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ABSTRACT. The concepts of semisimple, Archimedean, and semilocal pseudo MV -algebras
are investigated and many interesting facts concerning them are given.

1. INTRODUCTION

Pseudo MV -algebras were introduced by G. Georgescu and A. Iorgulescu in [6] and in-
dependently by J. Rachunek in [8] (there they are called generalized MV -algebras or, for
short, GMV-algebras) as a non-commutative generalization of MV-algebras. This work
was intended as an attempt to order some notions appearing in the theory of these al-
gebras. Semisimple pseudo MV-algebras and Archimedean pseudo MV -algebras are ex-
amples of such notions. In Section 3 we give some characterizations of semisimple pseudo
MYV -algebras. Archimedean pseudo MV -algebras are investigated and characterized in Sec-
tion 4. It is shown that in the case of pseudo MV-algebras the notion of Archimedean is
equivalent with the notion of Archimedean in the Belluce sense, that occurs in the theory of
MYV -algebras, and both are equivalent with the notion of semisimple. Section 5 is devoted to
introduce and characterize semilocal pseudo MV -algebras, the concept generalizing a simi-
lar one from the theory of MV -algebras. For the convenience of the reader, in Section 2 we
give the relevant material needed in the sequel, thus making our exposition self-contained.

2. PRELIMINARIES

Let A= (A4,®,7,~,0,1) be an algebra of type (2,1,1,0,0). Set -y = (y~ ®x~)" for
any x,y € A. We assume that the operation - has priority to the operation @, i.e., we will
write @y - z instead of © @ (y - z). The algebra A is called a pseudo MV-algebra if for any
x,y,z € A the following conditions are satisfied:

(A1)
(A2)
(A3)
(A4)
(A5) (z~ @y~ )" = (@~ ®y~)",
(A6)
E 7§$-(w:@y)=(x@y”)-y,
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If the addition @ is commutative, then both unary operations = and ~ coincide and A
can be considered as an MV -algebra.

Throughout this paper A will denote a pseudo MV -algebra. For any x € A and n =
0,1,2,... we put

0z = Oand (n+1)x=nxdux;

n+1

0 = landwx =z" -z

Proposition 2.1 (Georgescu and Iorgulescu [6]). The following properties hold for any x,y €

Proposition 2.2 (Georgescu and Iorgulescu [6]). The following properties are equivalent
for any x,y € A:

(a) 2” dy =1,
(b) yd ™~ =1.
We define

r<y<=az dy=1.

As it is shown in [6], (A, <) is a lattice in which the join x V y and the meet z Ay of any
two elements = and y are given by:

tVy = @17 y=x-y Dy,
TNy = m-(m‘@y)z(w@yN)-y.
For every pseudo MV-algebra A we set L(A) = (A,V,A,0,1).

Proposition 2.3 (Georgescu and Iorgulescu [6]). Let A be a pseudo MV-algebra. The fol-
lowing properties hold for any x,y,z € A:

(a) 7 <y <=y <o 4=y~ <2,

b)r<y=202<20y,202<ydz,

() (z®2) y<z@z yy (02)<y-zd2.

Definition 2.4. An ideal of A is a subset J of A satisfying the following conditions:
(I 0eJ,

(12) if x,y € J, then z ® y € J,

(I3)ifzeJ ye Aand y < z, then y € J.

Under this definition, {0} and A are the simplest examples of ideals.
Denote by Id(A) the set of all ideals of A and note that Id(A) ordered by set inclusion
is a complete lattice.

Remark 2.5. Let J € Id(A).
(a) fz,ye J, then x -y, x ANy, xVy € J,
(b) J is an ideal of the lattice £ (A).

For every subset W C A, the smallest ideal of A which contains W, i.e., the intersection
of all ideals J D W, is said to be the ideal generated by W, and will be denoted (WV].

Proposition 2.6 (Georgescu and Iorgulescu [6]). Let W be a subset of A. If W = &, then
(W] ={0}. If W # &, then

Wl={zecAd:z<w & Dw, for some wy,... ,w, € W}.
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In particular, for every z € A, the ideal (z] = ({z}] is called the principal ideal generated
by z (see [6]), and we have

(2] ={x € A: x < nz for some n € N}.

Definition 2.7. Let J be a proper ideal of A (i.e., J # A).

