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REGULARITY AND EXHAUSTIVITY

FOR FINITELY ADDITIVE FUNCTIONS.

THE DIEUDONNÉ’ S CONVERGENCE THEOREM
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��������� In this note we state an extension of a Cafiero’s criterion and some Dieudonné
convergence type theorems for semigroup-valued finitely additive functions by means of the
relationships between regularity and exhaustivity.

1. Introduction

A classical theorem of Dieudonné [20] states that a sequence of regular measures on
a compact metrizable space, which converges on open sets, converges on all Borel sets;
moreover the measures are uniformly regular.

As observed in [1], the development within the so-called area “Topology and Measure”
led, in the eighties, to investigate possible extensions of Dieudonné’s result in more general
setting, respect to the algebraic-topological structure of the domain of the measures as well
as respect to the range and the properties of them.

Of the huge range of literature concerning the generalizations of the previous theorem,
here we confine our attention to some contributions related to finitely additive regular
functions, e.g. [23], [30], [1], [6], [3], [5], [12], [29].

In the seminal paper [12] C. Constantinescu introduced an algebraic notion of regularity
apart from topological assumptions (see also [5]) which suggested a new approach to the
problem, characterized by a close examination of the relationship between exhaustivity and
regularity, e.g. [33], [13], [9], [32], [26], [27], [25].

Recently, some authors have been concerned again with Dieudonné convergence type
theorems as well as with the concept of regularity in different context (see, for example,
[18], [7], [28], [4], [11], [2], [10], [19]), even connecting these convergence results with a
uniform exhaustivity criterion due to F. Cafiero [8].

In this note, starting from the contributions in [9], [27] and [19], we deal with the study
of the relationship between regularity and exhaustivity. Subsequently, once established an
extended version of Cafiero’s criterion, we obtain a Dieudonné ’s theorem for a sequence of
uniform semigroup-valued finitely additive regular functions defined on an algebra of sets.
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2. Basic Definitions and Auxiliary Results

Let X be a non-empty set and let A be an algebra of subsets of X . Let F and G be,
respectively, a join semilattice and a meet semilattice of subsets of X , both contained in A
(viz, non-empty families of elements of A closed, respectively, under finite unions and finite
intersections), such that F∗ := {X \ F | F ∈ F} ⊆ G.

Moreover, let S = (S,+, 0, U) be a complete Hausdorff uniform abelian semigroup, i.e.
(S,+, 0) is a commutative semigroup with neutral element 0, [S, U ] is a Hausdorff uniform
space and the function (x, y) → x+ y is an associative, uniformly continuous mapping from
[S × S, U × U ] into [S, U ].

We just recall that in this case the uniformity U can be generated by a family P of
semi-invariant continuous [0, 1]-valued pseudo-metrics on S (where a pseudo-metric p on S
is semi-invariant if p(x + z, y + z) ≤ p(x, y) for every x, y, z ∈ S). We refer the reader to
[31], [21], [34], [35] and [36] for more details.

In the following we denote as U [0] the set of the uniform neighbourhoods of the neutral
element 0 ∈ S of the form U = {s ∈ S |(s, 0) ∈ U∗}, where U∗ ∈ U .

A set function µ : A → S is called inner F -regular (briefly F -regular) in H, H ⊆ A, if for
every A ∈ H and for every U ∈ U [0] there exists F ∈ F such that F ⊆ A and µ(Y ) ∈ U , for
any Y ∈ AA\F , where AA\F is the trace of A on A \ F i.e. AA\F := {Y ∈ A : Y ⊆ A \F}.

First we show

Proposition 2.1. If µ : A → S is F -regular in A, then for every A ∈ A and for every
U ∈ U [0] there exists G ∈ F∗ such that

(2.1) A ⊆ G, µ(Y ) ∈ U ∀Y ∈ AG\A.

Proof. Let A ∈ A and U ∈ U [0]. Since µ is F -regular, there exists F ∈ F such that

F ⊆ X \ A, µ(Y ) ∈ U ∀Y ∈ A(X\A)\F .

