : S — S? the Hopf map, by j : S3 = Sp(1) — Sp, i : S =
Sp(1)/U(1) — Sp/U the inclusion maps of the bottom cells, and by p : Sp — Sp/U the
quotient map. Then

SB h2 52

£ i
Sp —2— Sp/U

commutes.

Lemma 1.1 The homotopy class of iha = pj generates w3(Sp/U) = Z/2Z. Hence ihy
represents o € m (KO) = w3(KO2).

Proof. By the commutativity of the above diagram, we have the following commutative
diagram.

m3(S3) L2 74(S?)

> |i. B

m3(Sp) —— m3(Sp/U)

IR

Since p, : m3(Sp) — w3(Sp/U) is surjective, the assertion follows. Q.E.D.
Lemma 1.2 Let n and m be integers such that n > 2. Then, the composition of
(S"2hy)* : KO (S™) — KO (S"+1)
and the inverse of the suspension
o1 KO (57 — Ko™ (57)

coincides with the multiplication map by .
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Proof. Let f: S™ — KO, be a map which represents an element £ of I?(/)m(S”). Then,

" 2 m S m .
02(S"~2hs)*(€) is represented by §7+3 12, gn+2 5, S2K0,, S KO, e, Since
the diagram

haAlgn iNLKO,
—_—

s2ast 2L 2 A KO, (Sp/U) A KOy,

lSam lﬂQ,m,

SKOp —22 KOy 12

S3 A 8™

. haAlgn 52 m+158m
commutes, 03(af) is represented by §3 A §n 2201, g2 gn 21, 82 A KO,, S,

KO,,+2. We have seen that S™hy is homotopic to haAlgn. It follows that o2(S™2hg)*(£) =
a®(af) Q.E.D.

Lemma 1.3 Let n, : S?71 — 82572 = CP~1 /CP*2 be the attaching map of the 2s-cell
of CP$/CP*~2% (s > 2). Then, 1, is null homotopic if s is odd and it is homotopic to
S25=4hy if s is even.

Proof. Let g; (j = 2s — 2,2s) be the generators of H/(CP*/CP*~% F5). Since

Sq2g29_2 _ )92 8 is even
) 0 sisodd ’

the assertion follows. Q.E.D.

Let us denote by v; € I’{\él(Si) (¢ > 0) the canonical generators, that is, v;’s are given
by vg =1, o(v;) = vi+1. For s > 2, consider the cofiber sequence

CP*~'/CP*™* - CP*/CP*? = CP*/CP*".
We have the long exact sequences associated with this cofiber sequence.
.= KO"(CP*/CP*') 55 KO (CP/CP2) 5 KO (Pt jops—2) &
K0 (cpr /Pty - -
Lemma 1.4 The connecting homomorphism
5. KO"(CcP~'/cp?) - KO (cPs /P

s given by

QUas S 1S even
O(vog_2) = .
(v2s-2) {O s is odd

Proof. Since the composition

—1

KO"(cPt/cP?) & K0 (cpr/ep) = KO (§%) <5 KO (8271

coincides with the map induced by the attaching map 7, the second formula follows from
(1.3) and (1.2). Q.E.D.

The following result is known.
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Proposition 1.5 The complexification map ¢ : KO*(X) — K*(X), the realization map
r: K*(X) — KO*(X) and the conjugation map ¥~' : K*(X) — K*(X) are natural
transformation of cohomology theories having the following properties.

1) ¢ is a homomorphism of graded rings which maps o € KO~ t0o 0, z € KO™* to 2t?
andy € KO~8 to t*.

2) 7 is a homomorphism of graded abelian groups which maps t* € K8 to 2y, t*t+! ¢
K872 to o?y® and t*"*2 € K=8% to xy® foric Z.

3) U= is a ring homomorphism.

4) rc = 2idgo~(x), cr = idg-(x) + UL gnd 101 = idg=(x) hold.

By the above result, er maps t € K2 to ¢(a)? = 0. Thus we have t + ¥ ~1(t) = er(t) =
0, namely,

Corollary 1.6 ¥—1(¢) = —¢.

We denote by B : K™(X) — K" 2(X) the Bott periodicity map B(a) = ta and by
—n ——n—1
a: KO (X) - KO (X) the multiplication map by « € KO~1. A fiber sequence
U/O — BO — BU gives a cofiber sequence KO — KO 5 K of spectra. The following
result is also known.

Proposition 1.7 ([4] Chap. Il 5.18) There is a long exact sequence

LR PR (X)) & KO () S R x) B L KO (x) = KoM x) —-

Corollary 1.8 Let X be a space such that K'(X) = {0} (X = CP' or CP' x CP™, for
example). There is an exact sequence

——2n+1

i (X) & KO (X) = 0.

rB-1 ——2n+42

0 KO (x) 2 KO (x) & R2(x) 2L KO

2 Real K-cohomology of complex projective spaces Let us denote by 7; the canon-
ical complex line bundle over CP!. Put u = n —1 € K°(CP'). Then, K*(CP!) =
K*[p]/(@+1) and =(u) = (1 + p)~' — 1. Hence it follows from (1.5) that er(u) =
R i A e O

Remark 2.1 Put ji = p(1+ p)~2 € KO(CP>®)®Q = Q[[1]]. Then V=1(i) = —ji. Let us
denote by Wy (resp. W_1) the eigen space of =1 : Q[[u]] — Q|[u]] corresponding to eigen
value 1 (resp. —1). Then, {i%*]i=0,1,2,...} (resp. {p**1]i =0,1,2,...}) generates W
(resp. W_1) topologically.

