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Abstract. In contrast with Noether theorem, we built up a new operative procedure
for the derivation of conserved quantities and then applied it to the extremal problem
for the integration under constraints in the space of state and control variables. In
the problem, conserved quantities were constructed by imposing the homogeneities
with respect to the state variables through control variables on relating functions.
The purpose of this paper is to release the control variables from the homogeneities
and then construct such a conserved quantity in a similar procedure. The quantity is
illustratively constructed in a economic model, with the aid of which optimal paths
can be determined completely.

Introduction. Noether theorem (Noether [10]) concerning with symmetries of the
action integral or its generalization (Bessel-Hagan [2]) with those up to divergence plays an
effective role for discovering conserved quantity from the Lagrangian or the Hamiltonian
structures of considering problem. In contrast with Noether theorem, a new operative
procedure for the derivation of conserved quantity was established without using either
Lagrangian or Hamiltonian structures (Mimura and Nôno [6]). It was discussed for a second-
order differential system which was supposed later to be of the Euler-Lagrange system, and
also for higher order system (Mimura, Fujiwara and Nôno [8]). And the results were applied
to various economic growth models (Mimura, Fujiwara and Nôno [7], [9]; Fujiwara, Mimura
and Nôno [3], [4], [5]) to discover new economic conserved quantities including non-Noether
ones.

In the applications, the Euler-Lagrange system was given in the extremal (maxmizing or
minimizing) problem for the integration over a finite (0 < T < ∞) or an infinite (T = ∞)
period of time:

∫ T

0

e−ρtU(x, u)dt,(1)

under constraints

ẋµ = Fµ(x, u),(2)

where x = (xµ(t)) (µ = 1, · · · , k) and u = (uσ(t)) (σ = 1, · · · , �) are the state and control
variables respectively, and ρ (ρ ≥ 0) is a constant. There exists a conserved quantity Ω,
whenever Fµ(x, u) and U(x, u) are homogeneous functions of degree one and r (r may not
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be an integer) with respect to the state variables x1, · · · , xk through the control variables
u1, · · · , u�, i.e., they satisfy

Fµ(αx, αu) = αFµ(x, u), U(αx, αu) = αrU(x, u)

for arbitrary constant α (α �= 0), respectively.
Within the state variables x1 = p, x2 = h and the control variables u1 = sp, u2 = sh,

Mankiw gave the maximizing problem with the function U(x, u) of the form

(1 − sp − sh)1−σf(p, h)1−σ

1 − σ
(σ: const.)

under some growth processes relating to f(p, h), where f(p, h) is a homogeneous production
function of degree one with respect to p and h (e.g., Askenazy [1]). The homogeneity of
the function is guaranteed with respect to the state variables p and h, but it is not with
respect to the state and control variables p, h and sp, sh. This fact stimulates us to release
the control variables u1, · · · , u� from the homogeneities. So, in this paper, we show that
there exists such a conserved quantity of the above Ω even if Fµ(x, u) and U(x, u) are
homogeneous functions of degree one and r with respect to the state variables x1, · · · , xk

respectively (Theorem 1). The theorem 1 gives an anothor approach to the conserved
quantities obtained by Noether theorem (while it gives also non-Noether ones [3]), for
example, that of the economic growth model of Mankiw. In the model, with the aid of
obtained conserved quantity, the optimal path can be determined completely.

For convenience, differentiability is assumed to be of sufficiently high order and the
summation convention is employed throughout.

1 New derivation of conserved quantity. In the papers ([3],[4],[7],[9]), we have dis-
cussed the extremal (maximizing or minimizing) problem for the integration (1) under
constraints (2) and the results were carried out into various economic growth models. In
the multiplier technique to the problem, the Lagrangian is given by (πµ are the multipliers):

L = e−ρtU + πµ(ẋµ − Fµ),(3)

whose Euler-Lagrange equations consist of (2) and

d

dt

(
∂L

∂ẋµ

)
− ∂L

∂xµ
= 0 : π̇µ +

∂F ν

∂xµ
πν = e−ρt ∂U

∂xµ
,(4a)

d

dt

(
∂L

∂u̇σ

)
− ∂L

∂uσ
= 0 :