It follows that G := X \ F belongs to F∗ and satisfies (2.1). �

Because of the lack of duality between F and G, the converse of the previous proposi-
tion does not hold in general. But we do have the following result which gives a useful
characterization of finitely additive F -regular set functions.

Proposition 2.2. Let µ : A → S be a finitely additive function. Then µ is F -regular in A
if and only if for every A ∈ A and for every U ∈ U [0] there exist F ∈ F and G ∈ F∗ such
that

(2.2) F ⊆ A ⊆ G, µ(Y ) ∈ U ∀Y ∈ AG\F .

Proof. Let A ∈ A and U ∈ U [0] be given and consider V ∈ U [0] such that V + V ⊆ U . If
µ is F -regular, also for Proposition 2.1, there exist F ∈ F and G ∈ G such that

(2.3) F ⊆ A ⊆ G, µ(Y ) ∈ V ∀Y ∈ AA\F , µ(Y ) ∈ V ∀Y ∈ AG\A.

Since any Y ∈ AG\F can be express as disjoint union Y = Y ′ ∪ Y ′′, with Y ′ ∈ AG\A

and Y ′′ ∈ AA\F , (2.2) follows from the finitely additivity of µ. The other implication is
trivial. �

In the following we require F and G to satisfy the following “separation property”:
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(P) for every F ∈ F and G ∈ G such that F ⊆ G, there exist E ∈ G and H ∈ F such that
F ⊆ E ⊆ H ⊆ G.

In this context, every finitely additive F -regular set function has the following further
property.

Proposition 2.3. Let µ : A → S be a finitely additive F -regular function. If (P) holds,
then for every U, V ∈ U [0], F ∈ F and G ∈ G such that V +V ⊆ U and F ⊆ G, there exist
E1, E2 ∈ G and H2 ∈ F such that

(2.4)

⎧⎪⎨
⎪⎩

F ⊆ E2 ⊆ H2 ⊆ E1 ⊆ G,

µ(Y ) ∈ U ∀Y ∈ AE1\F ,

µ(Y ) ∈ V ∀Y ∈ AE2\F .

Proof. Let U, V, F and G be as in the statement. Since µ is F -regular, according to
Proposition 2.1, there exists E1 ∈ G such that

F ⊆ E1, µ(Y ) ∈ U ∀Y ∈ AE1\F .

Being G (∩f)-closed, we may assume without less of generality that E1 ⊆ G.
Moreover, by the separation property (P), there exist E′ ∈ G and H ′ ∈ F such that

F ⊆ E′ ⊆ H ′ ⊆ E1 ⊆ G.

So, arguing as above, but with V and E′ in place of U and G, respectively, one can establish
the existence of E2 ∈ G, with F ⊆ E2 ⊆ E′, such that µ(Y ) ∈ V for every set Y belonging
to AE2\F . This completes the proof. �

3. Sequences in raF (A,S)

From now on, we employ the notation raF (A,S) to denote the set of all finitely additive
F -regular functions from A into S.

Moreover, let us recall that, if H ⊆ A, a function µ from A to S is said to be H-exhaustive
(briefly exhaustive if H = A) if limk µ(Dk) = 0 whenever (Dk)k∈N is a sequence of pairwise
disjoint sets from H. Then, a sequence (µn)n∈N of function from A to S is uniformly H-
exhaustive if limk µn(Dk) = 0, uniformly with respect to n ∈ N, for any disjoint sequence
(Dk)k∈N in H.

In this section we deal with the relationships between the uniform H-exhaustivity -when
H is F , G and A- and the uniform F -regularity of sequences in raF (A,S).

Lemma 3.1. Let (µn)n∈N be a sequence of raF (A,S). Assume that F and G satisfy (P).
If (µn)n∈N is uniformly G-exhaustive, then (µn)n∈N is uniformly F -regular in F , i.e. for
every U ∈ U [0] and every F ∈ F there exists G ∈ G such that

F ⊆ G, µn(Y ) ∈ U ∀Y ∈ AG\F , ∀n ∈ N.