Consider the Atiyah-Hirzebruch spectral sequence EYY(KO; CP!) = HP(CP'; KO?) =
KOPT4(CP). Let us denote by u the generator of E3°(KO; CP') = H?>(CP'; KO), then

Ey"(KO;CP') = KO*[ul/(u"") = Z[a,x,y,y~ ' ul/ (20, 0, oz, 2® — 4y, u'tY),
where a € ES"Y(KO; CP'), z € ES"*(KO;CP'), y € EY"%(KO; CP).
Lemma 2.2 d, : EYY(KO; CP') — EV™7Y(KO; CP') is given by da(u?) = joud ™!,

Proof. We first note that the p-skeleton (CP!)? is cplt] if p < 21. Hence EV"(KO,CP') =
—APt+q

0if pis odd and EYY(KO; CP') = EVY(KO;CP') = KO (CP3%/CP3~')if pis positive
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and even. If p is even, dy : ELY(KO;CP') — E?Y*1Y(KO;CP) coincides with the
connecting homomorphism

5: KO (cPt/cPiYy — KO'T (cPit o ph)

of the long exact sequence associated with the cofibration
cpP%/CcPi~' — CcPETY/CPET! — CPET/CPE.

Then, the result follows from (1.4). Q.E.D.

2 1

By the above result, o?u, 2u, u? and zy 'u are cocycles of the Eo-term. We de-
note by ug € E3 *(KO;CP'), uy € E;°(KO;CPY), uy € Ey°(KO;CP') and u3 €
E§’4(KO; CP') the elements of the E3-term corresponding to o?u, 2u, u? and xy~'u, re-
spectively. Since ! is also a cocycle if [ is odd, we denote by v; € Es °(KO; CP') the
element corresponding to u'. The following fact is a direct consequence of the definition of
u;, v; and (2.2).

Proposition 2.3 The following relations hold; 2uy = Tug = aug = au; = aus = auz =0,

2 [5]+1 (4] (=] _ [
TU3 = 2u1, TUI = 2YU3, UG = UoU] = UQU3 = Us = UoUs = U1Us =u; ~ ‘uz3 =0,

u% = dug, urus = 22y Tus, u§ =dy~uy. Ifl is odd, uov; = u1v; = Uy = usvy = vl2 =0,
1—1 1—1 1—1
1

UpUy® = Qv utuy® = 2up, uy® uz = Yy lug.

Proposition 2.4 FEs-term is generated by the following set of elements over KO*.
1) If 1 is even, {uéuk‘ Ogjgé—l, OSkSS}U{l}.

2) If | is odd, {uguk] 0<j<3 ogkgza}u{l, w).

Proof. By (2.2), the kernel of dy is generated over KO* by au’ (j = 1,2,...,1), xu’
(G=12,...,0), 20 (j=0,1,...,[5]), v¥ (j =0,1,...,[L], and £ if [ is odd.). The
image of dy is generated over KO* by o?u? (j =1,2,..., [%] ). It follows that the Fs-term

is generated over KO* by ué (j=0,1,..., [%D, uguk (k=0,1,3,7=0,1,..., [Z_Tl]) and,
1—1 -1 -1

if [ is odd, v;. If [ is odd, since uguy,® = a?vj, ugu,®> = 2u;, uy® uz = zy~lv; by (2.3),
1—1 -1 1—1

UolUg? , UTUs® , U2 ug are not needed to generate the Es-term. Q.E.D.
Corollary 2.5 E;"(KO;CP') = EX*(KO;CP')

Proof. Since EY?(KO; CP') = {0} if p + ¢q is odd and 0 < p < 21, there is no possibility of
non-trivial differentials. Q.E.D.

We also consider the Atiyah-Hirzebruch spectral sequence
EYY(K;CP') =~ HP(CP'; K9) = KPT4(CP').
The FEs-term is given by
Ey*(K;CP') = K*u] /(") = Z[t,t ™", u]/(u™)

and tu € Ey *(K;CP') is the permanent cocycle corresponding to the generator p €
Ko(CPY).
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There are maps
r,: EPY(K;CP') —» EP4(KO;CP'), ¢,:EP(KO;CP") — EPYK;CP')

of spectral sequences induced by r : K*(CP') — KO*(CP') and ¢ : KO*(CP') —
K*(CP"). By 2) of (1.5), we have ro(t*'u/) = 2y'u?, ro(t¥H1ul) = o?yiud, ro(t¥+2u)) =
rytu? and ro(t4H3u7) = 0.
— 2 ,
If [ > 2, we define elements w; € KO (CP') for i = 0,1,2,3 by w; = r(t ') as in [3].
Lemma 2.6 o?u € B2 *(KO;CPY), 2u € E3°(KO;CPY) and xy~'u € Ey*(KO;CP)

are permanent cocycles corresponding to wo, w1 and ws, respectively. Hence wy € F?~2 —
F373 w € F20 — F371 gnd wg € F24 — 33,

Proof. The assertion follows from ro(tu) = o?u, ro(t~1tu) = ro(u) = 2u, ro(t 3tu) =
ro(t2u) = 2y~ lu. Q.E.D.

Lemma 2.7 c¢: KO*(CP') — K*(CP') maps w; as follows.
clwai) =t (1= L+ )7, elwairn) =771+ 1+ p)™) ((=0,1)

Proof. We note that ¥—! : K*(CP') — K*(CP') is a homomorphism of graded rings such
that U~1(¢t) = —t (1.6). Hence, by (1.5), c(wz;) = er(t™2p) =t~ 2 u+ U1t~ py) = t =2 pu+
2 (1+p) P =1) =t"2u(1 — (1 +p)~t) for i = 0, 1. Similarly, e(wait1) = er(t=2"1y) =
2Ly (2l =21y Sl g ) — 1) = 2 (1 4 (14 ) ) for
i—0,1. Q.E.D.

Lemma 2.8 w, belongs to the kernel F4° of the map KO*(CP') — KO*(CP*') induced
by the inclusion map. On the other hand, wy does not belong to the kernel F>~1 of the map
KO*(CP") — KO*(CP?).

