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THE BEST CONSTANT OF SOBOLEV INEQUALITY WHICH
CORRESPONDS TO A BENDING PROBLEM OF A STRING WITH
PERIODIC BOUNDARY CONDITION

YOSHINORI KAMETAKAY KOHTARO WATANABE', ATsusur NaGart

HIROYUKI YAMAGISHI®, KAZUO TAKEMURAY

Received December 15, 2006

ABSTRACT. The Green function of periodic boundary value problem with supplemen-
tary orthogonality conditions for bending of a string is obtained. The best constant of
corresponding Sobolev inequality is found.

0 Preparation We first prepare some notations used throughout this paper. The
eigenvalue problem

—u’ = Au 0<z<1) (0.1)

uD(1) —u®0) =0  (i=0,1) (0.2)

has countably many eigenvalues

where we put a; = 27§ (j € Z = {0,£1,+£2,---}). The eigenspace corresponding to
eigenvalue A\g = 0 is one-dimensional and

p(0,2) =1 0<z<1) (0.4)
is an eigenfunction. For j = 1,2,3,---, the eigenspace corresponding to eigenvalue J\; is
two-dimensional. We choose

o(+j,7) = exp(V—-las; ) 0<z<1) (0.5)

as base of this eigenspace. As is well known, the system of eigenfunctions {ap( J,x) | J € Z}
is a C.O.N.S. in L?(0,1).
Every function u(z) € L?(0,1) can be expanded as follows.

u(@) =Y a(j) ¢ x) (0.6)
JEZ
where
ag) = / W) PGy (€Z) 0.7)
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For every pair of functions u(zx),v(x) € L%(0,1), we have Parseval equality
1
[ u@m)ds = S a()30) 03
0 j€z
Moreover if u/(z) € L?(0,1) and u(1) — u(0) = 0 hold then we have

u'(x) = Y V=Ta;a(j) ¢(j,x) (0.9)

JEZ

and
[ 1w@P ar = a2 ja) (0.10)

JEZ

1 Conclusion For any bounded continuous function f(z) defined on an interval 0 <
x < 1 which satisfies suitable solvability condition (S), we consider the following boundary
value problem

BVP
—u" + qu = f(z) (0<x<1) (1.1)
D) —uP0) =0 (i=0,1) (1.2)
orthogonality condition (O) for u(x) (1.3)

q is a real parameter. Conditions (S) and (O) depend on the value of ¢ and are shown later
in Theorem 1.1.

In case of ¢ > 0, this boundary value problem has the following meaning. A straight
string is supported by the elastic membrane with uniformaly distributed spring with spring
constant g. One of the end of this membrane is fixed on the horizontal ceiling. f(x) is a
density of a load, u(z) is a bending of this string.

We consider this problem in the following four cases, which cover all the real values of

q.
Case I q = a2, a>0
Case 1T q=—a? (any <a<any1)

where one of the N =0,1,2,--- is fixed
Case III q=20
Case IV g = —a% where one of the N =1,2,3,--- 1is fixed

The first conclusion is as follows.

Theorem 1.1  For any bounded continuous function f(x) defined on an interval 0 < x <
1 which satisfies condition (S), BVP has one and only one classical solution u(x) given by

u(z) = / Glry) fw)dy  (0<z<1) (1.4)

using Green function G(z,y) = G(x — y).
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(I) (S),(O) nothing.
G(z) = Z(a? +a?) o(j,x) = cosh(a(|z| — 1/2))/(2a sinh(a/2))
JEZ
W © [ im0 (<)

0) Au@a@@m:o (il < V)

Glz) = Y (daf—a®)'oliz) =

[FI>N+1

Z (a® — a? ) ro(d,x) — cos(a(|z| —1/2)) / (2a sin(a/2))

l7|<N

1
m [ fway=o
0) /O w(@)dz = 0

_ . 1 1 1
Ga) = Y a2 plia) = 5l = Slal + 75 = ba(lz)
2 2 12
JEZ
370
where ba(x) = %mQ — %x + % is a Bernoulli polynomial of second order.

V) (S) Af@m@w@:o (il < N)

1
0) Au@a@@m:o (il < V)

Gla) = Y (af—ay)elia) = Y (ak—aj) " e(o) +

l7I=N+1 lFI<N-1

[cos<aw<|x—»1/2>>-+ 2an (|| - 1/2) sin(an(Jz] - 1/2))
Now we consider the following function space.