∂Fµ

∂uσ
πµ = e−ρt ∂U

∂uσ
.(4b)

A conserved quantity (first integral) for the extremal problem is a quantity Ω of the variables
π̇µ, ẋµ, u̇σ, πµ, xµ, uσ and t whose total time derivative vanishes (Ω̇ = 0: conservation law)
on the optimal paths, i.e., on solutions to the relating Euler-Lagrange equations (2), (4a)
and (4b). To develop the discussion, we recall the following procedure for the derivation of
conserved quantity for the extremal problem ([9], Theorem 1):

For the Lagrangian L of (3), let the functions (ξα
1 ) = (η1

µ, ϕµ
1 , τσ

1 ) and (ξα
2 ) = (η2

µ, ϕµ
2 , τσ

2 )
of the variables π̇µ, ẋµ, u̇σ, πµ, xµ, uσ and t satisfy the equations

dϕµ

dt
=

∂Fµ

∂xν
ϕν +

∂Fµ

∂uσ
τσ,(5a)
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dηµ

dt
+

∂F ν

∂xµ
ην + πν

(
∂2F ν

∂xκ∂xµ
ϕκ +

∂2F ν

∂uσ∂xµ
τσ

)
= e−ρt

(
∂2U

∂xν∂xµ
ϕν +

∂2U

∂uσ∂xµ
τσ

)
,(5b)

∂Fµ

∂uσ
ηµ + πµ

(
∂2Fµ

∂xν∂uσ
ϕν +

∂2Fµ

∂uω∂uσ
τω

)
= e−ρt

(
∂2U

∂xµ∂uσ
ϕµ +

∂2U

∂uω∂uσ
τω

)
,(5c)

on the optimal paths for the extremal problem of (1) under the constraints (2). Then the
following conserved quantity Ω is constructed:

Ω = η2
µϕµ

1 − η1
µϕµ

2 .(6)

Moreover, by substituting η1
µ = π̇µ + ρπµ, ϕµ

1 = ẋµ in the solution (ξα
1 ) = (η1

µ, ϕµ
1 , τσ

1 ) =
(π̇µ+ρπµ, ẋµ, u̇σ) of (5a), (5b) and (5c) for Ω of (6), while (ξα

2 ) is left as (ξα
2 ) = (η2

µ, ϕµ
2 , τσ

2 ) =
(ηµ, ϕµ, τσ), the conserved quantity Ω of (6) is reduced to

Ω = ẋµηµ − (π̇µ + ρπµ)ϕµ.(7)

We assume that Fµ(x, u) and U(x, u) are homogeneous functions of degree one and r
with respect to the state variables x1, · · · , xκ respectively (control variables u1, · · · , u� are
not counted in the homogeneities), i.e.,

∂Fµ

∂xν
xν = Fµ,(8)

∂U

∂xµ
xµ = rU.(9)

Then the relation (8) is combined with (2) to see

ẋµ =
∂Fµ

∂xν
xν ,

which gurantees that (ϕµ, τσ) = (xµ, 0) is a solution of (5a). Together with the solution,
the following differentiations of (8) with respect to xκ or uσ:

∂2Fµ

∂xκ∂xν
xν = 0,

∂2Fµ

∂uσ∂xν
xν =

∂Fµ

∂uσ
;

and also of (9) with respect to xν or uσ:

∂2U

∂xν∂xµ
xµ = (r − 1)

∂U

∂xν
,

∂2U

∂uσ∂xµ
xµ = r

∂U

∂uσ
;

are substituted for (5b) and (5c). Then the resulting equations of (5b) and (5c) are written
respectively as

dηµ

dt
+

∂F ν

∂xµ
ην = (r − 1)e−ρt ∂U

∂xµ
,

∂Fµ

∂uσ
ηµ + πµ

∂Fµ

∂uσ
= re−ρt ∂U

∂uσ
,

whose solution ηµ = (r − 1)πµ can be found immediately by (4a) and (4b). Finally the
solution (ξα) = (ηµ, ϕµ, τσ) = ((r−1)πµ, xµ, 0) is substituted for (7) to have the following
theorem:
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Theorem 1 For the extremal problem of (1) under the constraints (2), let Fµ(x, u) and
U(x, u) be homogeneous functions of degree one and r respectively with respect to the state
variables x1, · · · , xk. Then there exists the following conserved quantity Ω:

Ω = (r − 1)πµẋµ − (π̇µ + ρπµ)xµ.(10)

Multiply (4a) by xµ and then summing up for the indices µ. Then, through the homo-
geneities of U and Fµ, it follows that

re−ρtU = π̇µxµ + πµFµ = π̇µxµ + πµẋµ,

which is used to eliminate π̇µxµ in Ω. Consequently Ω of (10) is written as

Ω = −re−ρtU + πµ(rẋµ − ρxµ).(11)

2 An application to economic model.

2.1 Derivation of conserved quantity. For the derivation of conserved quantity, our
theorem 1 in the previous section can be applied effectively to the following two-sector
economic model, while Askenazy used his modified Noether theorem ([1], Theorem 1). The
discussion of (Mankiw et.al., [1]) begins with the setting of variables: the physical capital
x1 = p, the human capital x2 = h, the saving rates or the shares u1 = sp and u2 = sh

of production devoted to physical investments and education or training, respectively. So,
consider the maximizing problem for the integration over an infinite period of time:

∫ ∞

0

e−ρt c1−σ

1 − σ
dt (ρ, σ: const.; ρ ≥ 0)(12)

under the constraints

ṗ = spf(p, h) − (δp + n)p,

ḣ = shf(p, h) − (δh + n)h,
(13)

where f(p, h) is homogeneous production function of degree one with respect to the state
variables p and h, c = (1 − sp − sh)f(p, h) (c �= 0) is the amount of consumption goods,
n is the growth rate of the population, δp and δh are the rates of depreciation of physical
and human capitals respectively. The relating Lagrangian with the multipliers π1 and π2 is
given as

L = e−ρt c1−σ

1 − σ
+ π1(ṗ − spf(p, h) + (δp + n)p) + π2(ḣ − shf(p, h) + (δh + n)h),

whose Euler-Lagrange equations consist of (13) and

π̇1 − (δp + n)π1 + (spπ1 + shπ2)
∂f

∂p
= e−ρtc−σ ∂c

∂p
,(14a)

π̇2 − (δh + n)π2 + (spπ1 + shπ2)
∂f

∂h
= e−ρtc−σ ∂c

∂h
,(14b)

π1 = π2 = −e−ρtc−σ.(14c)
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Then, (11) leads to the same conserved quantity as in (eq.(46) in [1]):

Ω = −e−ρtc1−σ + (1 − σ)(π1ṗ + π2ḣ) − ρ(π1p + π2h).(15)

Corollary. Let f(p, h) be homogeneous production function of degree one with respect
to the physical capital p and the human capital h. Then, in the maximizing problem of (12)
for the amount of consumption goods c = (1 − sp − sh)f(p, h) under the constraints (13),
the theorem 1 gives rise to the conserved quantity (15) which is derivable without using the
Noether theorem.

2.2 Determination of optimal paths. First note that optimal paths in the infinite
horizon have to satisfy the transversality condition limt→∞(π1p + π2h) = 0. Besides the
condition, we place

lim
t→∞ e−ρtc1−σ = 0, lim

t→∞(π1ṗ + π2ḣ) = 0,(16)

so as to be limt→∞ Ω = 0. Therefore, since a conserved quantity is constant on the optimal
paths, the quantity Ω of (15) is zero on the optimal paths:

−e−ρtc1−σ + (1 − σ)(π1ṗ + π2ḣ) − ρ(π1p + π2h) = 0,

for which (14c) and c = (1 − sp − sh)f are substituted to see

(1 − sp − sh)f + (1 − σ)(ṗ + ḣ) − ρ(p + h) = 0.(17)

The constraints of (13) are added to get

sp + sh =
ṗ + ḣ + (δp + n)p + (δh + n)h

f
,(18)

which is substituted for (17) to obtain (cf. eq.(47) in [1])

f − (δp + n)p − (δh + n)h − ρ(p + h) − σ(ṗ + ḣ) = 0.(19)

