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SOME ANALYTICAL AND STATISTICAL ASPECTS RELATED TO 2D
LOGNORMAL DIFFUSION RANDOM FIELDS
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ABSTRACT. This paper introduces 2D lognormal diffusion random fields through their
transition densities and studies the main analytical and statistical characteristics of
these fields, based on the theoretical formulation for diffusion random fields given
in [14]. Lognormal diffusions are characterized here in terms of stochastic partial
differential equations, and Kolmogorov’s forward equation is obtained.

1 Introduction The formulation of dynamic models using lognormal stochastic processes
has been applied in different contexts (see, for example, [18], [20], [19]). Nowadays, increased
emphasis on Environmental Sciences and the formulation of dynamic models for transport
of chemical or biological agents provides an additional incentive for studying lognormal
diffusion random fields.

Lognormal diffusion processes (one-parameter case) have been applied based on esta-
blishing statistical inference results which allow model fitting to data obtained from discrete
or continuous sampling (see for example, [4], [5], and [11]). The It6 differential equation and
both Kolmogorov’s forward-backward equations have been used for parameter estimation
and hypothesis testing, as well as for first-passage time problems for certain time barriers,
which are solved in [9], [6], and [10].

Our concern will be on the study of some analytical and statistical aspects related to
2D (two-parameter) lognormal diffusion random fields. When the parameter space is a
subset of R, [14] introduces a class of 2D random fields which are diffusions on each co-
ordinate and satisfy a particular Markov property related to partial ordering in Ri. Using
this theory and taking into account that a lognormal random field is commonly introduced
as a random field whose logarithm is a Gaussian random field (see, for example, [13], [2],
[3]), we first study 2D Gaussian diffusion random fields. The diffusion coefficients and the
one-parameter diffusions which appear fixing each coordinate of the parameter space are
obtained. Moments and the stochastic partial differential equation (SPDE) for a 2D Gaus-
sian diffusion are given too. Second, the 2D lognormal diffusion random field is introduced
in terms of the transition densities. The one-parameter diffusions, the diffusion coefficients
and moments are obtained. The lognormal diffusion random field is characterized by its
SPDE and the forward Kolmogorov’s equation is obtained and the backward Kolmogorov’s
equation is gave.

2 2D Gaussian Diffusion Random Field Let {X (z) :z = (s,t) € I =[0,5]x[0,T] C
R? } be a random field (RF), defined on a probability space (2, A, P). We will use X (z),
X (s,t) or Xy to denote the variables of the field. Suppose that the RF is constant in the
axes of the parameter space, that is X (z) = X (0,0), Vz € {(s,t) € [:s=0 or ¢=0}.
We will denote

2000 Mathematics Subject Classification. 60J60.
Key words and phrases. Diffusion lognormal process; diffusion random field; Kolmogorov’s equation;
SPDE.



342 GUTIERREZ R. AND ROLDAN C.

X(A}L (Z)) :X(S-l—h,t) _X(Svt)v X (Ai (Z)) :X(87t+k) _X(Svt)a
X (Ank(2) =X (s+ht+k)—X(s+ht)—X(s,t+k)+ X (s,1),
Y((Sl,tl) 5 (Sg,tg)) = (X (Sl,tg) ,X(Sl,tl) 7)( (Sg,tl)), (Sl,tl) S (Sg,tg).

Let consider the families of o-fields {3, : z € R1}, {3} : z € R2}, and {§2 :z € R},

where for z € Ri
S.=0{X(Z):7 <z},

gi:g{X(s/,t/):Sl <s, v ER+} = \/ Sstrs
>0

§2=o{X(s\t):s €Ry ¥/ <t} = \/ Fun, and
s'>0

FLvE =c{X (J,t/):s <sort <t}.
We will assume that the following condition holds for every z € R%: §. y §2 are conditio-
nally independent given §.
We first study the 2D Gaussian diffusion RF. Let {X (z) : z€ I} be a 2D Markov RF with
a.s. continuous sample paths where X (0,0) is a constant or a Gaussian random variable

with E[X(0,0)] = mg and var (X (0,0)) = o2. We suppose, that there exist a and B,
continuous functions in I, such that the transition densities exist and are given by

(1)

_ 1 1 y—xl—xg—l—x—m(z;h,kj)>2
,Zz+ (h,k [2) = —————— —= ,
Iy (k) ,2) 2no? (z; h, k) exp{ 2 ( o (z;h, k)

for z = (s,t) €I, h,k >0, T = (21,7,22) € R, y € R, with

sth pttk sth pt+k
m(z;h, k) = / / a(o,7)dodr, o°(z;h, k) = / / B (o,7)dodr.
s t s t

Under these conditions, considering k¥ = ¢t and ¢t = 0 in (1), we obtain the transition
densities for the stochastic process {X (s,t) : s € [0,S]}: For fixed ¢ € [0, T

. 2
? f“y’”h'x”)‘ﬁem{‘%(y_x_ngz’h))}’
oy \Z; o1 (Z;

forz=(s,t) €I, h>0, z,y € R, and

s+h s+h
my (z;h) = / ai (o,t)do, 0% (z;h) = / B (o,t) do,
with
¢ ¢
ay (s, t) = / a(s,7)dr, B (s,t) = / B (s,7)dr.
0 0