(a) J is called prime if, for all Jy, Jo € Id(A4), J = J1 N J2 implies J = J; or J = Js.

(b) J is called regular iff J = ()X implies that J € X for every subset X of Id(A).

(c) J is called mazimal iff whenever M is an ideal such that J C M C A, then either M = J
or M = A.

By definition, each maximal ideal is regular and each regular ideal is prime.

Definition 2.8. An ideal H of A is called normal if it satisfies the condition:
(N)forallz,ye A,xz-y~- € H<=y~ -2z € H.

Denote by Id,, (A) the set of normal ideals of A.

Proposition 2.9 (Georgescu and Iorgulescu [6]). Let A be a pseudo MV-algebra and let H
be an ideal of A. Then the following are equivalent:

(a) H is normal,

(b) for each x € A, x ® H = H @z (i.e., for each h € H there exists h' € H such that
x@®h="h ®x; and for each h € H there exists h" € H such that h®x =z ®h").

From Propositions 2.6 and 2.9 we obtain the following lemma.
Lemma 2.10. Let Hy, Hy be normal ideals of A. Then
(HHUHs)={x € A:x < hy @ hs for some hy € Hy,hg € Ha}.

Lemma 2.11. Let A be a pseudo MV-algebra and let H be an ideal of A. Then the following
are equivalent:

(a) H is normal,

(b) (z@®h) -z~ € H anda™ - (h®xz) € H forallz € A and h € H.

Proof. (a) = (b): Let x € A. By Proposition 2.9, for each h € H there exists h’ € H such
that x @ h = ' @ z. From Propositions 2.3(c) and 2.1(c) we obtain
(x@h)-z-=FR@@x) 2= <@z~ =had0="~n"€H.

Hence (z @ h) -x~ € H. Similarly, 2~ - (h @ x) € H.
(b) = (a): Let x € Aand h€ H. Let usset ' = (z @ h) -2~ and b’ =z~ - (h® z). By
assumption, h',h” € H. Applying (A6) and Propositions 2.3(b,c) and 2.1(c) we have

Weox=@oh) 2~ dr=z2dz~ - (xdh)<z®z” z®Gh=xh.
On the other hand, by Propositions 2.3(c) and 2.1, we get
Wor=x@x™ - (zdh)=(xda™) - (xdh) =2 h.

Thus x®h = I ©x. Similarly, hdx = x®h”. Therefore, from Proposition 2.9 we conclude
that (a) is true. O

Proposition 2.12 (Dvurecenskij and Pulmannova [4]). For any proper normal ideal H of
a pseudo MV-algebra A, the following conditions are equivalent:

(a) H is mazximal,

(b) for each z € A, z ¢ H iff (nz)” € H for somen €N,

(c) for each z € A, z ¢ H iff (nz)~ € H for some n € N.
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Following [6], for any normal ideal H of A, we define a congruence on A by:
r~gy<<=zc-y Vy-xr €H
We also have
r~gy<=—z~-yvVy~ -z e H

We denote by z/H the congruence class of an element x € A and on the set A/H =
{z/H : © € A} we define the operations:

e/Hoy/H=(z®y)/H, (¢/H) = (a7)/H, («/H)” = (~)/H.
The resulting quotient algebra A/H = (A/H,®,” ,~,0/H,1/H) becomes a pseudo MV-
algebra, called the quotient algebra of A by the normal ideal H.

Lemma 2.13. Let Hi,... ,H,, be normal ideals of A such that (H; U H;] = A fori,j =
1,...,m and i # j. Let x1,...,zym € A. Then there is x € A such that x ~g, x; for
t=1,...,m.

Proof. First, let m = 2. Since (Hy U Hy] = A, by Lemma 2.10 there exist h1o € H; and
ho1 € Hy such that h1o®he1 = 1. Applying (A8) we get h12® (hy;)~ = 1. From Proposition
2.2 we deduce that hy; < hia. Since hio € H;p, we see that hy; € Hy. Hence hoy ~p, 1.
Take © = x1 - ho1 ® T2 - hi2, where x1, 12 € A. We obtain
x/Hy = x1/Hy-ho/Hy ®x2/Hy - hia/Hy
= xl/Hl . 1/H1 @xg/Hl : 0/H1 = :L'l/Hl.

Thus x ~g, x1. Similarly, x ~g, x2.