In view of (14c) and c = (1 − sp − sh)f , the difference of (14a) and (14b) yields

∂f

∂p
− ∂f

∂h
= δp − δh.(20)

The homogeneity of f :

∂f

∂p
p +

∂f

∂h
h = f

and (20) are used to write (δp + n)p as

(δp + n)p =
(

δh +
∂f

∂p
− ∂f

∂h

)
p + np

= (δh + n)p +
(

f − ∂f

∂h
h − ∂f

∂h
p

)

= (δh + n)p + f − (p + h)
∂f

∂h
,
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which is substituted for (19) to derive

ṗ + ḣ

p + h
=

1
σ

(
∂f

∂h
− (δh + n + ρ)

)
.(21)

The equality π1 = π2 in (14c) and c = (1 − sp − sh)f are substituted for (14b) to have

π̇2

π2
= δh + n − ∂f

∂h
.(22)

Therefore, it follows from (21) and (22) that

σ
ṗ + ḣ

p + h
= − π̇2

π2
− ρ.(23)

For the integration of (23), π2 = −e−ρtc−σ in (14c) is substituted to see

k(p + h) = c = (1 − sp − sh)f (k: const., k > 0),(24)

which is substituted for (17) to have

ṗ + ḣ

p + h
=

ρ − k

1 − σ
,(25)

so that

p + h = C1e
ρ−k
1−σ t (C1: const).(26)

The equations (21) and (25) yield the relation

∂f

∂h
= δh + n + ρ +

σ(ρ − k)
1 − σ

,(27)

which is used to write (22) as

π̇2

π2
=

σk − ρ

1 − σ
,

so that

π2 = C2e
σk−ρ
1−σ t (C2: const).(28)

By (26) and (28), the term π1p + π2h in the transversality condition, the terms e−ρtc1−σ

and π1ṗ + π2ḣ in the condition (16) are written respectively as

π1p + π2h = C1C2e
−kt, e−ρtc1−σ = (−C2)

σ−1
σ e−kt, π1ṗ + π2ḣ =

ρ − k

1 − σ
C1C2e

−kt,

each term of which goes to zero as t → 0.
Here, the constant k in (24):

k =
(1 − sp − sh)f

p + h

is written by (18) as

k =
f − (δp + n)p − (δh + n)h

p + h
− ṗ + ḣ

p + h
,
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for which (25) is substituted to have

k =
ρ

σ
− 1 − σ

σ

f(p, h) − (δp + n)p − (δh + n)h
p + h

.

Therefore, the constant k is determined by the initial values p(0) = p0 and h(0) = h0 as

k =
ρ

σ
− 1 − σ

σ

f(p0, h0) − (δp + n)p0 − (δh + n)h0

p0 + h0
,

which is substituted to the right handside of (27) to have

δh + n + ρ +
σ(ρ − k)

1 − σ
=

f(p0, h0) − (δp − δh)p0

p0 + h0
.(29)

Since f(p, h) is homogeneous function of degree one, it can be arranged as

f(p, h) = pf(1, X),

where X = h/p (X > 0). Then, in view of (29) and ∂f(p, h)/∂h = df(1, X)/dX , the
equation (27) is written as

df(1, X)
dX

=
f(p0, h0) − (δp − δh)p0

p0 + h0
.(30)

Whenever (30) has a solution

X =
h

p
= A (A: const.),(31)

there exist by (26) the following optimal paths

p(t) =
C1

1 + A
e

ρ−k
1−σ t, h(t) =

AC1

1 + A
e

ρ−k
1−σ t,(32)

which together with (13) conclude:

sp(t) =
(

ρ − k

1 − σ
+ δp + n

)
1

f(1, A)
, sh(t) =

(
ρ − k

1 − σ
+ δh + n

)
A

f(1, A)
.(33)

Theorem 2 Let f(p, h) be homogeneous production function of degree one with respect
to the physical capital p and the human capital h. Then, in the maximizing problem of (12)
for the amount of consumption goods c = (1 − sp − sh)f(p, h) under the constraints (13),
there exist the optimal paths p(t), h(t) of (32) and sp(t), sh(t) of (33), whenever the equation
(30) for the given initial values p0 and h0 has a solution X = h/p = A.