Proof. We observe that 7o : E3?(K;CP') — E3*(KO; CP') maps t~'u to zero. Since
E2*(K;CPY) = E22(K;CP"), Ey*(KO; CP') = E22(KO; CP") and ¢t 'u is the perma-
nent cocycle corresponding to t—2pu € K4(CP?), we see

r(t 2u) € F*!' = Ker(KO*(CP') — KO*(CP")) = {0}.

By the commutativity of the following diagram, ¢t=2; € K*(CP') maps to the kernel F*°
of KO*(CP') — KO*(CP%).

KYCP) —— K%CPY)
KOYCP)) — KOYCP")

By (2.7), ¢ : KO*(CP?) — K*(CP?) maps wy € KO*(CP?) to non-zero element t~2p? of
K*(CP?). Hence ws is not zero in KO*(CP?). Q.E.D.

Lemma 2.9 u? € ES’O(KO; CP') is the permanent cocycle corresponding to wo.

Proof. We first note that Ey°(KO;CP') is isomorphic to Z generated by u2. By (2.8),
there exists a unique k; € Z such that ku? corresponds to ws € KO4(CPl). co
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Ey°(KO; CP?) — Ey°(K; CP?) maps kau? to kyu? which is a permanent cocycle corre-
sponding to t =242 by (2.7). On the other hand, the permanent cocycle in ES’O(K; C P?) cor-
responding to ¢ =242 is u?. Hence ko = 1. For [ > 2, consider the map i)"" : EX*(KO; CP)
— E*(KO; CP?) of spectral sequences induced by the inclusion map i; : CP? — CP'.
Since i} (w2) = wa, i, (ku?) = kwu? is the permanent cocycle corresponding to wy €
KO*(CP?). Therefore we have k; = 1. Q.E.D.

If [ is odd, we denote by x; € KO*(CP') the element corresponding to
v € E2X°(KO; CPY.

We note that, since F2+1=1 = {0}, x; € F?"0 is the unique element corresponding to ;.
Since ¢ : E2"°(KO; CPY) — E2*°(K;CP') maps u' to u! which corresponds to t~'u! €
K?(CP"), we have the following.

Lemma 2.10 c¢: KO*(CP') — K*(CP') maps x; to t~'ul.

It follows from (2.6) and (2.9), w; is the element corresponding to u; for i = 0,1,2, 3.
Hence, by (2.4) and (2.5), we have the following result.

Theorem 2.11 KO*(CP') is generated by the following set of elements over KO*.
1) If 1 is even, {wkwg’ OSjS%—l, OSkS?)}U{l}.
2) If 1 is odd, {wkwg‘ 0<5< 17737 0§k§3}u{1, Xi}-

Theorem 2.12 The following relations hold in KO*(CP).

Twy = 2wq, TWo = 2Ywe, TwW3 = 2w, TW = 2Yws, Wy = aw] = awg = aws = 0,

2 2 2 -
Wy = Yws, Wowl = Ywows, Wow3 = wiwsz, wi = 4ws + wows, wiwz = 21y

1 1 [2]+1 [5] (%] _ )

— 2 2 2
w2 + Y wows, Wy = Wowy = W1iWy = Wy

1 2
w2 + Wy,

wi =4y~ w3 =0.

1—1 1—1
If lis odd, wox; = wixi = waxi = wsx; = Xi = 0, wowy® = a?xi, wiwy® = 2xu,
-1

s
Pwy=wy X

Wa
Proof. Assume that [ is even. By (2.11), KO (CP!) = {0} if n is odd. Hence aw; = 0
for i = 0,1,2,3 hold for dimensional reason. It follows from (1.8) that c : I/(\én(CPl) —
K"(CP') is injective if n is even. It is easy to verify that c(zws — 2w1) = e(zws — 2wp) =
c(zwr — 2yws) = c(rwy — 2ywa) = c(wWi — Yw3) = c(wowr — Yywaws) = c(wows — Wiws) =
c(w? — 4wy — wows) = c(wiws — 2xy lwy — w3) = c(w? — 4y lws — ylwows) = 0. Hence
we have zws = 2w, zw; = 2yws, Twy = 2yws, w% = yw%, Wow1 = Ywaws, Wows = Wiwsa,

l 141
_ _ _ . i+ L
w? = 4wy + wowa, wiws = 22y twa + w3, w3 = 4y tws + ¥y lwows. Since w£2] , w0w£ 2 ],
[ES% [ES1
w1w£ 2 ], w£ 2 ]wg are contained in F?*15 for s = 0, —2,4 which are trivial groups, we see
OESNCI RN CS BN S
Wy = wowy = wiwy =ws ~ ‘w3 =0.

Assume that [ is odd. Consider the map ¢* : KO*(CP'*!') — KO*(CP') induced by the
inclusion map ¢ : CP! — CP"*!. Since 1*(w;) = w; (i = 0,1,2,3) and [ + 1 is even, we have
Tws = 2w, TW1 = 2Yws, Twy = 2Yws, awy = aw] = aws = aws = 0, w% = yw%, Wow1 =

_ 2 _ _ -1 2 2 _ g,—1 -1
Ywaws, Wows = wWiwe, Wi = 4ws + wows, wiws = 22y ws + w3, ws = 4y "wa + Y "wowz
14+1 1+1 [z+1]

1
in KO*(CP'"). Since w£2]+1, wow£ 2 ], wwé 2 ], ws * Cws, WoXi, WIXI W2X1s W3Xis Xis
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[] (] (5],

wows”' — a?x, wiws® — 2x1, ws  ws — xy~ Ly, are contained in F2H1S for s = 0,-2,4
[she _ )
which are trivial groups, LW? see ws = wloz.;)Q = wlle ) =wy © w3 =woX| = wWiXl =
_ 2 = 2. _ = _ = —1. _
WaX1 = W3Xi = X = Wowy® — aX] = wiwy® —2x = w,” wy —ay x; = 0. Q.E.D.