H = {u(m) u(z), u'(x) € L*(0,1), u(1) — u(0) = 0,

orthogonality condition (O) for u(x)}

285

(1.5)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)
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The condition (O) is the same as that in Theorem 1.1. For any pair of functions u(x), v(z)
in H, we attach the following sesquilinear form.

1
(o = [ [u'(w) (2) + qu(z)o()| do (1.16)

It is necessary to show that the above sesquilinear form is an inner product. We show
this fact in the cases I, III, IV (¢ < 0) because it is obvious in the case I (¢ > 0). In these
cases, we have

q=—a? (any <a<ans1) (1.17)

for some N =0,1,2,---. Using Parseval equality and the orthogonality condition (O) we
have

1
(u,u)g = /0 [|u'(ac)|2 — a?|u(x) |2] dx = Z (a? —a®) |a()|? >

§I>N+1
~7 .\ (2
@ =ad) 3 0] = @ - [ lute) P
l7I>N+1

This inequality shows that (-,-)m is an inner product. H is a Hilbert space with inner
product (+,-) g
The second main theorem is as follows.

Theorem 1.2 If u(z),u/(z) € L*(0,1) then we have

/01 [u/(x) 9, + qu(m)} Gla,y)dz = u(y) + <u(1> —u(0)>3xG(x’y)

=0
0 (1)
1

> e [ u@pla)ds (I V)

lil<N 0
O<y<1) (1.18)

Especially if u(x) € H then we have
1

/0 {u'(x) Op + qu(x)} G(z,y)dr = u(y) 0<y<l) (1.19)

This means that Green function G(x,y) is a reproducing kernel for H and (-, )g.

Finally we define Sobolev functional

S(u) = (ﬁi&'“ ) // [|u 2 1 g lu(@)? |da (1.20)

for u € H with u # 0.
The most important conclusion of this paper is as follows.

Theorem 1.3

(1) sup  S(u) = Cy (1.21)
uweEH, u#0
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Co=G0)=| Y (ai+a*)™" =1/(2atanh(a/2)) 1)

jez

Z(a?—aQ)_lz Z (a*> —a?)™" —1/(2a tan(a/2)) (11)
l7I=N+1 7SN

Y at=1/12 (I11)
J€Z, j#0

N-1

Do (af—a?) =3/ + 23 (F—af) ()

[7I>N+1 j=1
(1.22)

For any fized y such that 0 < y < 1, if we define u(x) = const. G(x — y) then we have
2 inf S =0 1.23
@) el S (1.23)

The engineering meaning of this result is that the square of the maximal bending of a
string is estimated from above by the constant multiple of the potential energy of a string.
The best constant is the diagonal value of corresponding Green function (impulse response).
The best constant depends only on the spring constant q.

The main part (1) of this theorem is proved later in section 6, but the second part (2)
is easy to prove. In fact, if |j| is sufficiently large then we have ¢(j,z) € H and we have

1

1.24
a? +q ( )

S(e(d,x) =

It is easy to confirm that

lim S(p(j,z)) = 0

|7]—00

2 Solvability and orthogonality conditions In the following sections, we prove
our main theorems. We omit the proof in case I because it is easy. Hereafter we fix
N =0,1,2,--- and assume

q=—a? (ay <a<ani1) (2.1)

From the theory of Fourier series, the solvability condition (S) is equivalent to

fGy=0  (lil<N) (2.2)
BVP is equivalent to

(af — a®)a(j) = f(5)  (Ifl=N+1) (2.3)

uj) =0 (Il<N) (2.4)

So we can obtain easily Fourier series expansion of Green function
1 .
G(z) = Z P ¢(J,z) (2.5)
lsI=N+1 7

This formula is valid also in the case of a = ay.
First of all we treat the problem of the uniqueness of a solution to BVP in cases of III
and IV without using the theory of Fourier series. We have the following conclusion.
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Theorem 2.1 We assume
a=ay (N=0,1,2,--+) (2.6)

For a bounded continuous function f(x) defined on an interval 0 < x < 1, we assume that
the following boundary value problem

BVP’
—u — d*u = f(x) 0<z<1) (2.7)
uD(1) — w0y =0 (=01 (2.8)