Cobb-Douglus production function. Let the homogeneous production function
f(p, h) of degree one be of the form

f(p, h) = p1−βhβ (β: const.; 0 < β < 1).
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Then the left handside Y ≡ df(1, X)/dX of (30) reduces to Y = βXβ−1, so that

dY

dX
= β(β − 1)Xβ−2 < 0, lim

X→+0
Y = ∞, lim

X→∞
Y = 0.

Hence Y > 0. Here, the right handside of (30) reduces to

f(p0, h0) − (δp − δh)p0

p0 + h0
=

p1−β
0 hβ

0 − (δp − δh)p0

p0 + h0
=

(h0/p0)
β − (δp − δh)

1 + h0/p0
,

which becomes positive if
(

h0

p0

)β

> δp − δh.(34)

Therefore, for the initial values p0 and h0 satisfying (34), the equation (30) has the unique
solution. It is subustituted for (32) and (33) with f(1, A) = Aβ to complete the optimal
paths.

CES production function. Let the homogeneous production function f(p, h) of
degree one be of the form

f(p, h) = (apκ + bhκ)
1
κ (a, b, κ: const.; a > 0, b > 0, κ > 0; κ �= 1).

Then the left handside of (30) Y ≡ df(1, X)/dX reduces to Y = bXκ−1(a + bXκ)
1
κ−1, so

that

dY

dX
= ab(κ − 1)Xκ−2(a + bXκ)

1
κ−2, lim

X→∞
Y = lim

X→∞
b

(a/Xκ + b)
κ−1

κ

= b
1
κ .

The right handside of (30) reduces to

f(p0, h0) − (δp − δh)p0

p0 + h0
=

(apκ
0 + bhκ

0 )
1
κ − (δp − δh)p0

p0 + h0
=

(a + b (h0/p0)
κ)

1
κ − (δp − δh)

1 + h0/p0
.

(i) The case of κ > 1. Since dY/dX > 0 and Y (0) = 0, it follows that 0 ≤ Y < b
1
κ .

Here, the initial values p0 and h0 can be given such that the equation (30) has a solution,
i.e., they can be given so as to satisfy

0 ≤ (a + b (h0/p0)
κ)

1
κ − (δp − δh)

1 + h0/p0
< b

1
κ , i.e., 0 ≤

(
a

b
+

(
h0

p0

)κ) 1
κ

+
δh − δp

b
1
κ

< 1 +
h0

p0
.

In fact, in view for the derivative of the monotone increasing functions g1(X) ≡ (a/b +
Xκ)1/κ + (δh − δp)/b

1
κ and g2(X) ≡ 1 + X :

g′1(X) = Xκ−1
( a

b
+ Xκ

) 1−κ
κ

=
(

1
Xκ

a

b
+ 1

) 1−κ
κ

< 1 = g′2(X),

there exist a constant X0 for which

0 ≤
( a

b
+ Xκ

) 1
κ

+
δh − δp

b
1
κ

< 1 + X if X > X0.
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Therefore the initial values p0 and h0 are given to satisfy h0/p0 > X0. Then the equation
(30) has the unique solution X = h/p = A which is subustituted for (32) and (33) with
f(1, A) = (1 + bAκ) to complete the optimal paths.

(ii) The case of 0 < κ < 1. Since dY/dX < 0 and limx→+0 Y = ∞, it follows that
Y > b

1
κ . Similarly, it can be seen that the initial values p0 and h0 can be given such that

the equation (30) has a solution X = h/p = A, i.e., they can be given so as to satisfy

(a + b (h0/p0)
κ)

1
κ − (δp − δh)

1 + h0/p0
> b

1
κ , i.e.,

(
a

b
+

(
h0

p0

)κ) 1
κ

+
δh − δp

b
1
κ

> 1 +
h0

p0
.

The solution is used to complete the optimal paths (32) and (33) with f(1, A) = (1+ bAκ).
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