Let us denote by ¢; : CP! — CP'! the inclusion map. Clearly ;f : KO*(CP'*1) —

KO*(CP') maps wy, to wy. Hence the inverse system {KO*(CPIH) KO*(CPZ)}
1>1
satisfies the condition of Mittag-Leffler, in fact ¢3,,.5,, ., : KO*(CP*™*?) — KO*(CP*™)

is surjective. Therefore, the above result immediately implies the following.

Corollary 2.13 KO*(CP®) is isomorphic to the quotient KO*-algebra of the ring of
formal power series KO*|wg,w1,ws][[we]] over the polynomial algebra KO*[wp,w1,ws] over
KO* by the ideal generated by the following elements.

Twe — 2w, TWo — 2Ywe, Tws — 2w, TW1 — 2Yws, AWy, W1, W2, W3, wg — yw%,
_ _ 4 -9 —1 2 4 —1 .1
Wow1 — Ywaws, Wows —wiwa, W1 W2 —Wow2, WiW3z —2TY W2 —Wa, W3 Y W2y Wow2

Let M7 (resp. N7) (0 < j < [52]) be a submodule of KO*(CP') generated by
wow% and w%“ (resp. w1w2 and wgw%) By the above result, M and N7 are regarded
as KO*/(a)-modules. Since Z[y,y!] is a subring of KO*/(«), we also regard M and
Ny as Zly,y '|-modules. Then, M} (resp. N7)is a free Z[y,y '|-module with basis

{wowd, Wi} (resp. {wiwd, wswl}). Thus we have the following.

Proposition 2.14

L-1 Lt
KO*® @ M;o @ N; l is even
KO*(CP') = = 5

2 2
KO*©o @ M; @& @ N; @ KO*x; 1 is odd
5=0 =0
The following is a direct consequence of (2.11) and (2.12).

Z[wo]/ w([)%]H) [ # 1 modulo 4

Proposition 2.15 KO°(CP') = []+1 [4]+2
Z[wo]/ 2w wg? > I =1 modulo 4

3 Real K-cohomology of product of complex projective spaces Let | and m be
positive integers such that [ +m > 2. We consider the Atiyah-Hirzebruch spectral sequence
EYY(KO;CP' x CP™) = HP(CP' x CP™; KO%) = KOP*1(CP' x CP™). Let us denote
by p1 : CP' x CP™ — CP!, py : CP' x CP™ — CP™ the projections. p; and ps induce
the maps of spectral sequences

p}: EPY(KO;CP") — EP4(KO;CP' x CP™),
py : EP4(KO;CP™) — EP4(KO;CP' x CP™).
Put pi(u) = wy and p5(u) = wa, then the Fs-term is given by

Ey*(KO;CP' x CP™) = KO*[wy,ws]/(w{™, wi ™).
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It follows from (2.2) that da(wq) = aw?, da(ws) = aw?. Hence aw;, 2w;, w?, zy~'w; are

cocycles of B (KO;CP!' x CP™) for i = 1,2. It is easy to verify that a?wjws, 2w ws,
wwy + wyw3 are also cocycles of B (KO; CP! x CP™).

For i = 1,2, let us denote by wjq, wi1, w;a, w3 the classes of aw;, 2w;, w?, zy~tw; in
Eg’*(KO;CPl x CP™). We also denote by zg, 21, 22, 23 the classes of zwjws, a?wws,
2wiwe, wiws+wiw3 in B3 (KO; CP'xCP™). Then, p}(u;) = w;; fori =1,2,7=0,1,2,3
and

1

wi; € B3 73(KO;CP' x CP™) for j=0,1,3, wip € Ey°(KO;CP' x CP™),

zj € By "Y(KO;CP' x CP™) for j=0,1,2, z3€ ES°(KO;CP'xCP™).

Since w;;’s are the images of permanent cocycles, they are also permanent cocycles. If [ is
odd, let us denote by vy; € E2"°(KO; CP' x CP™) the class of w!. Similarly, if m is odd,
Vo € E3™(KO; CP! x CP™) denotes the class of wj'.

We identify the complex E;”(KO; CP! x CP™) with
Ey*(KO; CPY @ko- Ey*(KO; CP™)

and regard E;"*(KO; CP' x CP™) as the total complex of a bicomplex whose first and sec-
ond differentials are given by d'(wiw)}) = icw!™ w) and d"(wiw)) = jowiw) ™. Consider
the spectral sequence

Y = H)HY(E;" (KO, CP' x CP™) = Ej*(KO;CP' x CP™)

associated with this bicomplex. Since the first factor E5™*(KO; CP') is a free KO*-module,
we see that H(E; " (KO; CP' x CP™)) is isomorphic to

By (KO;CP) @xcor By (KO; CP™) = KO[u /(™)) ©xo- 5™ (KO; CP™).

Let us denote by A%, a submodule of E3*(KO; CP™) generated by
{vfw|o<j<[3]-1,0<k<3},

If m is odd, B}, denotes a submodule of E3”*(KO; CP™) generated by v;. We put B, = {0}
if m is even. Then, E3"(KO; CP™) = KO* @ A}, ® B;,, aA;, = {0} and KO* @ B}, is a
free KO*-module.

We observe that the differential d of H” (E;™*(KO; CP' x CP™)) induced by the first
differential maps u’ ® ué“, ut ® uoug, u' ® ulué, u' ® U3u§ to zero for j > 0. Hence
Ey* = H.H!(Ey"(KO;CP' x CP™)) is isomorphic to

Ey*(KO;CPY @Ko+ (KO* @ BE) ® KO*[u]/(u™Y) @ ko- A%,
This implies the following result.