Taking into account the initial distribution (the distribution in the axes of the parameter
space), the transition densities and the (one-parameter) Markov property, we can conclude
that {X (s,t) : s € [0, 5]} is a Gaussian stochastic process where a; (z) and By (z) are the
drift and diffusion coefficients, respectively.
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Similarly, if we consider h = s and s = 0 in (1), we obtain that {X (s,t) : t € [0, T}, for
fixed s € [0, 5], is a Gaussian diffusion process, with transition densities given by

. 2
¥ fs(y’“’“'x’”‘ﬁ“p{‘%<y_x_<772>(z’k)>}’
o5 \Z; 02 (Z;

forz=(s,t)el, k>0,z,y€R, and

t+k t+k
ma (2 k) = / ar (s,7)dr, o3 (z:k) = / By (s,7) dr,
t t
with

ag(s,t)z/osa(a,t)da, Bg(s,t)z/OSB(U,t)da

being the drift and diffusion coefficients, respectively.
From the above conditions, we can assert the following properties:

1.
2.
3.

5.

X(
X(
X (4
4. X (A2
X
6. X (
Theorem 2.1. {X (z):z € I} is a Gaussian diffusion RF, with drift coefficient a (z),
diffusion coefficient B (z), and with the mixed diffusion coefficients being all null.

Proof See Appendix A.

2.1 SPDE for the 2D Gaussian diffusion RF Under some regularity conditions,
it is possible to obtain a SPDE formulation for the 2D diffusion RF. In fact, we need the
hypotheses I to V stated in [14] to be satisfied, in order to apply the Theorem 2.8 established
in that paper. These hypotheses will be proved for the lognormal diffusion RF (see Appendix
B). The proof for the Gaussian case can be carried out in a similar way. Then, applying
directly the result, we can conclude that there exists a 2D Wiener process {W (z) :z € I}
(adjoining, if it is necessary, a new probability space) such that the Gaussian diffusion RF
{X (z) : z € I} is the only diffusion RF satisfying the SPDE

0% X 5
0sot

O*Wy
0sot

=a(s,t)+ BY?(s,t)

The uniqueness of the solution is the result of applying Theorem 3.9 of Yeh (see [16], p.
282).

3 2D Lognormal Diffusion Random Field We will consider in the following develop-
ment {X(z):z€ I =1[0,5]%x[0,T]} to be a positive-valued 2D Markov RF with a.s. con-
tinuous sample paths, where X (0,0) is a constant or a lognormal random variable with
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E[InX (0,0)] = mg and var (In X (0,0)) = o2. We suppose that there exist @ and B,
continuous functions in I, such that the transition densities are given by

2
.2+ (b F) | 7.2) - 1 (1) s
\Z , T,2) = —————exp{ —= ,
7 onot k) D) 2 o (z k)

(4)

forz=(s,t) €I, h,k>0,T=(z1,z,22) € R3, y € Ry, and

s+h s+h
m (z; h, k) / / a(o,7)dodr, zhk / / B (o,7)dodr.

The RF {Y (z): z € I} defined as Y (z) = In X (z) has a transition density given by
(1). Therefore, {Y (z) : z € I} is a Gaussian diffusion RF, with @ (z) and B (z) being the
drift and diffusion coefficients, respectively. Thus, we can conclude that {X (z) : z € I} is
a lognormal RF. We will prove next that it is also a diffusion RF.

We denote a1, as, B; and B, the one-parameter diffusion coefficients of Y and ¢;, ¢ and
d its mixed diffusions coefficients. Using the results of the previous section we can conclude
that

a (s,t) = /Od(s,T)dT, By (s,t) = /B(s T)dr, (s,t) €1,

as (s,t) = /Sd(a,t)da, (s,t) :/ B (o,t)d (s,t) €1,
0
¢1(s,t) = & (s,t)zd(s, t) =0, s,t) €

On the other hand, denoting a1, a2, B1 and Bs the one-parameter diffusion coefficient for
X, we have

ay (z)x = (dl (z) + %Bl (z)) x, B (z) 2% = B, (z) 22,
(5) 5 N

as (z) x = (a2 (z) + 1B, (z)) z, By (z)a?= B (z)a?

and the infinitesimal moments of order larger than two are all null. In fact,

E[X (A} (2) | X (z) = 2]
h

(E [ey(Ai(z)) |Y (z) = lnx} - 1)
(o[ E] -)
<exp {/S+§1 (0,t)do + %/S+%1 (o,t)do, } - 1) ,

using that Y (A}, (2)) is independent of Y (z), and the distribution of Y (A} (z)). Taking
the limit when h — 0,

Sy TR IIR

01 (2,2) = <a1 (2) + %Bl (z)> — za1 (z).

The proof is similar for the remaining coefficients. We can then conclude that {X (z) :
z € I} is a lognormal diffusion RF.



2D LOGNORMAL DIFFUSION RANDOM FIELDS 345

If we consider k =t and t = 0 in (4), the transition densities for the lognormal diffusion
RF {X (s,t) : s € [0, 5]}, t € [0,T] fixed, are given by

2
1 1 (In (%) —my(z;h)
,S+h|z,8)= ——o0——exp —= z ,

forz=(s,t) eI, h>0,z,y€ Ry, and

s+h s+h
my (z;h) = / ay (o,t)do, o2 (z;h) = / Bs (o,t) do.