Proof. Let U ∈ U [0] and F ∈ F be given. Let W and Vn, n ∈ N, be closed symmetric
elements of U [0] such that

W + W ⊆ U, V1 + V1 ⊆ W,
n+k∑

i=n+1

Vi ⊆ Vn ∀n ∈ N, ∀ k ∈ N.
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Since µ1 is F -regular in F , according to Proposition 2.1, there exists E1 ∈ G such that

F ⊆ E1, µ1(Y ) ∈ V1 ∀Y ∈ AE1\F .

Suppose to have already selected E2, · · · , En ∈ G and H2, · · · , Hn ∈ F such that

(3.1)
{

F ⊆ Ei+1 ⊆ Hi+1 ⊆ Ei ∀ i ∈ {1, · · · , n − 1},
for every i ∈ {1, · · · , n} : µj(Y ) ∈ Vi ∀Y ∈ AEi\F , ∀ j ∈ {1, · · · , i}.

By the F -regularity of µ1, · · · , µn+1, there exist E′
1, · · · , E′

n+1 ∈ G such that

(3.2) ∀ j ∈ {1, · · · , n + 1} : F ⊆ E′
j , µj(Y ) ∈ Vn+1 ∀Y ∈ AE′

j\F .

On the other hand, using (P), one can determine E′′ ∈ G and H ′′ ∈ F such that

F ⊆ E′′ ⊆ H ′′ ⊆ En.

Then, putting
En+1 :=

(
∩n+1

j=1 E′
j

)
∩ E′′, Hn+1 := H ′′

(note that the first one pertains to G since it is a meet semilattice), one obtains that

(3.3)
{

F ⊆ En+1 ⊆ Hn+1 ⊆ En,

µj(Y ) ∈ Vn+1 ∀Y ∈ AEn+1\F , ∀ j ∈ {1, · · · , n + 1}.

Thus it is possible to construct, by induction, two decreasing sequences of sets (Ei)i∈N

and (Hi)i∈N in G and in F , respectively, such that

(3.4)
{

F ⊆ Ei+1 ⊆ Hi+1 ⊆ Ei ∀ i ∈ N,

µj(Y ) ∈ Vi ∀Y ∈ AEi\F , ∀ i ∈ N, ∀ j ∈ {1, · · · , i}.

Now let us show that

(α) there exists io ∈ N such that: µn(Y ) ∈ W ∀Y ∈ GEio\F , ∀n ∈ N.

Suppose (α) to be wrong; then for every k ∈ N there exist Yk ∈ GEk\F and nk ∈ N such
that µnk

(Yk) /∈ U.
Since

µnk
(Yk) = µnk

(Yk \ Hi+1) + µnk
(Yk ∩ Hi+1) ∀ i ∈ N,

and Yk ∩ Hi+1 belongs to AEi\F , from (3.4) it follows that

µnk
(Yk \ Hi+1) /∈ V1 ∀ k ∈ N, ∀ i ≥ nk.

Hence, by induction, it is possible to construct two sequences of natural numbers (nkl
)l∈N

and (ikl
)l∈N, the second of them increasing, and a sequence (Ykl

)l∈N of elements of G such
that for every l ∈ N it results that

Ykl
⊆ Eikl

\ F, µnkl
(Ykl

\ Hikl
+1) /∈ V1,

but this contradicts the uniform G-exhaustivity of (µn)n∈N. Therefore (α) holds.
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Now let Y ∈ AEio\F . For every fixed n ∈ N, by Proposition 2.1, there exists Gn ∈ G such
that

Y ⊆ Gn, µn(T ) ∈ W ∀T ∈ AGn\Y ,

and, without less of generality, we may assume that Gn ⊆ Eio \ F .
Thus, denoted by p a continuous semi-invariant pseudometric on S generating U , since

p
(
µn(Gn), µn(Y )

)
= p

(
µn(Gn \ Y ) + µn(Y ), µn(Y )

) ≤ p
(
µn(Gn \ Y ), 0

)
,

it results that (µn(Gn), µn(Y )) ∈ W ∗ as well as, from (α), that (µn(Gn), 0) ∈ W ∗.
Hence (µn(Y ), 0) ∈ W ∗ ◦ W ∗ ⊆ U∗, i.e.