Lemma 3.1 E;* = H,H!(E;"(KO;CP! x CP™)) is generated by the following set of
elements over KO*. 4
1) If both | and m are even, {uéuk®1’ Ogjgé—l, OSkS?)}U

{vedu|o<i<io<j<z-1,0<k<3}u{lol)
Q)Iflisoddandmiseven,{uguk®1’0§j§l_73,0§k§3}u
{ui®u§uk‘0§i§l70§j§%—1,0§k§3}u{1®1, v ®1}.
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3) If l is even and m is odd, {uguk ® vy,

{ui®uguklogigz,ogjsmT*",ongB}u{l@L 1® v}

4) If both | and m are odd, ujuk®vs ,0<k<3, s=0,1
2

{u®u2uk‘0<z<10<3< 0<k<3}u{vl®vm|ts—01}

We remark that generators u?! ® uQuk, uQuk ® v, Uz ® v, and uz”l ® uduy in the

above lemma correspond to wiywopwly, wikwlyvs,,, vivs,, and wiswi,zpi1 (put z4 =
y~'20), respectively. Thus the spectral sequence E5? = H) H!(Ey"(KO; CP' x CP™)) =
E3"(KO;CP' x CP™) collapses and we have the following.

Proposition 3.2 E;"(KO; CP'x CP™) is generated by the following set of elements over
KO*. '
1) If both I and m are even, {wlkw{Q

o
w12w22w2k}o<z< 0<j<Z-1,0<
w12w222k’0<z<——1 0<j<%-1,0
2) Ifl is odd and m is even, {wlkw{2 0
whpwhya | 0<i< 5 0< < B -1,

0<k<3
w12w222k}0<2<7150<]< ,OS/ﬂS?)}

w§2w22w2k‘0<z< 0<j <M= O<k<3}

w12w222k‘0<z<——1 O<]<m— 0<k<3

—

U{]. ’Ugm}
4) If both I and m are odd, {wlkw12v2m}0<]< , 0<k <3, 5=0, 1}
w12w22w2k’0<z< L0<j< mss S}U

{
{
{
{
3) If 1 is even and m is odd, {wlkwvam’ 0<y
{
{
{
{

w12w222k‘0<z< ,0<j < ;3 O§k§3}u{vilv§m|t,520,1},

Lemma 3.3 The following relations hold in Ey*(KO; CP' x CP™).
221 =121 = azg =z = azg = az3 =0, Tzo =229, T20 = 2yz2, 2021 = zf = 2129 =0,

28 = dywiawaz, 25 = dwiawaz, 2022 = 2TW12Wa2, 2023 = TW1223 — YWigWa3 + YW12WaWa3,
z123 = w%ngo + wi2wa2w2p, 2923 = 2w12(3 — w%2w22 + wig2woawa1,
z§ = w%ngg + w12w%2 + Wi2wWa222, WipW20 = W11W20 = W13W20 = WigW21 = 0,
Wi1wa1 = 222, WizWa1 = 2y~ 20, WigWaa = Wi2W20, W11W20 = 223 — W12W21,
Wi3w22 = $y7123 — wiaw23, wiowez =0, wiiwaz = 231712’0, W13Wa3 = 2y7122,
w1020 = w1021 = Wigz2 = 0, w1023 = w1221, W2020 = W2021 = Waoz2 = 0, w2023 = Wa221,
w1120 = Twi2W21, wi1z1 =0, w1z = 2wipwa1, Wi123 = 2wi2Wa2 + Wi222,
w2120 = 2T23—TWi2W21, Wo1z1 =0, w129 = 423—2wi2we1, w2123 = 2wipWa2+wWa222,

-1 -1 -1
w13zp = 2wiowe1, w1321 =0, wizze = xY wiaw21, W13z3 = TY wigW2+Y w1220,
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—1 —1
wazzo = 423 — 2wiawa1, wazzy =0, wezze =27y 23 — XY  wiswoi,

-1 -1
Wo32Z3 = TY ~Wi2Waz +Y W22,

=) =1
If Lis odd, zov11 = z1011 = z2v1 = z3vy = 0, W20V = Wiy 21, WarOu = Wig 2, Waali =
l—l -1 l
-1
Wyg 23, Wzl =Y wys 20. Ifl is even, w1220 = Wiz = w1222 = w1223 = 0.

mfl

If m is odd, zgvam = 21V2m = 2ZoVom = 23Vom = 0, WigV2m = w22 zl, W11V2m = Wey® 22,
m—1 m—1 m m

— -1
Wi2V2m = = Wy’ 23, WizV2m = Y Wey® Zo. If m is even, w2220 = WyHhZl = Wop 2y =

w22 z3=0.

Proof. By the definition of z3 and da(wjws) = a(w?ws + wiw3), we have azz = 0. Other
relations follows from the definitions of w;; and z;. Q.E.D.

Proposition 3.4 E;"(KO;CP' x CP™) = EX*(KO;CP' x CP™)

Proof. Since w;; is the image of a permanent cocycle u; by p;, it is also permanent cocycle.
Similarly, if [ (resp. m) is odd, vy; (resp. va,,) is a permanent cocycle. Suppose that both [
and m are even. It follows from (3.2) and (3.3) that EY?(KO; CP!' x CP™) = {0} if p+¢
is odd and p # 0. Hence z;’s are permanent cocycles for j = 0,1,2,3. For general [ and
m, since z;’s in E;*(KO; CP! x CP™) are the images of z;’s in E;*(KO; CP* x CP?™)
by the map induced by the inclusion map CP!' x CP™ — CP? x CP?™, they are also
permanent cocycles. Thus the assertion follows from (3.2). Q.E.D.