Similarly, if we consider h = s and s = 0 in (4), the transition densities for the lognormal
diffusion RF {X (s,t): t € [0,T]}, s € [0, 5] fixed, are given by

2
1 1 (In(¥%) —ma(z;k)
syt +k|at)= ———exp{ —= E ,
9: (v | :1) y\/2m03 (z; k) P12 < o2 (25 k)

where z = (s,t) € I, k> 0, z,y € Ry, and

t+k t+k
ma (z;h) = / as (s, 7)dr, 0'5 (z;k) = / Bs (s,7)dr.
t t

3.1 Two-parameter diffusion coefficients Hypotheses I to IV stated in [14] hold (see
Appendix B) and applying Proposition 2.4 established in that paper, the two-parameter
diffusion coefficients for the lognormal and Gaussian diffusion RFs could be obtained in
terms of the one-parameter diffusion coefficients. That is, the two-parameter diffusion
coefficients of the lognormal diffusion RF {X (z) : z € I} are given by

a(z,x) = a(z)z, witha(z)= 8a(1%(z) +a1(z)az(z) = 8a;£z) + a1 (z)az (2)
B(z,x) = B(z)z? with B(z) = aBét(z) + B (2) Bs (2) = aB;S(Z) + By (2) Bs (2),
c1(z,2) = ¢ (z)2?, with ¢ (z) = as (z) By (2),

co(z,2) = co(z)a®, with ca(z) =a1(2) B2 (2z), and

d(z,x) = d(z)2®, with d(z) = B;(z) Bz (z),

and the two-parameter diffusion coefficients of the Gaussian diffusion RF {Y (z): z € I}
are given by

i(5,9) = (2) = a(2) ~ a1 (2) 02 () — 3 [B () ~ B (2) B ()],
(7) B(z.y) = B(2) = B(2) — By (2) B (z), and

3.2 Moments of the 2D lognormal diffusion RF The moments of a 2D lognormal
diffusion are useful in the derivation of the forward equation. We can calculate them using

the moment generating function of the Gaussian diffusion RF. Denoting zo = (so,%0),
z = (s,t), X (20,2) = (X (s0,t), X (z0), X (s,t0)) and Y (z¢,2) = (In X (so,t), In X (zo),



346 GUTIERREZ R. AND ROLDAN C.

In X (s,tp)), and using that the distribution of Y (z) = In X (z) conditional to 7 = (y1,y, y2)
is N (Mg, 2 (), 0% (20,2)) , with

s t ~ 1T s t _
Mo 2 (J) = y1+y2—y+/ / a(a,T)dadeln( )—l—/ /a(a,T)dadT,
so Jto Z so Jto

s t
0% (z0,2) = / / B (0,7)dodr,
so Jto

we have

E[X*(2)| X (20,2)] = E [eklmz) | X (20, z)}

®) = [X(sog)é)(s’to)rexp{k/S: /t:a(a,T)dadTJr%QL:/t:B(a,T)dadT}.

3.3 SPDE for the 2D lognormal diffusion RF Hypotheses I to V stated in [14] hold
(see Appendix B). Therefore we can apply the Theorem 2.8 established in that paper to
obtain the SPDE for X and conclude that there exists a 2D Wiener RF {W (z) : z € I}
(adjoining, if it is necessary, a new probability space) such that the lognormal diffusion RF
{X (z) : z € I} is the only diffusion RF satisfying the following SPDE:

82Xst 8Xst 8Xst 8&2 (S,t)

— _1 —
950t #) 5 o s st
(0B, (s,1) V2 0PWa
= (T + Bl (S,t) BQ (S,t)) XStm.

The uniqueness of the solution is the result of observing that {X (z) : z € I} is a bijective
transformation (X (z) = expY (z)) of a diffusion RF {Y (z) : z € I} which satisfies a SPDE
with a unique solution (see the proof of Theorem 4.3 of [12]).

3.4 Kolmogorov’s forward-backward equations for the lognormal diffusion RF
In this section, for a 2D lognormal diffusion RF, the Kolmogorov’s forward equation is
obtained and the Kolmogorov’s backward equation is given (see [17] for diffusion processes).

Proposition 3.1. The transition densities of the lognormal diffusion RF {X (z) : z € I’}
satisfy the following Kolmogorov’s forward equation:

T =) 289 4y ) T ) T i T,
where p; (z) are given by
pie) = —az) = 22 o Gas (a),
u2(z) = a1(z)as(z)+ % <5‘B({)17t(z) + B (z) By (z)) + a1 (z) B2 (z) + B1 (z) a2 (z) ,
pslz) = —3a1(a) B () = 5B (2)az (2) — Bu (2) B (a).
pa(s) = 2Bi(z) Ba(n).

Proof See Appendix C.
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In a similar way, the Kolmogorov’s backward equation can be obtained for a 2D lognor-
mal diffusion RF.

Proposition 3.2. The transition densities of the lognormal diffusion RF {X (z) : z € I}
satisfy the following Kolmogorov’s backward equation:

P9 (00 09 09
dso0ty ! ox 18x1 28x2
0%g 02 02 0%g 0%g
A\ 2079 2079 2079, 9
A {x Freld 0xr? T 03 e 0r0z: A 83:8@}
&g 2 »yg s O 2 o '
A A A A
A s T g, T g T G s
where
_ 1~ 1 -
A = a (Zo) —+ §B (Zo) s Ay = EB (Zo) ,
- t 1 [t .
A3 = B(z)+ d(so,T)dT—i——/ B(SO,T)dT>
to 2 to

x (/S:d(a,to)da—i—%/sjé(a,to)da),
%(/t:B(so,T)dT> </S:d(a,to)da+%/8:3(a,to)d0>a
N %(/jé(a,to)da> (/t:d(SQ,T)dT—i—% t:B(so,T)dT),

Ao = i (/;EB(SO,T)CZT> </S:B(a,to)da).