µn(Y ) ∈ U ∀Y ∈ AEio\F , ∀n ∈ N,

which completes the proof. �

Lemma 3.2. Let (µn)n∈N be a sequence of raF (A,S). Assume that F and G satisfy
(P). If (µn)n∈N is uniformly G-exhaustive, then for every U ∈ U [0], F ∈ F , and G ∈ G
containing F , there exist E ∈ G and H ∈ F such that

F ⊆ E ⊆ H ⊆ G, µn(Y ) ∈ U ∀Y ∈ AH\F , ∀n ∈ N.

Proof. By Lemma 3.1, there exists Go ∈ G such that

F ⊆ Go, µn(Y ) ∈ U ∀Y ∈ AGo\F , ∀n ∈ N,

and we can assume that Go ⊆ G. Then the assertion easily follows from the separation
property (P). �

Lemma 3.3. Let (µn)n∈N be a sequence of raF (A,S). Assume that F and G satisfy (P).
If (µn)n∈N is uniformly G-exhaustive, then (µn)n∈N is also uniformly F -exhaustive.

Proof. Suppose the contrary. Then we may assume, by passing to a subsequence if
necessary, that there exist U ∈ U [0] and a disjoint sequence (Ck)k∈N of sets in F such that

(3.5) µk(Ck) /∈ U ∀ k ∈ N.

Let V ∈ U [0] and (Vn)n∈N be a sequence of symmetric members of U [0] such that

V + V + V ⊆ U,

n+k∑
i=n+1

Vi ⊆ Vn ⊆ V ∀n ∈ N, ∀ k ∈ N.

Let Fn := ∪n
k=1Ck, n ∈ N; then (Fn)n∈N is an increasing sequence of sets in F .

From Lemmas 3.1 and 3.2, there exist E1 ∈ G and H1 ∈ F such that

F1 ⊆ E1 ⊆ H1, µk(Y ) ∈ V1 ∀Y ∈ AH1\F1 , ∀ k ∈ N.

In a same way it can be claimed that there exist E2 ∈ G and H2 ∈ F such that

F2 ∪ H1 ⊆ E2 ⊆ H2, µk(Y ) ∈ V2 ∀Y ∈ AH2\(F2∪H1), ∀ k ∈ N.

Since

H2 \ F2 ⊆ (
H2 \ (F2 ∪ H1)

) ∪ (H1 \ F2) ⊆ (
H2 \ (F2 ∪ H1)

) ∪ (H1 \ F1),
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any Y ∈ AH2\F2 can be written as disjoint union Y = Y1 ∪ Y2, with Y1 ∈ AH1\F1 and
Y ∈ AH2\(F2∪H1).

It yields that
µk(Y ) ∈ V1 + V2 ∀Y ∈ AH2\F2 , ∀ k ∈ N.

Suppose now to have already determined E1, · · · , En ∈ G and H1, · · · , Hn ∈ F such that
for every i ∈ {1, · · · , n} it holds

Fi ∪ Hi−1 ⊆ Ei, µk(Y ) ∈
i∑

p=1

Vp ∀Y ∈ AHi\Fi
, ∀ k ∈ N,

where H0 := ∅. Then, from Lemmas 3.1 and 3.2 again, there exist En+1 ∈ G and Hn+1 ∈ F
such that

Fn+1 ∪ Hn ⊆ En+1 ⊆ Hn+1, µk(Y ) ∈ Vn+1 ∀Y ∈ AHn+1\(Fn+1∪Hn), ∀ k ∈ N.

Since
Hn+1 \ Fn+1 ⊆ (

Hn+1 \ (Fn+1 ∪ Hn)
) ∪ (

Hn \ Fn

)
,

it follows that

µk(Y ) ∈
n+1∑
p=1

Vp ∀Y ∈ AHn+1\Fn+1 , ∀ k ∈ N.