Now let m be arbitrary. For ¢, =1,... ,m and i # j, there exist h;; € H; and hj; € H;
such that h;; ® hj; = 1. Considering x = Z:il Zi-hii-hi—1i-hig1,i -+ - hm and reasoning
as above we see that © ~g, x; fori=1,... ,m. O

A pseudo MV-algebra is simple iff there is no non-trivial proper ideal of A (i.e., Id(A)
= {{0}, A}).
Proposition 2.14 (Dvurecenskij [3]). A normal ideal H of a pseudo MV-algebra A is maz-
imal if and only if A/H is a simple pseudo MV-algebra.

Proposition 2.15 (Georgescu and Iorgulescu [6]). Let H be a normal ideal of a pseudo
MV-algebra A. Then the quotient algebra A/H is a pseudo MV-chain if and only if H is
prime.

The radical of a pseudo MV -algebra A is the set
Rad (A) = ﬂ {M : M is a maximal ideal of A}
and the normal radical of A is the set
Rad, (A) = ﬂ {M : M is a maximal and normal ideal of A} .
If there are no maximal and normal ideals of A, then we set Rad,, (A) = A.
Remark 2.16. If A is an MV-algebra, then Rad,, (A) = Rad(A4).

Let I be a nonempty set. The direct product of the pseudo MV-algebras A;, i € I,
denoted by [],.; Ai, is the pseudo MV-algebra obtained by endowing the set-theoretical
cartesian product of A; (i € I) with the pseudo MV -operations defined pointwise. For each
i €I, the map m; : [[,.; Ai — A, defined by

mi(x) = z(i) for all x € 1_[141-7
iel

iel
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is a homomorphism onto A;, called the i-th projection function.

Proposition 2.17. Let Ay,...,Ax be pseudo MV-algebras and let A = Ay x --- X Ag. If
Ji € Id(A;) fori=1,... k, then J; X -+ X Jg is an ideal of A.

Conversely, if J is an ideal of A, then fori=1,... k, J; = m; (J) is an ideal of A;, and
J=J X x Jg.

Proof. 1t is straightforward. O

Proposition 2.18. Let A = Ay X --- X Ay, where Ay,...,Ar are pseudo MV-algebras.
Then:

(a) Id(A) = Id(A1) x --- x Id(Ag),

(b) Id,, (A) = 1Id,, (A1) x -+ x Id,, (Ag),

(c) Rad(A4) = Rad(A1) x --- x Rad(Ayg),

(d) Rad,, (A) = Rad,, (A1) x -+ x Rad, (Ag).

Proof. (a) Follows from Proposition 2.17.

(b) Tt is sufficient to prove that J; X --- x Jj is a normal ideal of A if and only if J; is
a normal ideal of A; for ¢ = 1,... k. It is easy to see that if J; is a normal ideal of A; for
i=1,...,k, then J; X --- X Ji is a normal ideal of A. Now, assume that J = J; X -+ X Ji
is normal. Let a € A; and b € J;. Take z € A with x(7) = a. Define y € A by y(i) = b and
y(j) =0 for j # 4. Then y € J, and we conclude from Lemma 2.11 that (z @ y) -~ € J.
We have

(@@b)-a” =[m @)@y m@) =mn(@ey) 27)em(J))=J.
Similarly, a~ - (b@a) € J;. Therefore, by Lemma 2.11, J; is a normal ideal of A; for
i=1,...,k

(c) It is easy to see that J is a maximal ideal of A if and only if J = Ay x --- x A;_1 x

Ji X Ajy1 X -+ x Ag, where J; is a maximal ideal of A; for i = 1,... , k. Hence (c) is true.
(d) Follows from (b) and (c). O

Definition 2.19. A pseudo MV-algebra A is called normal-valued if for any regular ideal
Jof Aand any x € J*, c ® J = J & =, where J* is the unique least ideal which properly
contains J.

Proposition 2.20. Let A be a normal-valued pseudo MV-algebra and let M be a mazimal
ideal of A. Then M is normal.

Proof. Since A is normal-valued and M is a maximal ideal of A, M is regular and x & M =
M @ x for every x € M* = A. Hence, by Proposition 2.9, M is normal. O

An element x of a pseudo MV-algebra A is called infinitesimal (see [9]) if x satisfies
condition

nr < 2~ for each n € N.
Let us denote by Infinit(A) the set of all infinitesimal elements in A.