©) @) = [ u@)pode =0 (<N -1
in case of N =0, (O') nothing (2.9)

has a classical solution u(x) then the following solvability conditions hold

Afwwmm@:o<MSN—m /f BN, y)dy = 0 (2.10)

where

/ g(z (J,y) dy (2.11)
0

The solution u(x) is expressed as follows.

u®)=a+ﬂNﬂﬁ+a—ﬂ—Nw)+Z;Mw—wfwwy O<z<1) (212)

where
g(x) = —% sin( al|z|) (N=1,2,3,--+)
X (2.13)
~lal (N=0)
and oy are suitable constants. We call g(x,y) = g(x — y) the proto Green function.
Proof of Theorem 2.1 We omit the proof in the case N = 0. We assume
a=ay=27tN (N=1,2,3-) (2.14)
Introducing new functions
Uy = U, up = u
We have
'
u\ = 0 1\[u)\ — [0) f(x) 0<z<1) (2.15)

Uy —a 0 /\up 1
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Employing the fundamental solution

E(z) = ( cos(ax) a‘lsin(ax))

—a sin(az)  cos(ax)

(2.15) is solved as follows.

ugp \(z) = E(x) [ug \(0) — /Ox Exz—y) [0) fly)dy =
u1 ul 1
E(@-1) ( ) /Ex— ( )f(y)dy

Taking the average of right hand sides, we have

(uo)w = 3 B() (uo)m) + 5 B-1) (uo)<1>+

/O _ %Sgn(x—y)E(x—y) (0) fly)dy

1

For suitable constant «q, oy

(uo)(x) = E(x) (ao) + /0 - % sgn(z —y) E(z —y) (0) f(y)dy
U1 (051 1

0<ax<1)

Now we introduce

) = [ 5B (o) = [ 5 (- sintan) 1w ay
€1 1 cos(ay)

Since E(1) = E(0) then we have

B 6 L

289

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

From boundary conditions u;(0) = u;(1) (¢ =0, 1), we have €9 = €1 = 0, or equivalently

F(£N) / F)B(EN,y)dy = 0

(2.21)
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From (2.17), we have

ug(x) = ag cos(ax) + aja”'sin(ax) — /1 % sin(alz —y|) f(y) dy (2.22)
0

This proves (2.12).
The remaining relations

/0 f@) TGy =0 (jl<N-1) (2.23)

are proved later in section 3. Thus we have proved Theorem 2.1. |

3 Proto Green function In this section we list up properties of the proto Green
function g(x,y) = g(z — y) which was introduced in the previous section .

Lemma 3.1 We assume

a=an (N=1,2,3,--+) (3.1)
The proto Green function

o(,) = gle —y) = — 5 sin(alz  y|) (32)

satisfies the following properties

(1) g@y) =gly,r) (O0<z,y<1) (3.3)
2 (=92 —a*)glxy) =0 (O<zy<l, z#y) (3.4)
® [ 90 = ~a19) = - 5z sinton) = = o (9N9) - oM
deoa)| = —dugle)| = g eostan) = § (V) + (=N
(0<y<1) (3.5)
(4) g9(z,y) - g(z,y) =0
y=x—0 y=z+0
(3.6)
axg($7y) - mg(xay) = -1 (0<(E < 1)
y=x—0 y=z+0
(5) 9(,y) - g(z,y) =0
z=y—0 r=y+0
(3.7)
rz=y—0 x=y+0
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Lemma 3.2  For any bounded continuous function f(x) on an interval 0 < z < 1

1 1
u@) = [ s sy = [ o) f6)dy (3.8)
satisfies
—u" — a*u = f(x) 0<z<1) (3.9)
w0) = =uV) = = <= [ (o) = wl-No) ) s ay (3.10)
W) =~ ) = 1 [ (o) + ol-N0)) ) (3.11)

Concerning 1 (j, ) which was introduced in Theorem 2.1, we have

Lemma 3.3

V(i z) = / d@y) ety (JI<N, 0<z<1) (3.12)

satisfies the following properties

(1) (=07 —a)v(2) = e(w)  (0<z<1, [j|<N) (3.13)
(2)  ¥(,0) ¥, 1) 0 ' (\7|_§ N 1) (314)

(3.15)