Thus, by induction, there exist two sequences (En)n∈N and (Hn)n∈N of sets in G and in F ,
respectively, such that for every n ∈ N it holds

Fn ⊆ En ⊆ Hn ⊆ En+1, µk(Y ) ∈
n∑

p=1

Vp ∀Y ∈ AHn\Fn
, ∀ k ∈ N.

Hence for every n ∈ N, since

Cn+1 ⊆ En+1 \ Fn = (En+1 \ Hn) ∪ (Hn \ Fn),

there exists Yn ∈ AEn+1\Hn
such that

µk(Cn+1) ∈ µk(Yn) +
n∑

p=1

Vp ∀ k ∈ N,

and, in particular,

(3.6) µn+1(Cn+1) ∈ µn+1(Yn) +
n∑

p=1

Vp ∀n ∈ N.

Now let E′
n belong to G such that

Yn ⊆ E′
n, µn+1(E′

n \ Yn) ∈ Vn+1;

without less of generality we suppose that E′
n ⊆ En+1 \ Hn.
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Then, from (3.6), it results

µn+1(Cn+1) ∈ µn+1(E′
n) +

n+1∑
p=1

Vp ⊆ µn+1(E′
n) + V + V ∀n ∈ N.

Since (En+1 \Hn)n∈N is a pairwise disjoint sequence in G, by the uniform G-exhaustivity
of (µn)n∈N, there exists ν ∈ N such that for n > ν one has

µk(E′
n) ∈ V ∀ k ∈ N,

therefore
µn+1(Cn+1) ∈ V + V + V ⊆ U ∀n > ν,

which contradicts (3.5). �

We are now able to state the main result of this section.

Theorem 3.4. Let (µn)n∈N be a sequence of raF (A,S). Assume that F and G satisfy
(P). If (µn)n∈N is uniformly G-exhaustive, then (µn)n∈N is uniformly A-exhaustive and
uniformly F -regular.

Proof. Suppose first that (µn)n∈N is not uniformly A-exhaustive. Then there exist U ∈
U [0], a disjoint sequence (Ak)k∈N of sets in A and a sequence of natural numbers (nk)k∈N

such that
µnk

(Ak) /∈ U ∀ k ∈ N.

Let V be a symmetric element of U [0] such that V + V ⊆ U ; since every µn belongs to
raF (A,S), for any k ∈ N there exists Fk ∈ F such that

Fk ⊆ Ak, µnk
(Y ) ∈ V ∀Y ∈ AAk\Fk

.

Hence
µnk

(Ak) ∈ µnk
(Fk) + V ∀ k ∈ N,

and so
µnk

(Fk) /∈ V ∀ k ∈ N.

This contradicts the uniform F -exhaustivity of (µn)n∈N, that Lemma 3.3 assures.
In order to prove the uniform F -regularity of (µn)n∈N, let U ∈ U [0] and let (Vn)n∈N∪{0}

be a sequence of symmetric members of U [0] such that

n∑
i=0

Vi ⊆ U ∀n ∈ N,

n+k∑
i=n+1

Vi ⊆ Vn ∀n ∈ N, ∀ k ∈ N.

Let A ∈ A. Using the F -regularity of the µn, one can determine an increasing sequence
(Fk)k∈N in F and a decreasing sequence (Gk)k∈N in G such that for every k ∈ N it holds

(3.7) Fk ⊆ A ⊆ Gk, µn(Y ) ∈ Vk ∀Y ∈ AGk\Fk
, ∀n ∈ {1, · · · , k}.