Proposition 2.21 (Rachunek [9]). Let A be a pseudo MV-algebra. Then:
(a) Rad(A) C Infinit(A),
(b) if A is normal-valued, then Rad(A) = Infinit(A).
Proposition 2.22 (Di Nola, Dvurecenskij and Jakubik [1]). Let A be a pseudo MV-algebra.
Then Infinit(A) C Rad, (4).
By Propositions 2.21 and 2.22 we have a ladder of inclusions:
Rad (A) C Infinit (A) C Rad,, (4).
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Proposition 2.23. Let A be a normal-valued pseudo MV-algebra. Then
Rad (A) = Infinit (4) = Rad,, (A4).

Proof. Since A is normal-valued, from Proposition 2.20 we have that every maximal ideal
of A is normal. Thus Rad(A) = Rad,, (A4). O

Now we give the definition of an Artinian pseudo M V-algebra.

Definition 2.24. A pseudo MV-algebra A is called Artinian if for every descending se-
quence J; O Jo DO -+ - of ideals of A there exists k € N such that J,, = Ji for all m > k.

Proposition 2.25 (Dymek [5]). If A is Artinian, then A/H is Artinian for every normal
ideal H of A.

At the end of this section we recall some definitions and facts from [7].

Definition 2.26. The order of an element z € A is the least n such that nz = 1 if such n
exists, and ord(z) = oo otherwise.

Remark 2.27. It is easy to see that for any = € A, ord(z~) = ord(z"™).
Definition 2.28. A pseudo MV-algebra A is called local if
ord (x @ y) < oo implies that ord (z) < oo or ord (y) < oo
for all z,y € A.
Remark 2.29. If A is local, then ord(z) < oo or ord(z™~) < oo for every x € A.

Let A be a pseudo MV -algebra. We denote by D(A) = {x € A: ord(z) = oo} the set of
all elements of infinite order.

Proposition 2.30 (Leustean [7]). Let A be a pseudo MV-algebra. The following are equiv-
alent:

(a) A is local,

(b) D(A) is an ideal of A,

(c) D(A) is the only mazimal ideal of A.

3. SEMISIMPLE PSEUDO MV -ALGEBRAS

Definition 3.1. A pseudo MV-algebra A is semisimple iff Rad,, (4) = {0}.
Remark 3.2. Every simple pseudo MV -algebra is semisimple.

Example 3.3. Let A= {(1,y) e R?:y >0} U{(2,y) e R?:y <0}, 0= (1,0), 1 = (2,0).
For any (a,b), (¢,d) € A, we define operations @, ,~ as follows:

(L,b+d) ifa=c=1,
(a,b) ® (c,d) = (2,ad+b) ifac=2 and ad+b <0,
(2,0) in other cases.

(@b = (3—2—1’)
(a,b)~ = (%‘2)

Then A = (A,®,”,~,0,1) is a pseudo MV-algebra. Let H = {(1,y) : y > 0}. Then H
is the unique normal maximal ideal of A and hence Rad,, (A) = H # {0}. Thus A is not
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semisimple. Moreover, note that by Proposition 2.14, A/H is a simple pseudo MV -algebra.
Therefore A/H is semisimple.

Recall that a pseudo MV-algebra A is a subdirect product of pseudo MV-algebras Aj;,
i € I, if there exists an injective homomorphism h : A — [[,.; A; such that 7; o h maps A
onto A; for all i € I.

Proposition 3.4. Let A be a pseudo MV-algebra. The following are equivalent:
(a) A is semisimple,
(b) there is a family {H; :i € I} of normal mazimal ideals of A with (,.; H; = {0},
(c) A is a subdirect product of simple pseudo MV-chains.
Proof. (a) = (b): Follows from definition.
(b) = (c): Suppose that {H; : i € I} is a family of maximal and normal ideals of A such

that (., H; = {0}. Write A; := A/H; for i € I. First note that, by Propositons 2.14 and
2.15, A; are simple pseudo MV -chains. Define h: A — [[,c; Ai by
h(x)=(z/H; :i €I) for all z € A.

Since (;c; Hi = {0}, we have that Ker(h) = {0}. Thus A is injective. It is easy to see that
m; o h maps A onto A;, where 7; is the i-th projection function. Therefore, A is a subdirect
product of the (simple) pseudo MV-chains A;, i € I.