3) WG =Gy = [0 (I<N-1)
L ==+m

4
Lemma 3.4  On an interval 0 < x <1, (4, z) (|j| < N) can be expressed as follows.

(1) For |j|<N -1 we have

Y(j,x) = ajp(N,z) + B o(=N,x) — 75 ¢(j, ) (3.16)

1 3, = 1 o 1
" 2a(a+aj) 7]7a2—a?

where  «a; = (3.17)

2a (a — aj )

(2) For j==+N we have

D

VD) = = 7oz (9N0) = o(-No2) ) + Y 22 = D (o) (3.18)
WNe) = o (wNa) = (M) ) = YL o= 1) p-Noa) (319)
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Proof of Lemma 3.4 We treat the case (1). Since
(-0 — a®) (¥(j,x) + v 00, 2)) =0 (3.20)
then we have
P x) = aypp(N,z) + ap(=N,z) — 7; ¢(j, ) (3.21)
for suitable constants ay. From (3.14) and (3.15) we have
0 =14(5,0) = ar ¢(N,0) + a- p(=N,0) = 7 ¢(5,0) = a + a- =
0 =14'(j,0) = ay ¢'(N,0) + a_¢'(=N,0) = 7;¢'(j,0) =
VTa(as - as) - voTa;7
Solving the above set of equations with respect to a1, we have
ap = aj, a_ = f; (3.22)

This shows (1).
Next we treat the case (2). Since

(- 02 — a2) <x @(N,x)) = —v/—12a¢(N,x) (3.23)
then we have
Y(N,z) = ay o(N,x) + a_ p(—N,x) + \/2?3330(]\7,3:) (3.24)

for suitable constants 4. From (3.14) and (3.15) with j = N we have

v—1
4da

= w(NaO) = Oé+(p(N,0) + Oé_@(—N,O) = 04 + a-

= WV.0) = 0y ¢N,0) + o (N0 + L p(v,0) =

v—1
2a

1

4
V-la(ay —a )+

Hence we have

1 v—1 1
ap = —r'/z — W, a_ = —— (325)

(3.18) is shown. Taking the complex conjugate of both sides of (3.18), we obtain (3.19).
This shows (2). [ |
Remark Lemma 3.4 shows that the solvability condition (2.10) is equivalent to

1
/O f@)BG.y)dy =0 (|§]<N) (3.26)
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4 Derivation of Green function G(z,y)  We first consider the case II, that is to say
g=—-d> (ay <a<ani1) (4.1)

where N =0,1,2,--- is fixed. Green function G(¢;z,y) = G(q;x — y) is given by

Glan) = Y ot elia) (12)

liI>N+1 7

On the other hand the formula

1 1 .
=) cos(a(lz] = 1/2)) = ]%; P e(j,x) (4.3)

is well known. This is a Green function of BVP without solvability condition (S) and
orthogonality condition (O).

We next consider the case a = ay. Green function is obtained by putting ¢ = —a% in
(4.2) and is given by

1 ) = 1
j=N+1 % TN j=Nt1 % TN

On the other hand this is also obtained by taking the following limit.

1
_ 52 — 1 R 1 =
G=a}iz) = lm = > —5—se(j2)
ljI>N+1 7
) cos(a(|z| —1/2)) 1 )
1 J— —_ —_— =
a—an 40 2a sin(a/2) Z 2 _q? #ls)
L lijl<N 7
X cos( allz| — 1/2))
VI [ S ) 45
a0 | a2 T ; a? —a} cos(a;) 2a sin(a/2) (4:5)

Proof of Theorem 1.1(II1.2) From the above relation (4.5) we have

G0:2) = Tim [_ cos(a(lz] ~1/2)) | 1] _

a—+0 2a sin(a/2) a?