Since (Gk\Fk)k∈N is a decreasing sequence in G, the above proved uniform A-exhaustivity
of (µn)n∈N implies that for any Y ∈ A the sequence

(µn(Y ∩ (Gk \ Fk)))k∈N
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is a Cauchy sequence, uniformly with respect to Y ∈ A and to n ∈ N.
Thus there exists νo ∈ N such that
(
µn(Y ∩ (Gp \ Fp)), µn(Y ∩ (Gq \ Fq))

)
∈ V ∗

o for every p, q ≥ νo, n ∈ N, Y ∈ A;

in particular

(3.8) µn(Y ∩ (Gνo \ Fνo )) ∈ Vo + µn(Y ∩ (Gq \ Fq)) for every q ≥ νo, n ∈ N, Y ∈ A.

On the other hand, from (3.7) it follows that for any fixed n ∈ N, denoted as q a natural
number bigger than νo and n, it results that

(3.9) µn(Y ∩ (Gq \ Fq)) ∈ Vq ⊆ V1 ∀Y ∈ A;

hence, from (3.8) and (3.9), one obtains that

µn(Y ∩ (Gνo \ Fνo)) ∈ Vo + V1 ⊆ U ∀Y ∈ A, ∀n ∈ N,

which ends the proof. �

4. Cafiero - Dieudonné theorem

Before stating the main results of the paper, let us recall some definitions.
A ring R is said to have the subsequential interpolation property (SIP) if for every

subsequence (Rnk
)k∈N of any pairwise disjoint sequence (Rn)n∈N of sets in R there exist a

subsequence (Rnkl
)l∈N and an element R ∈ R such that

Rnkl
⊆ R for every l ∈ N, and Rj ∩ R = ∅ for any j ∈ N \ {nkl

: l ∈ N}.

Moreover a ring R is said to satisfy the sequential completeness property (SCP) whenever
every disjoint sequence (Rn)n∈N in R admits a subsequence (Rnk

)k∈N whose union is in R
(we refer the reader to [12], [17], [22], and (P2)-(P1) in [36] for more details).

Then, if L is a meet semilattice in A, we say that L is a SIP (resp. SCP)-semilattice if
for any pairwise disjoint sequence (Ln)n∈N of sets in L, there exist a subsequence (Lnk

)k∈N

and a ring with the SIP (resp. SCP) property, containing all the Lnk
and contained in L.

First we determine an extended version of Cafiero’s criterion ([8]).

Theorem 4.1 (Cafiero-Dieudonné). Let (µn)n∈N be a sequence of G-exhaustive elements
of raF (A,S). Assume that F and G satisfy (P), and G is a SIP-semilattice.

Then (µn)n∈N is uniformly G-exhaustive if and only if the following condition holds
(�) for every pairwise disjoint sequence (Gk)k∈N in G and for every U ∈ U [0] there exist

ko, νo ∈ N such that
µn(Gko) ∈ U ∀n ≥ νo.

Proof. The necessity of the condition (�) is trivial.
For the sufficiency, we argue by contradiction. Let us assume, by passing to a subsequence

if necessary, that there exist Uo ∈ U [0] and a pairwise disjoint sequence (Gk)k∈N of sets in
G such that

(4.1) µk(Gk) /∈ Uo ∀ k ∈ N.
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Since G is a SIP-semilattice, there exist a subsequence (Gkl
)l∈N and a ring R with the

subsequential interpolation property such that R ⊆ G and Gkl
∈ R, for every l ∈ N. As the

restrictions of the µk to R satisfy the hypotheses of Cafiero Theorem (5.2) in [14] (since,
in the Boolean case, (4.3) in [14] holds even for rings, as shown in [17]), then they are
uniformly R-exhaustive and, in particular, one has

lim
l→+∞

µk(Gkl
) = 0 uniformly with respect to k ∈ N,

a contradiction of (4.1). �

Remark 4.2. We stress that, whenever the hypotheses of the previous Theorem are
fulfilled, (�) implies also the uniform A-exhaustivity as well as the uniform F -regularity of
the given sequence (µn)n∈N of G-exhaustive elements of raF (A,S), owing to Theorem 3.4.

Remark 4.3. It is worth noting that, in order to prove the uniform R-exhaustivity of the
restrictions of the µk to R, it is possible to apply also Corollary 4.3 in [36], instead of (5.2)
in [14], taking into account the arguments in [36], pp. 272-273.