4 Conclusions In this paper, we give the theoretical formulations for a 2D lognormal
diffusion RF based on the definition of diffusion RF introduced by [14]. Such a model can be
useful to describe, predict and simulate real phenomena like transport of pollutant agents
in environmental studies.

This investigation is continued with the study of techniques for estimation and prediction
of 2D lognormal diffusion RFs, using exogenous factors in the formulation of the drift and
the diffusion coefficients (see [7]). An extension for a 2D lognormal diffusion RF with non-
constant values at the boundary axes (see [8]) is also under consideration. The investigation
is also addressed to introduce spatio-temporal formulation in this context.

A=

Acknowledgement We are grateful to the referee for his/her constructive comments which
lead us to improve the final version of the paper. This work has been partially supported
by project MTM2005-09209 of the DGI, Ministerio de Educacién y Ciencia, Spain.

Appendix

A Proof of Theorem 2.1 It is clear that {X (z) : z € I} is a diffusion RF. Let (s1,%1),
(82,t2), «os(Sn,tn) € I, with 81 < 590 < ... < s € [0, 5], t1,t2, ..., tn € [0,T]. We next prove
that the distribution of (X (s1,t1),X (s2,t2),..., X (sn,tn))T is Gaussian, by induction on
n := cardinal {s1, $2,...,8n}. f n = 1, then s; = s = ... = s, := s and the result is
straightforward from the one-parameter case. If n = 2, then the random vector has the
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form (X (s1,t1),..., X (s1,t5), X (s2,tj41), ... X (s2,tn))". We will suppose t1 < ... < tj
and tj41 < ... < tn. We denote hy := sp — sp—1, kp =1, —tp—1, p=2,..,n. For
simplicity, when n = 2 we denote h := s3 — s1. The characteristic function of the random
vector (X (s1,t1), .., X (s1,t5), X (82,tj41), ..., X (S2,t,))7 is given by

E |:ei(U1X(Sl ,t1)+“.+7J,jX(Sl,tj)+Uj+1X(Sz,tj+1)+...+u”X(Sz,tn)):|

= FE |:ei(u1X(51,t1)+H.+qu(sl,tj)+uj+1X(sz,tj+1)+“.+un,1X(sz,t”,l))

iup X (s2,tn 2
XE e ( 2,0 ) |S(1317tn_1) \/S(Sl,tn—l):H

E |:ei(u1X(sl,t1)+...+qu(sl,tj)+uj+1X(32,tj+1)+...+(un_1+un)X(32,tn_1))

Xei(’U«nX(Sl tn)—un X (51,tn—1))

X [t XS Gt | (s, t1) , (52, 0))]
= E[eiun(xmhkn(sl,tn_n))}

< E |:ei(u1X(817t1)+~..+u]’X(Sl ti)Fuj 1 X (s2,tj01) 4 A (un—14+un) X (s2,tn_1))

% ei(unX(sl,tn)—unX(sl,tn_l))} ’

where we have used that {X (z): z € I} is a Markov RF and that X (Apg, (s1,t5-1)) is
independent of X ((s1,tn—1), (S2,tn)). Repeating the previous calculations n — j — 2 times,
we can obtain

E |:ei(u1X(sl,t1)+...+'u,jX(sl,tj)+uj+1X(32,tj+1)+...+uﬂ,X(sn,tn))i|
- E {emn(xmkn(sl,tH)))} E [ez‘(un+un71>X(Ahkn,1(smnfz))}
< B |:ei(un+~~~+uj+2)X(Ahkj+2 (Slvtj+1)):|
<E {ei(ulx(Sl»t1)+~~+qu(517tj)+(uj+1+~~+un)X(527tj+1)*(uj+2+~~~+un)X(Sl»tj+1))
Xei(unX(Sl7tn)+un—1X(81,tw,—1)+.--+u,~+2X(sl,tj+2))}
- E {eiun(X(A;Lkn(sl,tn_l)))} E [ei(un-i-un_l)X(Ahkn_l(sl,tn_Q))}
«E [ei(un+~--+uj+2)X(Ahkj+2 (817tj+1))}
xE {E [ei(ulx(slvt1)+~--+qu(Slatj)+(uj+1+...+un)X(s2,tj+1)—(uj+2+..4+un)X(sl,tj+1))
et (un X (s1,tn)Fun—1X (s1,tn 1)+ Fujs2 X (s1,t542)) | 3%3170) v 3531,0)”

- E {emnmmkn<51,tn71>>>} E [ez‘(uﬁum>X(Ahkm<517tn—z>)}
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< E |:ei(un+--<+uj+2)X(Ahkj+2 (Slatj+1)):|

< E [ei(ulX(Sl7t1)+~--+qu(Sl,tj)+uj+1X(817tj+1)+uj+2X(Slatj+2)+--~+unX(Slatn))