Put p; = pi () € K°(CP' x CP™) for i = 1,2, then
K*(CP' x CP™) = K*[u1, po] /(W ™).

We also put w;; = p}(w;) € KO¥(CP'xCP™) and (; = r(t 7 p1p2) € KO¥(CP'xCP™)
fori=1,2,7=0,1,2,3. If [ (resp. m) is odd, we put x1; = pi(x1) (resp. xom = p3(Xm))-
It is clear that a?w;, 2w;, w? and zy~lw; are the permanent cocycles in E; " (KO;CP! x
CP™) corresponding to wig, w;1, wiz and w;s, respectively. If [ (resp. m) is odd, it is
also clear that w} (resp. w§') is the permanent cocycle in Egl %(KO;CP' x CP™) (resp.
E;™(KO; CP' x CP™)) corresponding to x1; (resp. Xam)-

Lemma 3.5 ¢ : KO*(CP' x CP™) — K*(CP! x CP™) maps Cai, C2iz1 (i = 0,1) as
follows.

c(Goi) =t P ppo (14 (T4p1) " (1+u2) ™Y, e(Cipr) =t 2 pape (1= (14p1) (14p2) ™)

Proof. The result follows from (1.5), (1.6), ¥~ (u;) = (1+p;)~' — 1 and the fact that U1
is a ring homomorphism. Q.E.D.

Lemma 3.6 Cocycles xwlwg € E (KO CP!' x CP™), a’wjws € E2 (KO;CPl X
CP™) and 2wijws € E (KO CPl X CPm) are permanent cocycles corresponding to (o,
(1, (a2, respectively. Hence o€ FH=4 — 5. G EFY 2 _F53 (e FAY — 5L

Proof. Consider the map r, : EX*(K; CP' x CP™) — E**(KO; CP' x CP™) induced by
r: K — KO. Since tw; € E§’72(K; C P! x CP™) is the permanent cocycle corresponding
to pi, the assertion follows from ro(twitws) = ro(t2wiwe) = Twiws, ro(t™ Hwitws) =
ro(twiwsy) = Q?wiws, ro(t™2witws) = ro(wiwe) = 2wiws. Q.E.D.
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Lemma 3.7 Let us denote by (CP' x CP™)* the k-skeleton of CP' x CP™. (3 belongs
to the kernel F%C of the map

KOS(CP' x CP™) — KOS((CP' x CP™)%)

induced by the inclusion map. On the other hand, (3 does not belong to the kernel F7—1 of
the map KOS(CP! x CP™) — KOS((CP' x CP™)").

Proof. Put
« x CP? I=1,m=2 « x CP! I=1,m=2
A=1CP? x * =2, m=1 then, AN(CP'xCP') = { CP" x % =2, m=1
CP?vCP? I,m>2 CP'vCP' Iim>2

and (CP' x CP™)* = AU (CP! x CP*'). Since KO°(AN (CP' x CP')) = {0}, the map
KOS((CP' x CP™*) — KO%(A) @ KO5(CP' x CP') induced by the inclusion maps is
injective. Let

u: (CP'xCP™* - CP'xCP™, i:A— CP'xCP™, j:CP'xCP!— CP'xCP™

be the inclusion maps. Then, the kernel of 1 : KOS(C P! x CP™) — KOS((CP! x CP™)*)
coincides with the kernel of (i*,5*) : KO®(CP! x CP™) — KO%(A) ® KO%(CP! x CP").
By the commutativity of the following square, it suffices to show that ri* (¢t =3uip2) = 0 and
ri*(t " papz) = 0.

KS(CP' x cp™) ) K64y @ KS(CP! x CPY)

lr lr@r
KOS(CP! x cPmy 20 K0S (A) @ KOS(CP! x CPY)

Let i1 : CP?2 = CP?2 x* — A and io : CP? = x x CP? — A be inclusion maps.
We note that poiiq; : CP? — CP™ and piiis : CP? — CP' are constant maps. Hence
(P pape) = i (3t (ua)ps () = 45 pi ()75 p3(p2) = 0 for s = 1,2. This implies
i*(t~3p1u2) = 0. Consider amap 7, : EP4(K; CP'xCP') — EP4(KQO; CP'xCP') of the
Atiyah-Hirzebruch spectral sequences. t~twjws € Eg’z(K; CP! x CP') is the permanent
cocycle corresponding to t3puyps € KS(CP! x CP!). Since ro maps t~twjws to zero by
(1.5), »(t 3 p1p2) is contained in F5! = Ker(KOS(CP'xCP') — KOS((CP'xCPY)%)) =
{0}. Therefore rj*(t3uipus) = 0.

Suppose that [ > 2, then CP? x CP* C (CP! x CP™)°. It follows from (3.5) that ¢
maps (3 € KO%(CP? x CP') to a non-zero element t~2u2us. Hence (3 does not belong to
the kernel of KO%(CP! x CP™) — KOS((CP! x CP™)%). Q.E.D.

Lemma 3.8 wiws+wiw3 € ES’O(KO; CP'xCP™) is the permanent cocycle corresponding
to Cg .

Proof. We observe that the subgroup of Eg,o (KO; CP' x CP™) consisting of cocycles is
generated by w?ws + wiw3 if [,m < 2 or I,m > 4. By (3.7), there exists a unique integer
ki m such that k; ., (w%wg + wlwg) is the permanent cocycle corresponding to (3 if [,m < 2
or l,m > 4.

Consider the Atiyah-Hirzebruch spectral sequence

EYI(K;CP' x CP™) = KP*4(CP' x CP™).
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We also put p}(u) = wy and pj(u) = we in Ey*(K;CP' x CP™). We note that w?ws +
wiwi € ESP(K; CP! x CP™) is the permanent cocycle corresponding to ¢ =3 (u2 g + i1 113).
Hence t 3 (p2pg + p1p3) € F8° — F7~1. On the other hand, it follows from (3.5) that

e(Cs) —t 3 (1 g + papd) € F872 = Ker(KS(CP' x CP™) — KS((CP! x CP™)%).