(c) = (a): Let h : A — [],c; Ai be an injective homomorphism, where A; are simple
pseudo MV -chains, and let m; o h : A — A; be surjective. Write Ker(m; o h) = H; for
i € I. Then H; is a normal ideal of A and A/H; = A;. Consequently, A/H; is simple. By
Proposition 2.14, H; is maximal. If € (), H;, then 7; (h(z)) = 0 for all i € I. This
implies that h(xz) = 0, and since h is injective, we obtain = 0. Therefore Rad,, (4) C
Mic; Hi = {0}. Hence Rad,, (A) = {0}. Thus A is semisimple. O

Now recall that a pseudo MV-algebra A is representable (see [6]) if it is a subdirect
product of pseudo MV -chains. Thus, by Proposition 3.4, we have the following proposition.

Proposition 3.5. If a pseudo MV-algebra A is semisimple, then it is representable.
Proposition 2.19(d) yields

Proposition 3.6. Let A = A x---x Ay, where Ay, ... , A are pseudo MV-algebras. Then
A is semisimple if and only if A; is semisimple fori=1,... k.

4. ARCHIMEDEAN PSEUDO MV -ALGEBRAS

Definition 4.1. Let A be a pseudo MV -algebra.

(a) A is Archimedean iff Infinit(A) = {0}.

(b) A is Archimedean in the Belluce sense iff for each z,y € A, if nz < y for all n > 0, then
T-y==x.

Proposition 4.2 (Dvurecenskij [2]). Any Archimedean pseudo MV-algebra is an MV-algebra.

Proposition 4.3 (Dvurecenskij [2]). A pseudo MV-algebra A has the MacNeille comple-
tion as a pseudo MV-algebra if and only if A is Archimedean.

Recall that a pseudo MV-algebra is locally finite if ord(z) < oo for every x > 0.

Lemma 4.4. A pseudo MV-algebra A is locally finite if and only if 1d(A) = {{0}, A} (i.e.,
A is simple).
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Proof. If A is trivial, then the lemma is obvious. Assume that A # {0}. Suppose that A is
locally finite. Let I # {0} be an ideal of A and let € I,z # 0. Then there is n € N such
that ne = 1. Thus 1 € I, i.e., I = A.

Now suppose that Id(A) = {{0}, A} and A is not locally finite. Then there exists x € A
and x # 0 such that nx < 1 for all n € N. Let us take an ideal

() ={y € A: y < mz for some m € N}

generated by x. Then (z] # {0}. Hence (z] = A, i.e., 1 € (z]. Thus 1 < ma for some m € N,
i.e., mz = 1 for some m € N. This is a contradiction. Therefore A is locally finite. O

Theorem 4.5. Let A be a pseudo MV-algebra. The following are equivalent:
(a) A is semisimple,

(b) A is a subdirect product of simple pseudo MV-chains,

(c) A is Archimedean in the Belluce sense,

(d) A is Archimedean,

(e) A has the MacNeille completion.

Proof. (a) = (b): Follows by Proposition 3.4.

(b) = (c): Let A C [],c; Ai be a subdirect product of simple pseudo MV-chains A;,

i€ 1. Let x,y € A and suppose that nz < y for all n > 0. Then
n(i) = (nx)(i) = mi(nx) < mi(y) = y(i)
for all i € I and n > 0. By Lemma 4.4, each A; is locally finite. Therefore (i) = 0 or
y(i) =1 for all ¢ € I. Hence in each A; we have
N N 0 if z(1)=0
e =) u={ 0 3 5020
Thus (x - y)(i) = z(i) for i € I. Tt follows that x -y = .

(¢) = (d): Let € Infinit(A). Then nz < z~ for all n € N. Since A is Archimedean
in the Belluce sense, we obtain x = z -2~ = 0. Consequently, Infinit(4) = {0}, i.e., 4 is
Archimedean.

(d) < (e): Follows from Proposition 4.3.

(d) = (a): Let A be an Archimedean pseudo MV-algebra. By Proposition 4.2, A is an
MYV -algebra. Hence Rad,, (A) = Rad(A) C Infinit(A) = {0}, i.e., Rad,, (4) = {0}. Thus A

O

is semisimple.
Proposition 4.6. Any subalgebra of a semisimple pseudo MV-algebra is semisimple.