< E |:ei(uj+1+...+un)(X(327tj+1)_X(Sl7tj+1)) | X (817 thrl)H

- E [eiun(X(Ahk”(Sl,tn—l)))} E [ei(un-i-un—l)X(Ahkn_l(Sh%-z)) L
B [ttt X (B orts)) | p [ttt (XA t200)]
NSO [ei(ulX(Sl7t1)+~--+qu(31,tj)+uj+1X(817tj+1)+uj+2X(Slatj+2)+--~+unX(81,tn))}

Using the expressions of the characteristics functions for the increments, applying the case
n = 1 and taking into account that ¢; < ... <t; and ¢4 < ... < ¢y, it is easy to conclude
the result. When cardinal {s1, $2, ..., Sn} = n, there exists a single point with coordinate
sn, on the axis OX, that we have denoted (s, t,). In this case the characteristic function of
(X (Slatl) 7X (82,t2), 7X (sn;tn))T is

E |:ei(u1X(81,t1)+.--+un—1X(Sn—17tn—1)+Un,X(S7utn))

- E [E [ei(ulX(:ﬂ7t1)+...+un—1X(sn—17tn_1)+unX(sn,tn)) | &% 0 \/S% 0)”
Sn—1, Sn—1,

E [ei(mX(sl,t1)+...+un_1X(sn_1,tn_l)+unX(sn—1,tn))

< E |:eiun(X(sn,tn)fX(sn,l,tn)) IX(an,tn)H

E [emnx(Ain(snfl,m)} E [ei(u1x<51,t1>+...+un71X(sn71,t,,H>+u,,LX(sn71,t,n))}

where we have used the fact that {X (s,¢) : s € [0, S]} is a Markov process and that X (A}, (z))
is independent of X (z). Finally, using the expression of characteristic function of the incre-
ment, applying the induction hypothesis and taking into account that s; < s < ... < sy,
we can deduce that the distribution of (X (s1,t1), X (s2,t2) ...y X (8n,tn))T is Gaussian.

B Hypothesis I to V stated in [14] hold For obtaining the two-parameter diffusion
coefficients in terms of the one-parameter diffusion coefficients, it is necessary to prove the
hypotheses I to IV stated in [14]. And for obtaining the SPDE for a 2D diffusion RF an
extra hypothesis, hypothesis V stated in [14], is also needed. In this appendix we prove
that a 2D lognormal diffusion RF satisfies these hypotheses. The proof for the Gaussian
diffusion RF can be carried out in a similar way. Here, the distribution function of the law
N (0,1) will be denoted by ®.

Hypothesis I holds: Tt is obvious that a1, as, B1 and By have continuous partial deriva-
tives with respect to s and ¢t and are fourth continuously differentiable in x. Thus, the
hypothesis I holds.

Hypothesis II holds: We prove that the condition

/ g (o5 +h | ,5)dy = o ()
ly—z|>e
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is satisfied uniformly with respect to (s,t) € I. Indeed,
fane) = [ gl e s)dy = PX (8] >< | X () =2]
— PIX(AL@) << | X(@) =]+ P[X (A} (2) >¢ | X(2)=1]
= P{Y(A}L(z)) §ln<1—§)} —l—P[Y(A}L(z)) Zln(l—f—%) ]

— 140 <ln(1‘§) —m (Z;h)> e <ln(1+§) —m (z;h))

o1 (z; h)

where we have used that 1 — £ > 0, since |y — x| > €, Y (A}, (2)) is independent of Y (z),
and the distribution of Y (A}, (z)). Since the functions my, o1 and @ are continuous in a
compact I, there exists z; € I such that

max Jein (2) = fein (21) = 0 (h).

The condition f\y—x|>e gs (y,t + k| x,t) dy = o (k) can be similarly proved to hold uniformly

with respect to (s,t) € I.
Let us now consider

ff;h,k (Z) = / g(ya (S+h7t+k) | (xlaxva)a(Sat))
ly—x1—z2+2|>E

gt (2,8 +h|x,8)gs (x1,t + k| x,t) dr1dzedy
PIX (Apk (2))] > | X (z) = 2].

Since §, C 3; \Y, 53,
Pl X (Apk(2)>e| X (2)] = PIX(Ank(2)|>e| Tl
= E[P[|X (A (2)|>c|FV32] | a-

Taking into account that Y (Apx (z)) is independent of Y (z, (s + h,t + k)), the distribu-
tion of Y (Au (2)), the distributions of X (A} (z)) and X (A} (z)) we have, after some
simplifications,

eo1(zih)utmy(z;h) goo(z:k)utma(zk) o

fepr =1+ /Rz 02 (z; h, k)

o1(z;h)ut+mq(z;h) oo (zik)utma(z;k)
In (”“" Ll ””) —m (z; h, k)
P

_ o1(z;h)ut+my (z;h) oo (zik)utma(z;k)
In ( S L ””) —m (z; h, k)
(0]

eo1(zih)utmy(zh) goa(z:k)utma(zk) p

o2 (z;h, k)

w2402
e 2 dudv.

Therefore, fe.n 1 (2) is continuous in the compact I, and hence its extreme values lie in I,
that is, there exists z; € I such that maxzer fe.nk (2) = fe.nk (21) = o (hk) . This completes
the proof of hypothesis II.

Hypothesis III holds: (a) To establish the inequality

(10) V | <y—x>gt<y,s+h|x,s>dy+/ s ) dy <
y—z|<e y—x|<e
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we will find a bound for each integral separately.
(a.1) Using the transition densities, making the change of variable u = In (%), we have

/| ekl d
y—x|<e

B 1 (y—x)e 1 In (¥) —my (z;h) ?