Thus both ¢(¢3) and t~3(u2us + u1u3) are represented by the same permanent cocycle
wwy + wiw? of ESC(K; CP' x CP™). Consider the map

¢, : EP(KO;CP' x CP™) — EPY(K;CP! x CP™)

induced by ¢ : KO — K. Since a permanent cocycle ¢z (ki,m (wiws +wiw3)) = ki m (wiws +
wyw3) corresponds to both e(¢3) and t~3(ufus + p1p3), we have ki, = 1if I,m < 2 or
I,m > 4. If | or m is 3, consider the map KO®(CP*! x CP™!) — KOS(CP! x CP™)
induced by the inclusion map. Since (3 € KOS(CP"*! x CP™*!) is mapped to (3 €

KOS(CP! x CP™) by this map, the assertion holds also in this case. Q.E.D.
By (3.2), (3.4), (3.6) and (3.8), we have the following result.

Theorem 3.9 KO*(CP' x CP™) is generated by the following set of elements over KO*.
1) If both | and m are even, {wlkw{é} 0<5< %—1, OSkS?)}U

K3

w12w§2w2k’0§i§é,0§j§ —1,0§kg3}u
w;'Qw;ng‘ogigg—l,ogj Z-1,0<k<3fu{}.

2) If l is odd and m is even, {wlkw{2’ OSjSFTB, OSkS?)}U

m
2
<

w12w§2w2k‘0§i§%,Ogjg%—l,ogkg?)}u

Wil [ 0<i< BL0< <8 1, 0<k <3} U {1 ).

3) If l is even and m is odd, {wlkw{;x;m‘og]’g%—l, 0<k<3, s:O,l}U
Wigwhgwa [0 <L 0<j <m0 <k <3} U

wigwlaGr [0 < 41,05 <22 0 <k <3} UL, xam}.

4) If both I and m are odd,

—

wlkwgzxgm’og]’g%’), ogk§3,s:o,1}u

wigwlgwn | 0<i < 5L 0<j < B2 0 <k <3}U

w N

= — = — = =

wigwhG | 0<i < 5 0< < m2 0 <k <3} U {ddalt s =01},
The following result is a direct consequence of (2.12).
Theorem 3.10 The following relations hold in KO*(CP' x CP™). Herei =1 or 2.

Twiz = 2w, TWip = 2YWia, Twiz = 2w;1, TWil = 2Yw;3, 0w = Qw1 = Qw;e = w3 = 0,

2 2 2 2 -1 —1
wip = Ywio, wiy = dwio + wiow;e, wisy =4y wia + Y wiowis,
—1 2
WioWwi1 = YwiaWi3, Wiowi3 = WilWs2, witwiz = 2Ty wiz + wia,
[£]+1 (2] [42] [42] [2]4+1 [1] [241]
2 2 2 2 2 2 2
W12 = WioWip T Wiy T = Wip W13 = Wag = W20Wy2 = W21Waa =

m;—l]
Wso~ "woz =0
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-1 -1

, _ _ _ 2 S o o
If is odd, wiox1u = wiixu = wizxu = wisXu = X5 = 0, wiowy3 = a“x1, wiiwyy =
1—1

= —1
2X1, Wi W13 = TY T X1l-

- 2 2
If m is odd, waoX2m = wWa1Xom = W22X2m = W23X2m = Xom = 0, WaoWwsy® = Q°Xam,
m—1 m—1

m—1

_ me
WolWyy' = 2X2m, Woy' W23 = TY  X2m-
The relations containing (;’s are given as follows.
Theorem 3.11 The following relations hold in KO*(CP' x CP™).
afp =a(y =al =a(z =0, 2¢ =z, x( =2y, 20 =2, ¢ = 2yls,
2 2
Cop = 4ywiawaa + Ywiswao + Ywiawaow22 + Ywi2w220,
_ 2
€01 = Tw12C1 — Ywiswal + Ywiawaowa1 + Ywi2w22(1,
2 2
CoC2 = 2xw12wa2 + Ywiswaz + Ywiawsy + Ywi2w22(2,
_ 2
C0G3 = Tw12(3 — Ywiswes + Ywiawaowez + Ywiawa(s,
2 2 2 2
(1 = Ywirwaz + Ywiawry +ywiaweale, (1(2 = Tw12(3 — Ywiswas + Ywiawaawas + Yywi2w22(3,
2 2 2
(1603 = Wiswa20 + wiawaowzo + wWiawa2lo, (5 = dwiawar + wWiswe + Wiaw2rwa + wWi2w22(o,
2 2 2 2
(2(3 = 2w12(3 — WiaWwa1 + Wiawoawar + wiaw22C1, (3 = Wipwaz + WiaWis + Wiaw2(2
WioW20 = YwiiWaz, Wiiweo = T(3 — Ywiawesz, Wizwzo = 2(3 — Wiaw21, W1gW2l = Yw12W23,
w = 2(p— =2 1 (o— = — Oae
11W21 = CQ W12W20, W13wWal = &Y Co W12W22, WipwW22 = W12W20, W11W22 = C3 wWi2W21,
. —1 . . 2 —1
wi3way = Y~ (3 —Wiaw23, Wiowe3 = Wiawal, wiiwaes = 2y (o — wiawa2,
-1
wizwaz = 2y~ (2 —wiawa0, wi1oGo = Ywi2C2, wio€1 = Yw12¢3, wiole = wi2(o, wi0¢3z = wi2(1,
wa0o = Ywaa(2, w20l = Yw22(3, wala = w22y, wW20(3 = w22(1, wi1lo = Twiawa1 + Yw12(3,
w11(1 = Twiawaz + wi12p, w112 = 2wiawar + wi2C1, w1163 = 2wiawaz + wW22la,
w21Co = 22(3—Twiawa1+Yw22(3, w21(1 = TWiawWa2+wW22(p, w21(2 = 4(3—2w12wa1 +wa2(1,
w21(3 = 2wiawa2 + we2le, w13l = 2wiowa1 + w121, w13(1 = 2wiawas + w12(2,
1 1 1
wi3le = Y~ wiawa1 w123, w13(z = XY wiawaz+Y wi2(n, w2slo = 4¢3 —2w1awa1 +wa2(1,
1 —1
w31 = 2wiawa2 + woeala, wo3Ce = 22y~ (3 — Y~ wiawa1 + w22(3,
I —1
we3(3 = 2y~ "wiowaz + Y w22(o.