We point out that by Theorem 4.1 and Remark 4.2, one can fairly easy prove the following
result.

Corollary 4.4. Let (µn)n∈N be a sequence of G-exhaustive elements of raF (A,S). Assume
that F and G satisfy (P), and G is a SIP-semilattice.

If (µn)n∈N converges pointwise to a G-exhaustive set function in G, i.e.

lim
n→+∞µn(G) = µo(G), G ∈ G,

then (µn)n∈N is uniformly A-exhaustive and uniformly F -regular on the whole A.

Now we can establish the Dieudonné convergence type theorem.

Theorem 4.5 (Dieudonné convergence theorem). Let (µn)n∈N be a sequence of G-exhaustive
elements of raF (A,S). Assume that F and G satisfy (P), and G is a SIP-semilattice.

If (µn)n∈N converges pointwise to a G-exhaustive set function µo in G, then (µn)n∈N

converges pointwise in A to an exhaustive element of raF (A,S).

Proof. Let us consider A ∈ A and U ∈ U [0] arbitrary fixed. Then let V be a symmetric
element of U [0] such that V + V + V ⊆ U .

From an easily deduced uniform version of Proposition 2.1, one can determine the exis-
tence of an element G in G such that

A ⊆ G, µn(Y ) ∈ V ∀Y ∈ AG\A, ∀n ∈ N.

Hence, from the finitely additivity of the µn, for every p, q ∈ N it holds that

(
µp(A), µq(A)

)
=

(
µp(G), µq(G)

)
+

(
µp(A \ G), µq(A \ G)

)
∈

(
µp(G), µq(G)

)
◦ V ∗ ◦ V ∗.

Therefore the end of the proof follows from the pointwise convergence of (µn)n∈N in G. �

Finally, we show that for group-valued finitely additive regular functions the requirement
in Corollary 4.4 and in Theorem 4.5 that the limit function µo was G-exhaustive can be
eliminated.

The final theorem presented below is, in fact, the “group” version of Theorem 4.5.
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Theorem 4.6 (Dieudonné convergence theorem for group-valued functions). Let (µn)n∈N

be a sequence of G-exhaustive elements of raF (A,Γ), where Γ = (Γ,+, 0, τ) is an abelian
complete Hausdorff topological group. Assume that F and G satisfy (P), and G is a SIP-
semilattice.

If (µn)n∈N converges pointwise in G, i.e.

lim
n→+∞µn(G) = µo(G), G ∈ G,

then
(i) (µn)n∈N is uniformly A-exhaustive and uniformly F -regular,
(ii) (µn)n∈N converges pointwise in the whole A to an exhaustive element of raF (A,Γ).

Proof. If µo ≡ 0 in G, (i) easily follows from Theorem 4.1 and Remark 4.2.
In the general case, we argue by contradiction. From Theoren 3.4, then we can assume,

by passing to a subsequence if necessary, that there exist a neighbourhood Uo of the neutral
element 0 (briefly Uo ∈ I(0)) and a disjoint sequence (Gk)k∈N of sets in G such that

(4.2) µk(Gk) /∈ Uo ∀ k ∈ N.

Let V be a symmetric element of I(0) such that V + V ⊆ U ; since every µk is G-
exhaustive, it is possible to construct a subsequence (µkl

)l∈N of (µk)k∈N such that for every
l ∈ N one has

(4.3) µkl
(Gj) ∈ V ∀ j ≥ kl+1.

Thus, the sequence (µkl+1 − µkl
)l∈N is a sequence of G-exhaustive elements of raF (A,Γ)

which pointwise converges to 0 in G. Hence, from the starting observation of this proof, it
is uniformly A-exhaustive, but, from (4.2) and (4.3), it follows also that for every l ∈ N

(
µkl+1 − µkl

)
(Gkl+1) /∈ V,

a contradiction. This completes the proof of (i).
Assertion (ii) can be proved as in Theorem 4.5. �
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