B \/%01 /yz|<6 Y Xp{ 2( 01 (Z;h) ) }dy
B x In(1+5) u 1 (u—mq(z;h) 2

© V270w /ln(li) (e _1)exp{_§( o1 (z;h) ) }du
B x In(1+£) 1 fu—m(z;h) 2

B V2moy /ln(li) exp{u—§< o1 (z;h) ) }du

=z /1n(1+i)exp{_l <
V2701 Jin(1-2) 2

= [exp{a% (;;h) + mq (Z;h)}

y {@ (m (1+£) — (mi (z;h) + 03 (z;h))>

o1 (z; h)
% In(1-2%)— (m1(z;h) + 07 (z;h))
o1 (z; h)
3 In (14 <) —my (z;h) B In(1-£)—my(z;h)
{‘I’< 7 Gl ) ‘I)( 7 i) )H
Since
o (MR lplen) ) _ g (nU)lmiepecien)) o

we obtain

<z exp{@ +my (Z;h)} + fa,e (h) — 1‘

‘/ (y—2)g:(y,s+h|xs)dy
ly—z|<e

o

Applying the Mean Value Theorem to exp {@ +mq (z; h)} and f, (h), and using

exp{@ +m (Z;h)} - 1‘ + | fz,e (h)|) -

2
. o1 (z;h) . _ : _
}llli% exp { 5 +mi (z; h)} =1 and ;ILIE%) fze(h) =0,
there exist constants {7 and [§* such that

2¢(,.
‘exp{w +my (z;h)} — 1‘ <lih and |fze(h)] < "h.
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Therefore,

(11) ‘/ (y—2)g:(y,s+h |z s)dy| <wz[lTh+I"h] = I2h.
ly—z|<e

(a.2) To find a bound of the integral we make the change of variables u = In (£):

/l - (y—2)° g (y,s+h|xs)dy
y—zx|<e

B 1 (y —x)° 1 (In (%) —my (z;h) ’
[l )y

V2roy
il e el )
(i) u—m (b))’

o L 3 (SRR
) el R
o [ (e

1 (u—mi(zh)\> B 1 (u— (m1(z;h) + 207 (z; h)) ?
2u—§< o1 (z; h) > - _§< o1 (z; h) )

N———

Using

+0% (z;h) + 2my (z; ),
the previous results, and applying the Mean Value Theorem to the next functions:
exp {0 (z;h) 4+ 2my (z;h)} — 1

and

exp{a% (;;h) oy (Z;h)} l‘b <1n (1+2) —mq (z;h) + 03 (z;h))

we conclude that there exists a constant 3 such that
(12) [ -0 atus+hlosdy<hn
ly—z|<e

Finally, linking (11) and (12), we have that for every compact K C R, and for every
x € K, there exists a constant I’ = I3 + I3 such that (10) holds. Similarly, it can be proved
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that there exists a constant " such that

/ p (y—x)gs (Y.t + k| x,t)dy
y—x|<e

—l—/ (y—x)gs (g, t+k |z, t)dy < 1"k
ly—=|<e

(b) If K is a compact of R, there exists n such that K C |—n,n[. Take ¢ = ¢+ n and let =
be such that |z| > ¢. Then

P/ (K,s+h|x,s) P X (s+ht)e K | X(z)=x]
P(X(Ah(z) €K -z | X(2)=a1]

PHX(A}L(Z))‘ >e | X(z)=x].

IN

Therefore, there exists a constant I* (see the proof of hypothesis II) such that
sup P} (K,s+h|z,5) <I*h, V(s,t)€l.

lz|>c
Similarly, there exist another constant [** such that

sup Py (K, t+ k| x,t) <1k, V(st)el.
|z|>c

Finally taking ¢ = e+ n and | = max {I’,1”,1*,1**} we conclude the proof of hypothesis III.
Hypothesis IV holds: Defining
X (A}, (2)), =X (8, (2)) 1 x (a1 ()| <2}
and using the Jensen’s inequality, we have

Ve (z3h, 2,8, 7) =
= |E[X (A5 (5,7) X (AL (s,8) | X (s,8) = 2, X (s,7) = £]|
< E HX (A}L (S,T))EX (A}L (s,t))€| | X (s,t) =2, X (s,7) = §] )
Using now Schwarz’s inequality,
Ve (zihya,67) < (E[X2(AL(s,7), | X (5,8) =2, X (s,7) = €])"/*
x (B [X2 (Ah (5,0)). | X (s,t) = @, X (s,7) = €])"/?

— (E[X*(A} (7). | X (s,7) = €])"*

% (B [X2 (&) (5,1), | X (5,8) = 2])"/?
1/2
= (/ (52—5)297(52,8+h|§78)d§2>
[§2—¢l<e

1/2
x(/ <y—x>29t(y,s+h|x,s>dy>
ly—z|<e

1, , , 12 4 o \ 1/2
= (;01 (s,7;h) fe (s,7; )) (;0’1 (z;h) fe (z; ))

< Uh, forp < h,
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as can be checked by using the proof of hypothesis III-(a) with z = (s,¢) and z = (s, 7).
Thus, there exists a constant I’ such that, for all (s,t) € I and for all 7 € [0, ¢),

|E[X (A} (s,7)) . X (A} (s,1)) | X (s,t) =2, X (s,7) = ]| <UD
Similarly, there exists a constant I” such that, for all (s,t) € I and for all o € [0, s),

|E[X (A% (0,1))_ X (A% (s,1))_ | X (s,8) =2, X (0,t) = ]| <"k
Taking ! = max {I’, I} we conclude the proof of hypothesis IV.