2 sin(a/2) — a cos(a(|z| —1/2))

li 4.
a0 2a? sin(a/2) (4.6)
The denominator and numerator of (4.6) are expanded around a = 0 as
. Lo 1 Ll 3 5
2 sin(a/2) — a cos(a(|z] —1/2)) = 5 |z — 3 |z| + ol R O(a”)
2a® sin(a/2) = a® + O(a®)
Therefore we obtain
1, ., 1 1
RN T 1 4.
G(0:) = 5laP ~ 2 lel + 15 = ba(Ja]) (4.7
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This completes the proof of Theorem 1.1(I11.2). [ |
It is interesting to note that the above polynomial

is nothing but the Bernoulli polynomial of second order.
Proof of Theorem 1.1(IV.2) Now we calculate the last term of (4.5) for N =1,2,3,---.
It is obvious that

1 1 =

Z PR o(j,x) = o + 2 Z pr— cos(a;x) s

1SN -1 i i=1 j

1 =
— + 2 Z —— cos(a;x) (4.8)
a%s o ay — 4]

It is enough to show

2 cos(ayz)  cos(a(|z] —1/2))

a? — a3 2a sin(a/2) a—an+0

- cos(an) + —— (Ja] —1/2) sin(ax|] (49)
— cos(anx — (Jz| - sin(ay |z .
2a3, N an N

Since ay = 27N we have
sin(a/2) = (=1)"sin((a — an)/2)
cos(an(|z] —1/2)) = (=1)" cos(anx)

then we have

2 cos(anz) — cos(a(|lz] —1/2)) _
a? — a% 2a sin(a/2)

———— cos(anz) —
a? — a%

1
2a sin(a/2)

((costatlel = 1/2)) = cos(an(la] = 1/2))) -

1

5a sm(ayz) cos(anllzl=1/2)) =

(a2 —Za?v  2a sin( (al— aN)/Q)) cos(anx) —

(=D™(a—an) cos(a(|z| —1/2)) — cos(an(|z] —1/2))
2a sin( (a —an)/2) a—ay

(4.10)
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we have
2 1 1
— —s 4.11
a? —a%  2asin((a—an)/2) a—an+0 2a%; (4-11)
a—ay 1
— 4.12
2a sin((a —an)/2) a—an+0 an (4.12)
cos(a(|z] —1/2)) —cos(an (x| —1/2))
a—an a—an+0
— (jal - 1/2) sinan(lz] — 1/2)) (4.13)
This proves (4.9) and completes the proof of Theorem 1.1(IV.2). |

5 Properties of Green function In this section, we list properties of Green function
G(z,y). Direct calculations show the following lemma.

Lemma 5.1  The derivatives of Green function with respect to x are expressed as follows
for O<z,y<l, z#y.

m

1
(11) G(z,y) = Sa smh(a/2) cosh(a(lz —y| —1/2)) (5.1)
(12) 0.Gxy) = Y Gunaa— gl - 1/2)) (5.2)

2 sinh(a/2)

(13) 02G(x,y) = cosh(a(|lz —y| —1/2)) (5.3)

2 sinh(a/2)
(IT)

(IL.1) G(z,y) = !

~ 2a sin(a/2)

cos(a(lz —y|—1/2)) + Z

l7I<N J

W2) 0,6(ey) = BC—Y Guale -y -12)) + ¥ Yoo -y 65)

2 sin(a/2) e 2 —a?
(13) B2G(yy) = o coslalle =yl =1/2)) = 37 _ eGz—y)  (56)
7N J
(I11)
(ML) Glry) = 5le—yl — 5le—yl + 55 (57)
(I11.2) 0,G(z,y) =2 —y — %sgn(x —) (5.8)

(IM1.3) 0?G(x,y) = 1 (5.9)
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(V)
(IV.1) G(z,y) = L (le —yl—1/2) sin(an|z —y|) + 2% cos(an(r —y)) +
an ay
> & 1_ 2 ¢Ue—y) (5.10)
jI<N-1 J

(IV.2) 0,G(x,y) =

sen(e - y) [ux 1= 1/2) cosan(e — ) + - sin(anle ~3l)| -

L a4 Y Y ey (5.11)
2aN jlsn—1 N T %
(IV3) 9G(r,y) = —an (o —yl— 1/2) sin(ale —y]) + 3 coslan(z ~)) -
a2
Y. el (5.12)

jlen—1 N T
Employing Lemma 5.1, we have the following theorem at once.

Theorem 5.1  Green function G(z,y) satisfies the following properties.

(1) G(z,y) = Gla,y) = Gly,2) = Gl —z,1—-y)  (0<=z,y<1) (5.13)
(2) (=92 + q)G(z,y) = 0 )
- > el —y) I, 1v)
7SN
-1 (I11)
O<z,y<l, z#4y) (5.14)

B) G(Ly) = G0,y) =

cosh(a(y —1/2))
2a sinh(a/2)

Lol y2) 1 .