Proof. Let A be a semisimple pseudo MV-algebra and let B be a subalgebra of A. We have
Infinit(A) = {0},because A is Archimedean by Theorem 4.5. Since Infinit(B) C Infinit(A),
we see that Infinit(B) = {0}. Theorem 4.5 now shows that B is semisimple. O

5. SEMILOCAL PSEUDO MV -ALGEBRAS

Definition 5.1. A pseudo MV-algebra is called semilocal if it has only finitely many nor-
mal maximal ideals.

By Proposition 2.30, we have the following proposition.

Proposition 5.2. Any local pseudo MV-algebra is semilocal.
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Theorem 5.3. Let A be a pseudo MV-algebra. The following are equivalent:

(a) A is semilocal,

(b) A/Rad,, (A) is trivial or isomorphic to a direct product of finitely many simple pseudo
MV-chains,

(c) A/Rad,, (A) has finitely many ideals,

(d) A/Rad,, (A) is Artinian.

Proof. (a) = (b): Assume that A is semilocal. If A does not have any maximal and
normal ideals, then Rad, (A) = A and hence A/Rad, (A) is trivial. Let {Hi,...,H,}
be the set of all maximal and normal ideals of A, where m is a natural number. Then
Rad, (4) = -, H;. By Propositions 2.14 and 2.15, each A/H; is a simple pseudo MV-
chain. Take the map ¢ : A/Rad,, (4) — []*, A/H; given by

¢ (@/Rad, (4)) = (¢/Hy,... ,x/Hy).

Clearly ¢ is a homomorphism. We prove that ¢ is an isomorphism. Indeed, since (H; U H,] =
Afori,j=1,...,m and i # j, we have, by Lemma 2.13, that ¢ is surjective. Now, sup-
pose that ¢ (x/Rad, (4)) = ¢ (y/Rad,, (A)) for z,y € A. Hence x/H,; = y/H,; for each i
(1<i<m). Thenz-y " Vy-2~ € Hyfori=1,... ,m,ie,z-y~ Vy-z~ € Rad, (4).
Thus z/Rad,, (A) = y/Rad, (A). Therefore ¢ is an isomorphism.

(b) = (c¢): If A/Rad,, (A) is trivial, then it has only one ideal. Let A/Rad, (A) =
Ay X -+ X Ay, where A; is a simple (non-trivial) pseudo MV-chain for i = 1,... ,m. From
Proposition 2.18 we have |Id (A/Rad,, (4))| = |[Id (41) x -+ x Id (A,)|. Since 1d(4;) has
2 elements for every ¢ = 1,...,m, we have that Id(A/Rad, (A)) has 2™ elements. Thus
A/Rad,, (A) has finitely many ideals.

(¢) = (d): Obvious.

(d) = (a): Suppose that A has infinitely many maximal and normal ideals Hy, Ha, .. ..
Then we have a strictly descending sequence Hy D H1 N Hy D Hi N HsN Hsg D -+ of ideals
of A. Hence we obtain a sequence

Hl/Radn (A) D) (H1 N HQ) /Radn (A) D) (H1 N Hy ﬂHg) /Radn (A) D

of ideals of A/Rad,, (A). Note that this sequence is strictly descending. Indeed, if .Jq, Jo are
maximal and normal ideals of A, then (J; N J3) /Rad, (A) C Ji/Rad, (A). Suppose that
(J1 N Jz2) /Rad, (A) = J1/Rad,, (A). Let a € J; — (J1 N J3). Note that there is b € J; N Jo
such that a/Rad,, (A) = b/Rad,, (4). Thus a-b~ Vb-a~ € Rad, (A) and hence a - b~ €
Rad,, (A) C JiNJse. Sincea<aVb=a-b~ ®be JNJs, we have a € J; N Ja, which is a
contradiction. Therefore we get a strictly descending sequence of ideals of Artinian pseudo
MYV-algebra A/Rad,, (A), which is impossible. Thus A is semilocal. O

Corollary 5.4. If A is Artinian, then it is semilocal.

Proof. If A is Artinian, then A/Rad, (A) is Artinian by Proposition 2.25. From Theorem
5.3 we see that A is semilocal. O

Corollary 5.5. Let A be semisimple pseudo MV-algebra. Then A is semilocal if and only
if A is Artinian.

Corollary 5.6. If A is semilocal, then A/Rad,, (A) is semisimple.
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