Hypothesis V holds: a) Clearly, the coefficients By and By are twice continuous diffe-
rentiable with respect to x and have continuous derivatives with respect to s and ¢. b) Let
us show By (s, t,7,2,8) = %Bl (s,7,€). In fact,

/acQ—x|§6 (xQ - CL‘) (52 - g)g (an (S + ha t) | (xag,éé) ) (S,T))gT (527 s+h | 57 S, ) dl’gdfg
|§2—¢[<e

= [ @-9u s thlgs)d
[§2—€|<e

o (22£) _m
’ (~/|:1:2x<5 (w2 =) $2U]\-/% o {_% (%> } dfc2)

where we have written m := and o := o (z;h,k) for simplicity. Making the

k)
change of variable u = & ( 5 ) and denoting

o

)
u12_§<ln<(1—§)é>_m>, U2:_§<ln<<1+§)é>_m>7
we obtain
e _
/|“’2x<s (22 =) xzalx/ﬁ oxp {_% (M) } dxg

uo+m 19
e ()
™

v K%jﬁ ew—éuzdu> (D (uz) — ‘I)(ul))}

- K%em“f (@ (ug — 0) — ® (ug — a)}> — (P (uz) — B (ul))} .

Therefore

B (s,t,7,2,6) = }{%h/ o (fg m+ % {® (ug — o) — ‘b(ul—a)})

— (P (u2) — @ (u1))] (&2 — &) gr (2,8 + R [ €, 5,) da.

Since limy,_.qgu1 = —o0 and limy_,q us = +00,

B (s,t,7,2,) = lim — / e [——1] (&2—&)gr (&2, s +h &, s,)dE

h—0 h

mlf (62— )2 g, (Ears+ 1| &5,)dEs = “By (s5,7.6).
|<e I3

Ty
fh:oh
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Similarly it can be proved that B, (s, t,o,x,m) = %BQ (o,t,7m).
¢) Finally it is clear that

tl{n By (s,t,7,2,8) = By (s,7,£), liin By (s,t,0,x,1) = By (0,t,1),
T S Lo}
r—& T—n

and hence hypothesis V holds.

C Proof of Proposition 3.1 Let zg = (s,t) and z = (s+ h,t + k). The equation will
be derived in five steps.

Step 1: 0%g (y,z | T,20) | OsOt exists and
%9 (y,z | T,z0) lin Bk (9 (9,2 | T, 20))

1 =
(13) 0sot h,/lgo hk ’
where
Apg (g (y, z | T, ZO)) = g (ya z/ | T, ZO) -9 (ya (s +h, t) | T, ZO)
(14) -9y, (s,t+ k)| T,2z0) +9(y,2 | T,20) .

Step 2: Let R be an arbitrary C° (infinitely differentiable) function with compact
support. Multiplying both sides of the equality (13) by R (y) and integrating with respect
to y, we have

Ank (9(y,2 | T, 20))
1 CIE LT gy — i
(15) W T =, fo, W) Ik

Step 3: Let us define

¢ (z) = E[R(X (2)) | X (20,2) = T :/R R(y)g(y, 2| T, 20)dy.

dy.

Equation (15) can be written as

PolyalT), 1
[ R Ty (e~ (s )~ p (st )+ o),
(16)
with
ols+ht)—p(s,t+k)+p(z)=
/R )92 [T 30)dy’ = [ R(ue) g (o s+ hot) | 7,20) doe
R

—/ Rpn) g, (5.t + k) | Tozo)dys + [ R(y)g vz | Toz0) dy
R, R,

O[] 062 L) 29 s 1.8) | ) (5. 0)
xg (Y1, (s,t+k) | (x1,21,9), (50,1)) g (y, 2 | T, 20) dy2dy1dy]dy’
) /R 0 (2 (5 + ht) | (4,22,22) , (5,10)) g (4% | T 20) dy]dys

=

|
TS TS A
=

+

() | /R (1, (5.t 4+ k) | (21,21,9) » (50,8)) 9 (9,2 | . 20) dyldyn

+

(17) + | R(y)g(y,z|T,20)dy.

+
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where we have used Chapman-Kolmogorov’s equations (see [14] and [15])

Step 4: Now, using the above expression of the increment ¢ (z')—¢ (s + h,t)—p (s,t + k)
+ ¢ (z), the Taylor expansion of the function R and the binomial expansion we obtain a
general expression of the forward equation (Kinetic forward equation). We will calculate
the coefficients of this expression in step 5.