-1 -1

If I is Odd CoXu = Qxu = C2X1l = @xu = 0, wa0X11 = W12TC1: waxu = wi§ (o,

w22X11 = w12 CB; w2sX1 =Y 1‘JJ12 Co- If 1 is even, ‘JJ12CO = ‘JJ12C1 = ‘JJ12C2 = w12C3 = 0

If m is odd, Coxom = Cix2m = C2X2m = (3X2m = 0, wioX2m = Wao? Ch Wi X2m = wgg sz
mf m—1
Wi2X2m = Woy' (3, W13X2m = y‘1w22 Co. If m is even, wgg CO = wgg Cl = sz CQ = sz C3 =

0.
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Proof. Relations between w;; and (j, are verified by the same method as in the proof of (2.12).
For the proof of the relations involving x1; and X2, we need some preparations. Q.E.D.

Let L* be the submodule of I/(T)*(CPI x CP™) generated by {x11, X2m, X11X2m }, Where
we put x1; = 0 (resp. Xam = 0) if [ (resp. m) is even. Note that L* is a free KO*-module.

We also consider the submodule T* of I/(\é*(CPl x CP™) generated by the following set
of elements.

1) If both [ and m are even, {wlkw{Q‘OSjS —1,0§k§3}u

!
2
wiQwQQka‘O<z<— 0<;j<%H-1,0<Z SB}U

k
w12w22gk}o<z<-—1 0<j<2—1,0<k<3}

2) If I is odd and m is even, {wlkw{Q‘OSjSl’3 0§k§3}u
W12w22w2k‘0<2<l 05 <5 -1, 0<k<
wmwm@k}0<i§l%, 0<j

3) If I is even and m is odd,

&
=
&
o
=
(]
3
[}
IN
.
IN -
N~
|
j—‘
)
INA
o~
IA
JCAD
Va)
Il
=
—
——
C

w12w22Ck}0<l<——1 0<yj< 7370§/€<3}-
4) If both L and m are odd, {wix {QXgm] 0<j<

W12w22w2k‘0<2<l2 ,0§j§—*3,0§k§3}u

{

{

{

{ E
{wiQwQngk‘0<z< 0<j<22 0<k<3fu
{

{

{

2
whGe | 0<i< 5 0 < 22 o<k <3}

Since L* is a free KO*-module and aw;; = a¢; = 0, we have the following result by
(3.9).

Lemma 3.12 1) KO (CP! x CP™) = T* & L*.
2) Ker(a : KO (CP!' x CP™) — KO (CP' x CP™)) = T* ® o*L* ® 2 L*.
3) S(a: KO (CP' x CP™) — KO (CP! x CP™)) = aL*.

Note that aL* is generated by {axis, @®X11, @X2m, @2 X2m, OX11X2m, @2 X11X2m} Over
Zly,y . o

Suppose that [ is odd and m is even. Then, aL* is generated by {a’'y?xuli =1,2, y €
Z} over Z. Since c(Crx11) =t~ ube(¢r) = 0 by (2.10) and (3.5), it follows from (1.7) and
(3.12) that (xx1; € aL*. Then, “Cixu = 0”7 or “k = 3 and (3x1; = ca’y lxy for some
c € Z”. We observe that (3xy; € F2460 and oy~ 1y € F2:6 — F2+1L5 This implies that
¢ =0, namely, (3x1; = 0.

-1 =1
Similarly, since e(worx1: — w12 Ckt1) =0, we have wakX1l —wig Ckt1 € aL*. It follows
1—1

i

“worxu = wig Ce41” or “k = 3 and wasx1 — wm (4 = ca’y~txy for some ¢ € Z7.
71

Note that wosx1 — w3 ¢4 € F2H24 and o?y~lyy € F#6 — F2HL5 Thus we have
-1

WokX1l = W15 Cht1-
If both I and m are odd, the map KO*(CP! x CP™*!) — KO*(CPl x CP™) induced

by the inclusion map maps the relations (xx1; = 0 and wopx1 = w12 Ckt1 In KO*(CPZ
CP™*1) to those in KO*(CP!' x CP™).
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m—1
Proof of {xxam = 0 and wigx2m = way® Ci+1 for odd m is similar. This completes the
proof of (3.11).

Let v : CP! x CP™ — CP!*™ be the map induced by the classifying map CP> x
C P> — CP®> of the tensor product of the canonical line bundles.

Theorem 3.13 v* : KO*(CP"™) — KO*(CP! x CP™) maps w; to wij + waj + (j-
Hence the image of v* is not contained in the image of the cross product KO*(CP') ®
KO*(CP™) — KO*(CP! x CP™).

Proof. Recall that v* : K*(CP'"*™) — K*(CP! x CP™) maps p to uy + p2 + pap2 ([2]).
By the naturality of r : K*(X) — KO*(X), the assertion follows from the definition of w;,
Wij and gj. QED

The above result shows that the classifying map C P> x C P> — C P> does not give
a formal group structure on KO*(C'P>).
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