2a sin(a/2) e a;
1, 1 1
S Sy — I
59 5+ 5 (IIT)
1 . 1 1 .
. (y —1/2) sin(any) + 22, cos(any) + o #(Y) (IV)

lilsn-1 "N
0<y<1) (5.15)
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=1 =0
sinh(a(y —1/2))
~ 2sinh(a/2) @
_% D \/_Mésw, v) (In)
liI<N “j
—(y —1/2) (111)
~(y = 1/2) cos(axy) ~ 5, sinavy) - Y19 ) (1v)
ljI<N— %
0<y<1 (5.16)
(5) G(x,y) - G(x,y) =0
y=z—0 y=x+0
(5.17)
0,G(z,y) — 0,G(x,y) = -1 0O<z<1)
y=z—0 y=x+0
© [ #oGand =0 O<y<ihl<N)  @OIV) (518)
/1 Glay)de = 0 (0<y<1) (1) (5.19)
0
r=y—0 r=y+0
(5.20)
0.G(z,y) — 0,G(z,y) =1 O<y<1)
z=y—0 z=y+0

From the above Theorem, we can easily show that u(z) defined by (1.4) is a classical solution
to BVP.

Proof of Theorem 1.2 For any function u(z) and v(z) = G(x, y) where y is an arbitrary
fixed value satisfying 0 < y < 1 we have

uv + quu = (uv) + u(—v"+qv) (5.21)
Integrating this on intervals 0 < z < y and y < < 1 with respect to  we have (1.18). N

6 Sobolev inequality and the best constant  This section is devoted to the proof
of the most important Theorem 1.3.
Proof of Theorem 1.3(1) From Theorem 1.2 the following reproducing equality

w) = [ [v@0.6en + g cea)as 0<y<) (6.1)
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holds for any function u(x) € H. Applying Schwarz inequality we have
1 1
P < [ (W@ alu@ )i [ (10,600 + a6 )i
0 0

0<y<1) (6.2)

If we put u(z) = G(z,y) € H in (6.1) then we have

Gy = | [|axa<x,y>|2 " q|G<x,y>|ﬂdw 0<y<1) (6.3)
0
Thus we obtained
)P < Gl | [|u’<w)|2 T qlulx) ﬂdw 0<y<1) (6.4)
0

Since G(y,y) is a positive constant which is independent of y then we have

sup G(y,y) = G(vo,%0) (6.5)
0<y<1

where yo is an arbitrarily fixed number satisfying 0 < yo < 1. Taking the supremum with
respect to y of the above inequality (6.4), we have

(Oilyu;llu@) |)2 < G(yohyo)/o1 [W(x) 2+ qlu(x) |2}dx (6.6)

Thus we have the following conclusion. For any function u(z) € H we can take a positive
constant C' which is independent of u(z) such that the following Sobolev inequality

(sup, 1uto |)2 <cf 1 @)+ alulo) Pas (6.7

0<y<1

holds. The best constant Cy among such C' satisfies
Co < G(yo,yo0) (6.8)

Applying Sobolev inequality to u(x) = G(z,y0), we have

( sup |G(y,y0)|)2 < c/o1 [|8xG(a:,yo)|2 +q |G($,y0)|2} dz = CG(yo, yo)

0<y<1
(6.9)
We also have
2
Gl < (s Gl ) (6.10)
0<y<1

Combining these two inequalities, we have

2
Glyo, 10)? < (sup |G<y,y0>|) <

0<y<1

¢ [|axa<x,yo> 2 4 q|G ) F] dr = O Clyo.mo) (6.11)
0
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Then we have

G(yo,y0) < Co (6.12)
(6.8) and (6.12) shows that

Co = G(Y0,Y0) (6.13)

Putting C' = Cp in (6.11) we have

2
G(yo, y0)* = ( sup |G(y7y0)|) =

0<y<1
1
a [ [|3xG(9C,y0) 4 16 90) ﬂ dr = Glyo.yo)’ (6.14)
0
This means that
2 1
( sup | G(y, o) |) =0, / [|8xG(x,yo) > + ¢ |G(z,y0)|° | d (6.15)
0<y<1 0
This completes the proof of Theorem 1.3. |
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