The function R is C*°. Applying the Taylor expansion of this function, simplifying the
term fR+ R(y)g(y,z | T,2z0)dy and using the binomial expansion, we obtain

p(2) =@ (s+ht)—p(st+k)+o(z)=

- ni/m V//Ri Wg(y’,#l(yhy’yz),@

xXg (y27 (3 + h7 t) | (yvaa 1‘2) ) (S,to))
Xg (ylv (Svt + k) | (:L'la xlvy) ) (So,t)) ddeyldy,

B /R %g (yo. (s + o t) | (g, 22,2) , (s, to)) dyz

R(n) (y) g (ya z | T, ZO) dya

_/ W (g s+ 8) | (@120,0) 50, 8) i

R+
8= Y [t @ 0" B g 0 | 7o)

where

W) = Z%[///R (%) o 1))

xXg (y27 (5 + ha t) | (yvaa x2) ) (S,to))

Xg (ylv (Svt + k) | (xlvxlvy) ) (So,t)) ddeyldy,

- (y—) 9 (y2s (5 + hut) | (o2 w2) (5, 10)) e
R, \Y

(19) - /R (%) 9 (g1, (5,04 F) | (2n21,9) (50, 8)) dyn

Therefore, substituting (18) in (16), we have

o0

@) [ ) TEEE TS S 0 [ R )y @) g |0

n=1 R

where

bk
o k" (2)
(21) pin (2) = T =50
Integrating by parts in the right-hand side of the inequality (20) and using R*) (£00)

= 0, we obtain

%9 (y,2 | T, 20) 0" (y"g (y,2 | T,20))
R(y) =202 1020 g, R > pin (2 dy.
R, ) D50t 4 R, ) nzl“ (2) oy Y




2D LOGNORMAL DIFFUSION RANDOM FIELDS 357

Since R is an arbitrary function, finally we have

9 (y,z|T,20) 0" (y"9 (y,2 | T, 20))
(22) T - nz::l,ufn (Z) ay

Step 5: Next, we calculate p, (z) using the conditional moments given in (8).
First, substituting (19) in (21)

fin (z) = hlirfo%g%[///@ (%)ig(y',Z'l(yl,ywz),Z)

Xg (y27 (3 + h7 t) | (yvaa 1‘2) ) (S tO))
(ylv(svt—’_k) | (:L'l;xlv )a( S0, ))ddeyldy/

< 2>zg<y27<s+h,t> | (g2, ), (5. 10)) i

2
Y
(%) g (y17 (3’t+ k) | (xla l‘l,y) ) (507t)) dyl

_/R+
_/R+
(-1)"
(23) = hkﬁoﬁzm[/‘ B-0].

where A, B and C denote the corresponding integrals. To calculate A, we use the definition
of conditional expectation and (8):

A = ///Ri (%) g7 | (y1,9,92),2) g (y2, (s + h,t) | (y,z2,22),(8,t0))
Xg(yla (S,t-l— k) | (xlaxlay) ) (So,t)) dygdyldy’
J], [ @) X ) =0 X ) = 9 X 55 ) =

2y
Xg(yQa (s+h t) | (yax27x2) ( ))
xg (y1, (s, + k) | (z1,21,9) , (s0,1)) dyadyr

= exp {/M /t+k ( )+ %B(a, T)) dadr}

Y2

<[ + <5> 9o (5 + b 1) | (9,22, 2) , (5, t0)) s

/ (%)ig@l,(s E+ ) | (21,31,9)  (50,)) dys

s+h pttk 2
exp{/ / ( UT+2B(UT))dUdT}><B><C’.

Then, we need to calculate B and C first. Using (8),

(25) B =exp {[M /t: <z’& (o,7) + é[} (o, 7)> dadT} .
20 { [ [ (aen+ 55 0) dm}.

(24)
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Substituting (24), (25), and (26) in (23), we obtain

o) = WZ%[{ [ /t*k( 0.1+ 2 B0 W}
{ [ [ (a0 + 2800n) dm}
con [ [ (aterr)s §hien) anir )

{ [T (e + B(m)dm}
o) con{ [ [ (st 5 arar ]

On the other hand, we can write

N>|N

/ta(a,f)dT — i (oot) —ar (0,t0), /B(O,T)dT:Bl(o,t)—Bl(a,to),

to

/8&(077')(10 = ag(s,7)—az(so,7), /SB(U,T)dO':BQ (s,7) — Bz (s0,7) .

S0

Since X (s,7) is constantly equal to z1 when 7 € [t,t + k|, and X (o,t) is constantly equal
to 3 when o € [s, s + h],

aél(g;té)o))::% } when o € [s,s+ h],
B2((5507 )):OO } when 7 € [t,t + k],
2\80,7) =
and then,
s+h gt 2 s+h 2 _
/ / (id (o,7) + EB (o, T)> dodr = / (zal (0,t) + =B (o, t)) do,
s to s
s pt+k i2 . t+k 2
/ / (z‘d (o,7) + EB (o, T)> dodr = / (idg (s,7) + =B2 (s,7’)> dr
so Jt t

By the Taylor expansion,

(7). = Z%@,ﬂk{ 1+[( @+ 550)
(28) +<id1(z)+%]§1(z)> <za2 ! 32 )]hk‘+0 hk}

Using now

" —1i 1 < /n i 1 .

1=
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taking limit in (28) and substituting the expressions of a; (s,t), a2 (s,t), By (s,t) and
Bs (s,t), given in (5), and the expressions of a (s,t) and B (s,t), given in (7), we have

z—n(_il)iidz f~z 101 (z iNZ 1ao (Z ﬁ~z
) = 3 gy i+ 5B+ (i) + 5hu ) (i) + 5B
i=1

It is easy to obtain (9) and, for n > 5, u, (z) = 0, because

oGl _ S VA
) o Ty T E D D e s s TRl

i=1 ’

=1

(=) i(i—1 " (=1 iGi—-1)G—1
Z(' )l( 5 - ;( (3—(1)!(n)—(i)!)
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